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Figure 1. Transientangelo takes as input raw lidar scans from sparse viewpoints. These scans are used to optimize a scene representation
based on a signed distance function, which is further regularized to constrain the geometry from both captured and unseen viewpoints. The
method recovers higher-fidelity surfaces than previous methods in the sparse-view and low-photon regime (i.e., from tens to hundreds of
measured photons per pixel). The above scene was trained using simulated single-photon lidar data from five viewpoints, with an average of
150 photons per pixel over the occupied regions of the scene.

Abstract

We consider the problem of few-viewpoint 3D surface
reconstruction using raw measurements from a lidar system.
Lidar captures 3D scene geometry by emitting pulses of light
to a target and recording the speed-of-light time delay of
the reflected light. However, conventional lidar systems do
not output the raw, captured waveforms of backscattered
light; instead, they preprocess these data into a 3D point
cloud. Since this procedure typically does not accurately
model the noise statistics of the system, exploit spatial pri-
ors, or incorporate information about downstream tasks, it
ultimately discards useful information that is encoded in raw
measurements of backscattered light. Here, we propose to
leverage raw measurements captured with a single-photon
lidar system from multiple viewpoints to optimize a neu-
ral surface representation of a scene. The measurements
consist of time-resolved photon count histograms, or tran-
sients, which capture information about backscattered light
at picosecond time scales. Additionally, we develop new

regularization strategies that improve robustness to photon
noise, enabling accurate surface reconstruction with as few
as 10 photons per pixel. Our method outperforms other tech-
niques for few-viewpoint 3D reconstruction based on depth
maps, point clouds, or conventional lidar as demonstrated
in simulation and with captured data.

1. Introduction

Within the last few years, significant progress has been
made on the problem of multi-view 3D surface reconstruc-
tion. Recent methods combine efficient neural surface repre-
sentations with volumetric rendering models, enabling high-
fidelity scene reconstruction from multi-view images [23,47].
Overall, achieving accurate scene reconstruction is now rela-
tively straightforward when tens to hundreds of input images
are available. However, a significant remaining challenge is
achieving robust reconstruction when the number of input
viewpoints is reduced to only a few (e.g., less than ten). In
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this case, scene reconstruction from conventional images
alone is ill-posed [18] and requires strong priors to solve
robustly [54].

Instead of using conventional images, we investigate this
challenge using lidar measurements captured from a few
(2–5) different viewpoints. Lidar measures the distance to
each scene point by illuminating it with a pulse of light and
measuring the speed-of-light time delay of the back-reflected
pulse. These measurements provide additional constraints
to the multi-view reconstruction problem. However, conven-
tional lidar systems do not output the raw, captured wave-
forms of backscattered light; instead, they post-process these
data into a 3D point cloud. Since this procedure typically
does not accurately model the noise statistics of the sys-
tem, exploit spatial priors, or incorporate information about
downstream tasks, it ultimately discards useful information
that is encoded in raw measurements of backscattered light.
We are interested in using the raw measurements captured
by a single-photon lidar system—the time-resolved photon
counts histograms, or transients, which contain information
about the precise arrival times of backscattered light particles
at picosecond time scales.

Previous methods for multi-viewpoint 3D reconstruction—
whether based on conventional images or lidar—have several
drawbacks. First, image-based methods are usually trained
with tens or hundreds of images, making acquisition diffi-
cult [23, 31, 34, 50]. While several recent works attempt to
tackle the few-view reconstruction problem [28, 35, 49, 62],
they typically fail for the case where the baseline between in-
put images becomes large, and the problem becomes increas-
ingly ill-posed. Recent methods that leverage large-scale dif-
fusion models [8, 54] alleviate this limitation to some extent,
but are also prone to hallucinating scene geometry. Other
techniques improve few-view 3D reconstruction by introduc-
ing additional geometric constraints from point clouds [44]
or monocular depth estimators [62]. In this vein, our work
is closest to TransientNeRF [28], which shows that using
raw lidar data instead of depth maps or point clouds leads to
significant improvements in reconstructed scene appearance
in the few-view setting. However, TransientNeRF is based
on a volumetric representation and is designed for appear-
ance modeling rather than surface reconstruction. Further,
TransientNeRF uses long acquisition times (≈20 minutes
per view) to capture per-pixel photon count histograms with
several thousand photon arrivals each.

To address these limitations we propose Transientangelo,
a method for few-viewpoint scene reconstruction using tran-
sient supervision and a scene representation based on signed
distance functions (SDFs). Inspired by Neuralangelo [23],
we use an efficient neural representation with a hashing-
based feature grid to parameterize an SDF and radiance field.
The representation is then trained using supervision from
photon count histograms. To further constrain the recon-

structed surfaces, we regularize the scene geometry from
unseen viewpoints and use supervision from the captured
reflectivity (i.e., the time-integrated lidar measurements).

Overall, we improve few-viewpoint 3D surface recon-
struction from raw lidar measurements compared to previ-
ous work (see Figure 1), while also demonstrating signifi-
cant improvements in reconstructed geometry compared to
image-based or depth-based approaches. Our approach also
improves robustness to lidar measurements captured with
relatively few photon counts (e.g., 10–300), which is espe-
cially important when operating at fast acquisition speeds or
when imaging targets at long range. In summary, we make
the following technical contributions.

• We introduce Transientangelo: a method to perform sur-
face reconstruction using few-viewpoint single-photon
lidar.

• We propose regularization techniques that improve the
reconstructed geometry and provide improved robust-
ness in the low-flux regime where only tens to hundreds
of photons are collected per pixel.

• We introduce a multi-viewpoint simulated and captured
transient dataset with a range of photon count levels,
which we use to demonstrate state-of-the-art perfor-
mance for few-viewpoint surface reconstruction.

2. Related Work
Transientangelo brings together the areas of active single-

photon imaging, neural surface reconstruction, and few-
viewpoint 3D reconstruction.

Active single-photon imaging. We are specifically con-
cerned with lidar systems based on single-photon avalanche
diodes (SPADs), which output precise timestamps corre-
sponding to the arrival times of individual captured pho-
tons. For SPAD-based lidar, a transient is measured by
repeatedly illuminating a point with pulses of light and ac-
cumulating the individual photon arrival times into a time-
resolved histogram. Such captured histograms of a scene
can be used for direct scene reconstruction [13, 17, 24, 28],
non-line of sight scene reconstruction [3, 5, 38, 43, 55], see-
ing through participating media [25], visualizations of light
propagation [9, 27, 48] or to uncover statistical properties
of captured photons [41, 42]. Our work differs from these
in that we specifically aim to recover high-fidelity surfaces
from multi-viewpoint SPAD data. We are motivated by
previous work [28] that demonstrates the strong geomet-
ric information encoded in transients and their promise for
multi-viewpoint surface reconstruction.

While many previous techniques on 3D imaging with
SPADs use high-powered lasers or long acquisition times to
capture hundreds or thousands of photons [24, 25, 28, 38],
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Figure 2. Transientangelo training procedure. For a pixel p, we cast out a ray r(t) = o+ tcω(p). Captured viewpoint: 3D ray coordinates
are passed through the neural surface representation F to retrieve a radiance and an SDF value, which gets converted to density σ (see
Equation 3). These values are then binned into a transient, which, after a convolution with the laser pulse, gives the final rendered transient
τf [i, j, k]. The network is supervised with an L1 loss between the rendered and captured transient and an L1 loss between the integrals of
the rendered and captured transients (reflectivity loss). Unseen viewpoint: 3D ray coordinates are passed through the neural representation
to retrieve rendering weights, which are used to calculate the variance of the weights around the depth d. The network is trained to minimize
this variance, resulting in thinner surfaces and removing spurious zero-level sets.

our work is more closely related to single-photon imaging
techniques that operate in the photon-starved regime. Such
methods exploit spatial or temporal correlations in the pho-
ton arrivals to recover depth or reflectivity from only a few
captured photons at each pixel [20,41]. Instead, our approach
exploits cross-viewpoint information and reflectivity-based
regularization for scene reconstruction from as few as 10
collected photons per pixel.

Neural surface reconstruction. Neural surface represen-
tations typically use either occupancy [36,37,39] or a signed
distance function (SDF) [23,50,51,59,60] to model scene ge-
ometry. The former uses a neural network to classify points
in 3D space that fall inside an object [37]. The latter learns a
network that predicts the SDF of a 3D point (i.e., its signed
distance to the closest surface). The surface is extracted from
the SDF by finding the zero-level set. Our work, inspired by
Neuralangelo [23], builds on a hashgrid-based SDF repre-
sentation [34]. However, unlike in previous work, we use
transient measurements as supervision.

Recent works [7, 12, 32, 40, 57] have also explored train-
ing neural surface representations using data from emerging
sensors. Concurrent work [33] reconstructed 3D shapes of
objects using transient measurements from a low-cost SPAD
sensor. Their setup differs from ours as they utilize hundreds
of training poses, while we investigate 3D surface reconstruc-
tion from 2 to 5 viewpoints. To the best of our knowledge,
our work is the first to tackle the problem of few-viewpoint
surface reconstruction using transient measurements.

Few-viewpoint neural reconstruction. Prior work has
addressed few-viewpoint reconstruction using geometric
supervision (e.g., based on depth maps, point clouds,
or transients) [4, 28, 45, 49, 62], or by introducing other
strategies to regularize reconstruction from multi-view im-
ages [15, 19, 35, 53, 56, 58, 61, 62]. Our work is closest
to TransientNeRF [28] and RegNeRF [35]. In contrast
to TransientNeRF—which reconstructs a volumetric scene
model from few-viewpoint transients—we focus on surface
reconstruction using an SDF-based representation and im-
prove robustness to noisy (low photon) measurements. Sim-
ilar to RegNeRF, we regularize views rendered from novel
viewpoints; however, we use a different depth-based reg-
ularization strategy and exploit transient data to achieve
improved performance in the few-view setting.

3. Method
In this section, we provide a mathematical description of

single-photon lidar [28], which we then relate to the render-
ing model used to optimize the surface representation. An
overview of the method is shown in Figure 2.

3.1. Measurement Model

Suppose that light from a laser pulse is reflected from
a scene and focused onto a sensor at point p ∈ R2. Also,
assume that laser and sensor are co-axial, such that light
propagates to the scene and back along the same path. Then,
we can model the forward path of light along a ray r(t) =
o+ tcω(p), where o ∈ R3 represents the camera origin, c
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is the speed of light, and ω is a unit vector describing the
direction of the ray.

Light incident along r is integrated at a sensor pixel
(i, j) over time bins n, resulting in a transient measurement
τ̃ [i, j, n]. The number of photons collected in each time bin
follows a Poisson distribution [28, 41]:

τ̃ [i, j, n] ∼ Poisson(Nηλ[i, j, n] +B),

where B = N(ηA[i, j] +D). (1)

Here, λ is the expected number of incident photons and
depends on the reflectivity of the point imaged by pixel (i, j).
The value N denotes the number of emitted laser pulses per
pixel, η is the detection efficiency of the sensor, and B is
the number of background detections, which depends on
the average ambient photon rate at pixel coordinates (i, j),
A[i, j]. Finally, the value D is the dark count—i.e., the
number of false detections produced by the sensor.

For a Poisson distribution, the signal-to-noise ratio (SNR)
is defined as the ratio between the mean and its standard
deviation. Hence, in our case, the SNR of τ̃ is given by:

Nηλ[i, j, n] +B√
Nηλ[i, j, n] +B

. (2)

Decreasing the number of laser pulses reduces the acquisi-
tion time, the number of collected photons, and the SNR of
the measurements.

3.2. Surface-based Transient Rendering

We render transients by combining a neural representa-
tion that parameterizes the scene appearance and surface
geometry with a time-resolved volume rendering equation.

Neural surface representation. We use a neural surface
representation F to represent the scene appearance and
surface geometry. The representation consists of a multi-
resolution hash-grid, a base multi-layer perceptron (MLP)
Fb, and a colour MLP Fc [23, 34]. The MLP Fb maps a
point along a ray r(t) ∈ R3 to a geometric latent feature vec-
tor lgeo ∈ R16 and an SDF value f ∈ R. The surface normal
is given as n = ∇f(r)

∥∇f(r)∥ , where the gradient ∇f(r) is com-
puted via finite differences. We then recover the radiance
at r(t) as c = Fc(n, γ(ω), lgeo), where γ is a positional
encoding function [46].

To make the representation compatible with time-resolved
volume rendering, we follow NeuS [50] and convert the
predicted SDF to a density field σ(r) as

σ(r) = max

(
− d

dtΦs (f(r))

Φs (f(r))
, 0

)
, (3)

where Φs(x) = (1+ e−sx)−1 is the sigmoid function, and s
is a learnable parameter controlling the support of the density
field around the zero level set [52].

Time-resolved volume rendering. Following Transient-
NeRF [28] we use the predicted density and radiance values
from this representation to render transients τ at each pixel
(i, j) and time bin n using the time-resolved volume render-
ing equation:

τ [i, j, n] =

∫
Pi,j

∫
Tn

(tc)−2 T (t)2σ(r)c(r,ω) dtdp,

(4)

where T (t) = exp

(
−
∫ t

t0

σ(r) ds

)
.

The value T (t) is the transmittance from a distance t0 along
the ray to t, and this term is squared to reflect the two-way
propagation of light [1]. The value (tc)−2 accounts for the
inverse-square falloff of intensity, Tn is the transient bin
width, and Pi,j models the pixel footprint. Note that in
practice, we approximate the integral using quadrature by
sampling at locations ti along the ray [29]. We approximate
the integral over Pi,j by explicitly sampling multiple rays
within the area of each pixel. Finally, we convolve τ with
the calibrated temporal impulse response of the lidar system
to yield the final rendered transient τf [28].

3.3. Optimization

Data term. We supervise the rendered transients to be
consistent with the measurements τ̃ by minimizing the fol-
lowing loss function.

Lτ =
1

|Rtrain|
∑
Rtrain

∥τ̃ − τf∥1, (5)

where Rtrain is the set of rays corresponding to the captured
transient measurements used for training.

Weight variance regularization. To recover thinner and
smoother surfaces and aid the model in generalizing to view-
points far from the training distribution, we regularize the
scene density from sampled unseen viewpoints by penalizing
the variance of the rendering weights along each ray.

To sample unseen viewpoints, we follow RegNeRF [35]
and sample camera origins on a sphere around the scene es-
timated from the training views (see supplement for details).
We then regularize the density from these unseen views us-
ing RawNeRF’s weight-variance regularizer [30]. We find
that replacing their rendered depth estimate with the argmax
depth [28] recovers more accurate surfaces, as shown in the
supplement.

More specifically, let ti be the samples along the ray
used in the quadrature approximation of Eq. 4. Then, the
values wi = σ(ti)T (ti) represent alpha compositing weights
applied to the radiance values along a ray. We use wi to
compute the weight-variance regularizer, which we apply to
rays R′

train sampled from the set of unseen views:
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Lweight_var =
1

|R′
train|

∑
R′

train

∑
i

wi
(ti − d)3 + (ti−1 − d)3

3(ti − ti−1)
.

(6)

The value d = argmaxt∗ T (t∗)σ(t∗) represents the depth,
or the distance along the ray with the maximum probability
of ray termination [28].

Reflectivity loss. To improve performance in the low pho-
ton count regime, we introduce a reflectivity loss, which
provides additional supervision using the integrated tran-
sients. Since the integrated transients have a higher signal-to-
noise ratio than the individual photon count histogram bins,
this provides a complementary source of supervision. We
implement this loss as

Lref =
1

|Rtrain|
∑
Rtrain

∥
∑
n

τ [i, j, n]−
∑
n

τ̃ [i, j, n]∥1, (7)

where the integrated transients are computed by summing
over n.

In summary, our training loss can be expressed as

L = Lτ + λrefLref + λscLsc + λeikLeik

+ λweight_varLweight_var + λsparseLsparse. (8)

Here, the space carving loss, Lsc, penalizes densities at loca-
tions where the transient is below a background level B:

Lsc =
∑
i,j,n

τ̃ [i,j,n]<B

∫
Pi,j

∫
Tn

T (t)σ(r) dtdp. (9)

The Eikonal regularization [10] is given as

Leik =
1

|r ∈ Rtrain|
∑

r∈Rtrain

(∥∇f(r)∥ − 1)2, (10)

and encourages the SDF to have a gradient magnitude equal
to one. Finally, the sparsity loss is

Lsparse =
1

|r ∈ Rtrain|
∑

r∈Rtrain

exp(−α|f(r)|), (11)

where α is a scalar hyperparameter. This loss helps to prevent
floating artifacts in the reconstruction.

3.4. Implementation Details

We implement our method in Pytorch-Lightning [6, 11].
We use the NerfAcc [22] version of InstantNGP [34] for
efficient ray marching, and we build on top of Transient-
NeRF’s [28] time-resolved rendering.

Training and optimization. We initialize the SDF to ap-
proximate a sphere [2]. We follow Neuralangelo’s coarse-
to-fine optimization strategy by initializing the step-size in
the gradient calculation ϵ as the coarsest hash-grid voxel
size and exponentially decreasing it during training. For the
hash-grid, we start at four hash resolutions and unmask two
new hash resolutions every 5000 steps. We optimize the net-
work using the AdamW [26] optimizer, with β1 = 0.9 and
β2 = 0.99 and employ a two-step learning rate scheduler by
initializing the learning rate to 1×10−5 and linearly increas-
ing it until it reaches 1× 10−3 by the end of the 5000 steps.
Then, the learning rate is exponentially decreased over the
remaining steps, with a total of 250K steps. All experiments
were run on a single Nvidia RTX A6000 GPU with 48GB
of memory. We provide additional implementation details,
including hyperparameter settings, in the supplement.

4. Multiview Transient Dataset
To test the robustness of different methods on low-SNR

transient data, we adapt the simulated and captured datasets
introduced by TransientNeRF [28]. For each captured and
simulated scene, we synthesize transients with an average of
300, 150, 50, and 10 photons per occupied (non-background)
pixel. The paragraphs below outline how these datasets are
created.

Simulated dataset. To synthesize transients at different
photon counts in simulation, we match the flux from the
time-resolved Mitsuba renderer [28] to the target number
of photons per pixel. We then follow Malik et al. [28] and
set the background flux to 0.001 photons per 2850 captured
scene photons, which is set to match the statistics of the cap-
tured dataset. The flux is then Poisson sampled to simulate
photon counts.

Captured dataset. We create low-flux captured datasets
using the raw photon arrival timestamps from Transient-
NeRF. Specifically, we subsample the single photon arrivals
using thinning [21] to achieve a set number of detected
photons. We then bin the photon arrivals into a transient
histogram. Additional dataset details can be found in the
supplement. Both the simulated and captured variable pho-
ton count datasets will be released upon publication.

5. Results
We evaluate our method for transient and intensity im-

age synthesis from novel viewpoints, depth rendering, and
mesh recovery. We also benchmark the performance of our
method’s robustness to low-SNR data. Our supplementary
contains a more detailed set of results and ablation studies.

Baselines. We compare the rendered intensity, depth maps,
and meshes against state-of-the-art methods in surface re-

8716



Ground Truth Neuralangelo

ch
ai

r
ho

td
og

fic
us

RegNeRF MonoSDF-M Transient NeRF Proposed transients

2 
vi

ew
s

5 
vi

ew
s

3 
vi

ew
s

0.5 ns 2 ns

10−1

0.5 ns 2 ns

10−1

0.5 ns 2 ns

10−2

GTT-NeRF Proposed

Figure 3. Results on the simulated dataset using an average of 6000 photons per occupied (non-background) pixel. We show the recovered
meshes from the baselines and the proposed method. For the transient-based methods, we also show rendered transients for the indicated
pixels. Our method recovers smoother meshes with fewer missing parts. We also recover transients that better match the ground truth.

Table 1. Simulated results assessing image quality, depth accuracy, and mesh quality. The left column indicates average photons per pixel.

Chamfer Distance ↓ PSNR (dB) ↑ LPIPS ↓ L1 (depth) ↓ Transient IOU ↑
Method 2 views 3 views 5 views 2 views 3 views 5 views 2 views 3 views 5 views 2 views 3 views 5 views 2 views 3 views 5 views

60
00

Neuralangelo [23] 4.56 7.99 7.17 18.57 19.44 22.03 0.388 0.442 0.434 0.162 0.122 0.090 - - -
RegNeRF [35] 4.94 3.48 4.38 18.32 19.89 21.67 0.376 0.412 0.418 0.264 0.142 0.100 - - -
MonoSDF w/ mask [62] 3.78 1.67 0.18 19.76 20.74 24.65 0.240 0.244 0.132 0.045 0.026 0.015 - - -
TransientNeRF [28] 0.27 0.44 0.31 21.38 23.48 28.39 0.172 0.151 0.115 0.015 0.011 0.013 0.31 0.40 0.55
Proposed 0.07 0.06 0.05 25.28 26.69 29.49 0.176 0.155 0.150 0.006 0.006 0.005 0.54 0.58 0.68

30
0 TransientNeRF 0.26 0.33 0.30 21.34 22.79 25.88 0.201 0.152 0.121 0.012 0.012 0.015 0.32 0.41 0.58

Proposed 0.07 0.06 0.06 25.70 26.65 28.50 0.196 0.162 0.149 0.007 0.007 0.005 0.56 0.60 0.70

15
0 TransientNeRF 0.25 0.65 0.27 21.04 22.18 25.35 0.203 0.161 0.117 0.015 0.013 0.010 0.31 0.39 0.56

Proposed 0.09 0.07 0.29 25.56 26.52 28.19 0.193 0.165 0.151 0.007 0.006 0.005 0.56 0.60 0.70

50

TransientNeRF 0.53 0.66 0.50 20.16 21.57 24.01 0.232 0.184 0.133 0.021 0.017 0.014 0.29 0.40 0.55
Proposed 0.15 0.08 0.06 24.73 25.76 26.55 0.218 0.163 0.167 0.012 0.005 0.007 0.53 0.59 0.63

10

TransientNeRF 2.86 0.31 5.50 18.94 22.85 16.73 0.265 0.218 0.209 0.052 0.018 0.092 0.27 0.43 0.19
Proposed 0.22 0.28 0.18 22.76 23.98 25.51 0.254 0.216 0.208 0.016 0.015 0.014 0.43 0.47 0.54

construction and few-view surface reconstruction: Neu-
ralangelo [23], RegNeRF [35], and MonoSDF [62]. To
ensure a fair comparison, we implement these baselines us-
ing the same Neuralangelo [23] backbone architecture, and
we integrate their proposed loss functions. All three meth-
ods are supervised using integrated transient measurements.
MonoSDF is also supervised using depth maps obtained by
applying a log-matched filter [16] to the transient measure-
ments, and the input normal maps are estimated from the
depth. We also compare our method to TransientNeRF [28].

Evaluation criteria. To measure the mesh reconstruction
quality, we use Chamfer Distance. For image reconstruc-
tion evaluation, we use PSNR and LPIPS [63]. We also
evaluate the quality of the rendered transients using Tran-

sient IOU [28], defined as the intersection over the union
of the rendered transient and the ground truth transient (see
supplement for details).

5.1. Simulated Results

Figure 3 shows the recovered meshes and rendered tran-
sients for specific pixels from the proposed method com-
pared to baselines. We show results for measurements with
an average of 6000 photons per occupied pixel (results for
other photon levels are included in the supplement). Due
to a lack of any depth-based priors, Neuralangelo [23] and
RegNeRF [35] both fail to recover accurate scene geometry.
MonoSDF [62] recovers noisier surfaces than the proposed
approach, especially when trained with fewer input view-
points. Compared to TransientNeRF [28], the proposed

8717



reference image Neuralangelo

fo
od

ca
rv
in
g

ci
ne
m
a

RegNeRF MonoSDF-M Transient NeRF Proposed transients

2 
vi

ew
s

5 
vi

ew
s

3 
vi

ew
s

0.5 ns
10−2

0.5 ns

10−1

0.3 ns
10−2

GTT-NeRF Proposed

Figure 4. Results on the captured dataset. We show the recovered meshes from the baselines and the proposed method. Due to the lack of
ground-truth, we include the closest captured image for reference of the scene. As can be seen, Neuralangelo recovers smoother meshes with
fewer missing parts. We also recover transients that better match the ground truth.

Table 2. Captured results assessing image quality, depth accuracy, and mesh quality. The left column indicates average photons per pixel.

PSNR (dB) ↑ LPIPS ↓ L1 (depth) ↓ Transient IOU ↑
Method 2 views 3 views 5 views 2 views 3 views 5 views 2 views 3 views 5 views 2 views 3 views 5 views

15
00

Neuralangelo [23] 17.79 19.28 21.07 0.380 0.355 0.300 0.076 0.071 0.061 - - -
RegNeRF [35] 18.50 19.59 20.29 0.375 0.320 0.330 0.085 0.073 0.076 - - -
MonoSDF w/ mask [44] 17.63 21.16 27.25 0.353 0.248 0.157 0.033 0.026 0.021 - - -
TransientNeRF [28] 22.11 21.83 22.72 0.271 0.212 0.172 0.005 0.006 0.010 0.34 0.41 0.50
Proposed 21.31 23.95 25.22 0.241 0.170 0.145 0.007 0.006 0.006 0.40 0.50 0.58

30
0 TransientNeRF 20.14 21.99 20.53 0.270 0.210 0.177 0.012 0.007 0.014 0.26 0.39 0.36

Proposed 21.60 23.53 23.79 0.223 0.170 0.151 0.005 0.005 0.012 0.42 0.49 0.55

15
0 TransientNeRF 19.13 21.06 19.95 0.277 0.206 0.196 0.016 0.015 0.018 0.21 0.33 0.28

Proposed 21.23 23.56 25.33 0.222 0.171 0.146 0.007 0.005 0.004 0.41 0.50 0.60

50

TransientNeRF 18.80 19.63 19.31 0.274 0.194 0.190 0.020 0.020 0.018 0.19 0.26 0.24
Proposed 19.14 22.33 25.34 0.280 0.180 0.148 0.017 0.011 0.007 0.34 0.44 0.59

10

TransientNeRF 16.40 16.36 15.40 0.246 0.259 0.272 0.037 0.041 0.090 0.08 0.08 0.02
Proposed 22.40 23.05 25.47 0.242 0.208 0.173 0.008 0.008 0.007 0.35 0.36 0.45

method recovers smoother surfaces with fewer missing parts
and fewer floating artifacts, especially in the case of training
with two or three input viewpoints. The results highlight
the benefit of training a neural surface representation with
transient supervision.

Table 1 shows the quantitative performance of the pro-
posed method against the baselines averaged across all
scenes in the two, three, and five training viewpoint set-
tings. We benchmark performance for varying measurement
SNRs by training using transients with lower photon counts.
To compute the metrics, we first scale the rendered transients
so that the average photon count per occupied pixel (across
all viewpoints) is the same across all photon levels. The

recovered meshes from the proposed method achieve sig-
nificantly lower Chamfer Distance compared to the other
methods and roughly 5× lower than the second-best method,
TransientNeRF. The recovered depth maps are also more
accurate than the baseline methods, and the image metrics
are comparable. Finally, the transients rendered from our
method are more similar to the ground truth based on the
Transient IOU metric.

5.2. Captured Results

Figure 4 shows the recovered meshes for our method
and the baselines on the food, carving, cinema scenes for
two, three, and five training viewpoints respectively (see
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Figure 5. Novel view synthesis for varying photon levels. We show the rendered novel view on the cinema scene, trained on five viewpoints
with an average of 50, 300 photons. We also show peak-time visualizations [27], which show the full transient in a single visualization.
Hue encodes the time of peak intensity, brightness is modulated by the maximum intensity, and each band corresponds to an isochrone, or
wavefront of equal path length. We show transient plots (right) for the pixel indicated on the ground-truth image (blue dot).

Table 3. Ablation study on the Lego scene with 6000ppp. We
present results without the sparsity loss (w/o Lsparse), without the
space carving loss (w/o Lsc), without the weight variance regular-
izer (w/o Lweight_var) and without the reflectivity loss (w/o Lref).

Chamfer Distance ↓ PSNR (dB) ↑ Transient IOU ↑
Method 2 views 3 views 5 views 2 views 3 views 5 views 2 views 3 views 5 views

Ours w/o Lsc 0.07 0.04 0.11 25.63 26.32 26.22 0.53 0.57 0.53
Ours w/o Lweight_var 0.28 0.37 1.04 21.58 22.66 23.81 0.48 0.53 0.60
Ours w/o Lsparse 0.02 0.03 0.08 25.43 26.87 26.58 0.53 0.58 0.63
Ours w/o Lref∗ 5.50 2.91 0.53 22.38 24.92 26.22 0.49 0.55 0.65
Ours 0.02 0.02 0.01 25.72 26.66 27.47 0.53 0.58 0.63

*For this ablation we set the Eikonal loss to 0 and the weight variance loss to 10−5.

the supplement for qualitative results for all scenes). As in
TransientNeRF [28], we mask out the background of the
transients for the captured dataset. Similarly to the simulated
dataset, the meshes recovered from the proposed method are
more accurate than the baseline methods.

We report metrics averaged across six captured scenes
in Table 2. Due to a lack of ground-truth meshes, we are
not able to report Chamfer distances, and the depth L1
metric is calculated by comparing depth maps estimated
from log-matched filtering of transients from held-out views.
Our quantitative results show an improvement over Tran-
sientNeRF across all image and depth metrics. Overall,
our method remains robust across various photon levels,
whereas TransientNeRF’s image rendering quality deterio-
rates rapidly as the mean photon count decreases.

Figure 5 shows the results of training our method and
TransientNeRF [28] on transients with an average of 50 and
300 photons per occupied pixel. At these photon levels, using
TransientNeRF results in rendered transients that underesti-
mate the measured intensities compared to our method.

5.3. Ablation Study

Table 3 evaluates the effect of ablating the regularization
terms on the simulated Lego scene. The results indicate
that all the added regularizers are crucial for performance;
however, Lref and Lweight_var are the most essential. When
ablating the reflectivity loss (row 4), we deviated from the de-
fault settings of Leik and Lweight_var, as indicated in the table,
to improve convergence (see details in the supplement).

6. Discussion
We show that using a neural surface representation with

transient supervision and additional regularization recovers
high-fidelity surfaces in the few viewpoint setting with as
few as 10 measured photons per pixel. Our work improves
the practicality of transient-based reconstruction by reducing
the required light levels, which could be especially useful
for 3D imaging of photo-sensitive materials or long-range
(and low-SNR) remote sensing.

In future work, we hope to address certain limitations of
our method. For example, computational efficiency could
potentially be improved by developing new time-resolved
rendering frameworks based on Gaussian splatting [14]. Ad-
ditionally, while the main focus of our work is scene re-
construction using the direct component of light, transients
carry much richer scene information, including higher order
bounces of light, future work could exploit indirect light
transport to infer scene properties such as geometry, re-
flectance, and material characteristics.
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