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Abstract

Lensless imaging offers a significant opportunity to de-
velop ultra-compact cameras by removing the conventional
bulky lens system. However, without a focusing element, the
sensor’s output is no longer a direct image but a complex
multiplexed scene representation. Traditional methods have
attempted to address this challenge by employing learnable
inversions and refinement models, but these methods are
primarily designed for 2D reconstruction and do not gen-
eralize well to 3D reconstruction. We introduce GANESH,
a novel framework designed to enable simultaneous refine-
ment and novel view synthesis from multi-view lensless im-
ages. Unlike existing methods that require scene-specific
training, our approach supports on-the-fly inference with-
out retraining on each scene. Moreover, our framework
allows us to tune our model to specific scenes, enhanc-
ing the rendering and refinement quality. To facilitate re-
search in this area, we also present the first multi-view lens-
less dataset, LenslessScenes. Extensive experiments demon-
strate that our method outperforms current approaches in
reconstruction accuracy and refinement quality. Code and
video results are available here.

1. Introduction

In recent years, mask-based lensless imaging systems

have received significant interest due to their potential to

offer compact, lightweight, and cost-efficient alternatives to

traditional cameras [18]. Rather than utilizing standard op-

tical lenses, these systems rely on amplitude [2] or phase

masks [1, 6] placed in close proximity to the sensor. This

design not only minimizes the physical dimensions and

mass of the imaging device, i.e., a smaller form factor, but

also enables the use of non-traditional sensor geometries,

such as spherical, cylindrical, or even flexible configura-

tions [28]. In the absence of a conventional focusing el-

ement, the measurements captured by the sensor are not

straightforward images of the scene. Instead, they consist
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Figure 1. Reconstructing 3D scenes from multi-view lensless cap-

tures presents significant challenges. To tackle this, we propose

GANESH, a novel framework that refines lensless captures while

simultaneously rendering novel views. Existing 2D approaches

address this task in a sequential, two-step process, resulting in

suboptimal 3D reconstruction quality. In contrast, GANESH in-

tegrates these two stages into a unified framework, enabling joint

optimization for superior novel view synthesis.

of intricate, multiplexed data that encode the light infor-

mation from the scene in a highly compressed and non-

intuitive form. This image formation model necessitates ad-

vanced computational techniques to decode and reconstruct

the original scene, as the sensor no longer produces a one-

to-one representation of the visual information but rather a

superimposition of light intensities across the entire field of

view.

Numerous studies have investigated the problem of scene

reconstruction from single-image lensless captures [3, 12,

18, 25]. For instance, FlatNet [18] employs a two-step pro-

cess to recover the scene. Initially, a trainable inversion

module is utilized to reconstruct most of the scene’s details;

however, the resulting output still contains significant noise,

which is subsequently addressed by a refinement network.

While there are several works in this field of 2D scene re-

construction, there has been little to no work in reconstruct-

ing a 3D scene from multi-view lensless captures. This ad-

vancement is particularly significant for applications such

as endoscopic surgery, where the compact size of lensless

cameras offers a substantial advantage. Achieving 3D re-

construction from multi-view lensless images could greatly

benefit medical fields and AR/VR applications [13, 17]

Recently, NeRFs have amassed a lot of attention for their
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ability to reconstruct 3D scenes from real-world multi-view

captures. Most NeRF-based methods rely on RGB images

to model the underlying 3D scene. There have been several

works in this space which prompt NeRFs with different im-

age modalities like Thermal Images [33], Event Data [14],

Multi-spectral captures [35], Single-Photon Data [15]. For

instance, in Thermal NeRF [33], they present an approach

for reconstructing novel views exclusively from thermal im-

agery, particularly beneficial in visually degraded robotics

scenarios. Ev-NeRF [14] learns to reconstruct multi-view

images from a raw stream of event data captured by a neuro-

morphic camera, which helps in better reconstruction, espe-

cially in high dynamic range scenes. Despite these promis-

ing developments, a significant limitation of current NeRF

models is their reliance on scene-specific training.

One might consider using established refinement tech-

niques such as FlatNet [18] and then feeding the outputs to

rendering networks like NeRF or Gaussian Splatting [16].

Though this is a viable option, it comes with its downside.

NeRF and Gaussian Splatting operate on the principle of us-

ing images solely for supervisory purposes rather than as di-

rect inputs. Such models cannot be trained on paired multi-

view lensless and RGB images, resulting in poor novel view

synthesis quality. Secondly, while Gaussian Splatting offers

improved computational efficiency compared to NeRF, it

may be susceptible to overfitting the noisy outputs produced

by FlatNet, potentially resulting in suboptimal reconstruc-

tion quality. Finally, each model must be re-trained from

scratch whenever presented with a new set of images, limit-

ing their scalability and practical application across diverse

scenarios.

Generalizable Radiance Fields methods have recently

gained traction due to their ability to perform on-the-fly in-

ference on new scenes without specific training. Many of

these approaches [29, 30, 36] utilize a set of source views

and enforce epipolar constraints across them to generate

novel target views. The current state-of-the-art method,

GNT [29], employs a transformer-based architecture to ag-

gregate epipolar information from multiple views effec-

tively. It then accumulates these point features along each

ray to compute the final pixel color, enabling accurate and

efficient rendering of new views. However, as previously

noted, most Radiance Fields methods have predominantly

focused on using RGB images as input, with limited ex-

ploration of alternative modalities such as lensless captures.

Given the diverse applications of lensless imaging, incor-

porating this modality into radiance fields presents signifi-

cant opportunities for expanding their utility across various

fields.

In this paper, we introduce a novel methodology that en-

ables us to reconstruct scenes from multi-view lensless cap-

tures in a generalizable setting. Unlike traditional methods

that require scene-specific training for each new dataset, our

technique can generalize across various multi-view lens-

less inputs to render novel views. Our proposed method,

GANESH, can effectively reconstruct 3D scenes from lens-

less data. Our model is trained on extensive data of syn-

thetically generated multi-view lensless images. Despite

being trained exclusively on synthetic data, the model can

refine and render novel views when applied to real multi-

view lensless captures. Experimental results illustrate the

model’s effective generalization to both synthetic and real-

world scenes. Additionally, our method allows for scene-

specific tuning with minimal finetuning steps, enhancing

reconstruction quality. We also present LenslessScenes, a

dataset of real-world multi-view lensless captures compris-

ing six distinct scenes. These scenes, acquired in a con-

trolled laboratory setting, are accompanied by ground truth

data for precise quantitative evaluation. The key contribu-

tions of our work are as follows:
• We present a novel framework that simultaneously

achieves refinement and rendering of lensless captures.

• Our approach is generalizable, i.e., it can render views

on-the-fly without any need for scene-specific training.

• We present LenslessScenes, the first dataset of multi-

view lensless captures.

• Our experimental results demonstrate that the pro-

posed method outperforms existing techniques that

separately handle refinement and novel view synthe-

sis.

2. Related Works
2.1. Lensless Imaging

Lensless imaging refers to capturing images of a scene

without using a traditional lens to focus incoming light.

Historically, this technique has been widely utilized in

X-ray and gamma-ray imaging for astronomical purposes

[7, 11], but its application in the visible spectrum has only

recently been explored. In lensless systems, the scene is

captured either directly by the sensor [19] or after being

modulated by a mask element [1, 2, 27]. Our research fo-

cuses specifically on mask-based lensless imaging, where

replacing the lens with a mask leads to a highly multiplexed

sensor capture that does not directly resemble the original

scene. Consequently, advanced computational techniques

are required to reconstruct the image. FlatNet [18] ad-

dresses this by employing a trainable inversion module cou-

pled with a U-Net refinement architecture to recover the

scene from a lensless capture. FlatNet3D [3] further extends

this by predicting the scene’s intensity and depth from a sin-

gle lensless capture using a neural network. However, no

prior works have explored the use of multi-view images in

lensless imaging. Our proposed method, GANESH, seeks

to refine and render novel views from multi-view lensless
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Figure 2. Overview of GANESH: 1) Given multi-view lensless images of a scene, we first Wiener deconvolve the lensless captures to

obtain coarse images. 2) These are then passed onto a deep convolutional network to extract features for every input view. 3) Using the

source view features, we estimate the target refined rendered view via an epipolar-based rendering pipeline. 4) By supervising this pipeline

end-to-end on paired synthetic data, our model learns to inherently refine the coarse estimated images and simultaneously render novel

views eliminating the need for a separate refiner. Our method can directly generalize to any new scene during inference.

captures, enabling simultaneous refinement and novel view

synthesis.

2.2. Neural Radiance Fields

NeRF [22] utilizes a Multi-Layer Perceptron (MLP) to

represent a scene as a continuous 5D function, incorporat-

ing both spatial location and viewing direction. This frame-

work encodes the scene’s geometry and appearance by map-

ping a 3D spatial function and a 2D directional function to

outputs of color and density. Since its introduction, nu-

merous works have sought to enhance NeRF’s rendering

capabilities [8, 23, 24, 31]. Mip-NeRF [4, 5], for instance,

improves upon the original method by employing an ap-

proximate cone tracing approach rather than the ray tracing

method used in standard NeRF. PointNeRF [32] further ad-

vances this framework by introducing feature point clouds

as an intermediate step in the volumetric rendering process,

enhancing the overall quality of the rendered output.

NeRF has also been extended to non-RGB input modal-

ities, such as in Thermal-NeRF [33] and Hyperspectral

NeRF [10] etc. Thermal-NeRF [33] reconstructs 3D scenes

using infrared (IR) images as input, focusing on preserving

thermal characteristics more accurately. Similarly, Hyper-

spectral NeRF [10] adapts NeRF for hyperspectral imaging,

which captures data across a broad range of the electromag-

netic spectrum. In this work, we explore a related approach

by reconstructing 3D scenes from lensless captures, lever-

aging this alternative imaging modality to extend NeRF’s

capabilities.

2.3. Generalizable Radiance Fields

A significant drawback of NeRF is its lack of gener-

alization, as each model is specifically trained for a sin-

gle scene and cannot be easily transferred to new, unseen

scenes. Various approaches, such as MVSNeRF [9], IBR-

Net [30], and Generalizable NeRF Transformer (GNT) [29],

have addressed this limitation by developing models ca-

pable of generalizing across different scenes. MVSNeRF

[9] enhances novel view synthesis speed by incorporating

multi-view stereo methods. IBRNet [30] offers a generaliz-

able image-based rendering framework that generates novel

views from arbitrary inputs without requiring per-scene op-

timization. GNT [29] leverages a transformer-based archi-

tecture to synthesize novel views by aggregating the infor-

mation across source views based on epipolar constraints.

Building on these advancements, we propose a general-

izable model designed explicitly for novel view synthesis

from lensless captures.

3. Preliminary: Generalizable NeRF Trans-
former

Our method is built on the Generalizable NeRF Trans-

former (GNT) framework, aimed at generating accurate im-

ages from noisy input views. Given N calibrated source

views with known pose information {Ii,P i}Ni=1, the ob-

jective is to synthesize a novel target view IT , even for

scenes not encountered during training, ensuring general-

izability. To achieve this, deep convolutional features F i

are extracted from each source view. During the rendering

process, rays are cast into the scene, with K points sam-

pled along each ray, defined by the camera center o and ray

direction d. Each point is projected onto the source views

using a projection operator Πi, and the nearest features in

the image plane are retrieved.

These features are combined into a point feature f(t)
using a permutation-invariant aggregation function Fview

that is trained to handle occlusions.

f(t) = Fview({FΠi(r(t))}Ni=1) (1)

Finally, the accumulated point features are used to com-

pute the target color c(r) via an aggregation function

39483



Fpoint, resulting in the rendered image.

c(r) = Fpoint({f(ti)}Ki=1) (2)

We leverage GNT’s capabilities to generate target novel

views and visually enhance the reconstructions of lensless

captures, avoiding the need for a refinement network before

novel view synthesis.

4. GANESH
Overview. We introduce GANESH, a novel framework

to perform generalizable novel view synthesis from lensless

captures, as illustrated in Fig. 2. The task is to generate

refined novel views from N calibrated multi-view lensless

images of a scene, with known camera poses, while ensur-

ing the model generalizes to unseen scenes. Our method

builds upon existing GNT architecture [29] but conditions

the scene representation and rendering processes based on

the captured multi-view lensless images. First, these lens-

less captures are passed through a simple Wiener deconvo-

lution filter to obtain a coarse estimate of the scene (Sec

4.1). The deconvolved outputs of this filter are then passed

on to a generalizable view synthesis model, which per-

forms both refinement and rendering simultaneously. Such

a pipeline can be trained end-to-end on synthetically gen-

erated scenes (Sec 4.2) and directly transferred to any real

scene without additional optimization (Sec. 4.3).

4.1. Coarse Scene Estimation

Given the global multiplexing of lensless captures, we

cannot directly feed them into the radiance fields model to

render novel views. Hence, to reconstruct the RGB image

from the lensless captures, these need to be deconvolved

with the lensless camera’s point spread function (PSF) to

obtain coarse reconstructed images. For this, we utilize

wiener deconvolution, which accepts the lensless capture

and the point spread function as the input and returns the

reconstructed image. For an RGB image I and a PSF ker-

nel H , the observed lensless image is given by:

G(x, y) = (I ∗H)(x, y) + n(x, y) (3)

The wiener deconvolution will produce the following esti-

mate for the RGB image:

Î(ωx, ωy) =
H∗(ωx, ωy)

|H(ωx, ωy)|2 +K
G(ωx, ωy), (4)

where Î(ωx, ωy) is the Fourier transform of the estimated

original image, H(ωx, ωy) is the Fourier transform of the

PSF, H∗(ωx, ωy) is the complex conjugate of H(ωx, ωy),
G(ωx, ωy) is the Fourier transform of the lensless capture,

and K is the noise-to-signal ratio. Note that the decon-

volved outputs are extremely noisy and require refinement

to reconstruct the scene.

Figure 3. a) Lensless camera setup used to capture the real-world

dataset LenslessScenes. b) The calibrated Point Spread Function

(PSF) is used for simulating lensless captures in our synthetically

generated dataset.

4.2. Simulating Lensless Imaging

Given the absence of a large-scale paired dataset com-

prising multi-view lensless captures and corresponding

ground-truth RGB images, which is essential for train-

ing our generalizable model, we propose to simulate lens-

less data using existing multi-view RGB datasets. Specifi-

cally, we approximate lensless captures by convolving each

ground-truth image with the lensless camera’s point spread

function (PSF). However, lensless measurements are fre-

quently corrupted by noise in real-world applications, ne-

cessitating refinement steps to recover the original scene.

We artificially introduce 40dB of Gaussian noise to the con-

volved lensless captures to simulate these practical condi-

tions. This addition of noise ensures that the model is ex-

posed to noisy data during training, helping it learn robust

features that transfer well from synthetic to real-world sce-

narios.

An important design choice in our simulation process in-

volves using a grayscale PSF map instead of an RGB PSF

map for the convolution operation. Through empirical stud-

ies, we found that the grayscale PSF map more accurately

mimics real-world lensless captures, which inherently lack

color-channel-specific information due to the absence of a

lens. As a result, the grayscale PSF map provides a more

realistic approximation of the sensor measurements in lens-

less imaging systems, leading to improved reconstruction

quality during inference, as demonstrated in the ablation

study presented in Sec. 5.6.

4.3. Training and Inference

To optimize the network end-to-end, we use 2 losses to

ensure view consistent rendering and accurate refinement.

Mean squared error: We use MSE to measure the dis-

tortion between the ground truth and the rendered output

given by.

LMSE =
1

N

N∑

i=1

(xi − x̂i)
2 (5)
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Figure 4. Qualitative results for scene-specific experiment on the synthetic NeRF-LLFF dataset. FlatNet+NeRF baseline exhibits significant

artifacts and fails to preserve critical scene geometry. While FlatNet+GNT improves scene geometry reconstruction, it introduces excessive

smoothing, resulting in the loss of high-frequency details. In contrast, our proposed method accurately reconstructs scene geometry and

renders novel views, preserving high-frequency details and delivering superior visual fidelity. Note that the input to all the baselines and

our model is the direct lensless capture. In the first column of this figure and all the subsequent figures, we show the Wiener Deconvolution

(WD) output just for visualisation.

where, x and x̂ represents the ground truth and the predicted

images, respectively.

Perceptual Loss [34]: In addition to MSE loss, we em-

ploy a perceptual loss to capture higher-level feature sim-

ilarities between the ground truth and the rendered output.

We use a pre-trained VGG-19 network to achieve this, ex-

tracting features from both the ground truth and predicted

views at various layers. The perceptual loss is formulated

as follows:

LPerceptual =
∑

l

λl
1

Nl

∑

i,j

(Fl(x)i,j − Fl(x̂)i,j)
2 (6)

where F represents the VGG network and λl represents the

weight given for each layer in the network.

Final Loss. A weighted sum of the MSE and Perceptual

Loss is taken to compute the final loss.

L = Lmse + λLperceptual (7)

Through training on synthetically generated lensless scenes,

we observe that GANESH successfully generalizes to real-

world data without additional finetuning. This generaliza-

tion capability aligns with results observed in prior 2D-

based methods [3,18], extending the hypothesis into the 3D

domain and confirming its applicability to lensless image

reconstruction.

5. Experiments and Results

5.1. Datasets

We leverage the IBRNet [30] and LLFF [21] datasets

to create a synthetic dataset comprising lensless images

and their corresponding ground truth RGB images. These

datasets, which are well-established benchmarks for novel

view synthesis (NVS), include a total of 110 scenes. For

validation purposes on synthetic scenes, we utilize the

NeRF-LLFF dataset [22].

5.2. LenslessScenes Real-World Dataset

To complement the synthetic data and test our model’s

robustness, we collected the first real-world multi-view

lensless dataset. A set of 7 scenes was collected in the lab

environment, consisting of an average of around 20 frames,

each collected in a forward-facing setting. We replicate the

setup of FlatNet [18] to collect real-data captures along with

ground truth labels using a monitor capture setup. We used

the BASLER Ace acA4024-29uc with 12.2MP Sony IMX226
sensor with a pixel size of 1.85μm to capture the scenes, see

Fig. 3. This data collection involved multiple scenes, each

captured with a detailed environmental setup. A point-sized

light source was employed to calibrate the camera’s point

spread function (PSF), which is essential for accurate recon-
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Figure 5. Qualitative results for generalizable setting conducted on the synthetic NeRF-LLFF dataset. We observe that the FlatNet+IBRNet

and FlatNet+GNT baselines fall short in rendering high-fidelity novel views compared to our method. Our approach demonstrates superior

recovery of fine geometry and textures.

struction. Additionally, a white display screen was used to

capture environmental noise, which was subsequently sub-

tracted from the images to enhance the quality of the cap-

tured data.

5.3. Implementation Details

Our entire pipeline is trained end-to-end using datasets

of multi-view posed images. For consistency, we adopt

the same input view sampling strategy employed by IBR-

Net [30], selecting 8 to 12 source views during training

while fixing the number of source views to 10 during infer-

ence for novel scenes. Instead of training the model from

scratch, we initialize our network with a pretrained check-

point from GNT [29], allowing us to leverage its general-

ization capabilities.

The optimization of our model for rendering clean im-

ages is carried out using the Adam optimizer [20], with

an initial learning rate set to 5 × 10−4, which decays pro-

gressively over 300k training iterations. In each iteration,

576 rays are cast, with each ray sampling 192 points. The

weight λ in our loss function is assigned a value of 0.4,

while the parameter K from the Wiener Deconvolution pro-

cess is 0.00045. All experiments are conducted on a single

NVIDIA RTX 3090 GPU, with the entire training process

taking approximately 24 hours to complete. As we cannot

run COLMAP [26] directly on the lensless captures, we use

the images recovered from FlatNet to run COLMAP and

extract camera poses and bounds.

5.4. Comparisons

In the absence of prior research specifically addressing

novel view synthesis for lensless imagery, we propose sev-

eral baseline approaches to evaluate our method.

FlatNet+NeRF. This approach involves first applying

FlatNet to refine lensless captures, followed by utilizing

NeRF for rendering. This is a major downside of using

scene-specific methods like NeRFs since they rely on the

supervision of images and hence cannot be trained explic-

itly to refine the lensless captures. Additionally, this base-

line does not offer generalization across different scenes.

FlatNet+IBRNet. Here, we replace NeRF with the gen-

eralizable IBRNet for rendering, while maintaining FlatNet

as the refinement module.

FlatNet+GNT. This baseline adopts a similar strategy

to the previous ones but uses GNT instead of IBRNet for

rendering. Both FlatNet+IBRNet and FlatNet+GNT are de-

signed to generalize across different scenes.

Table 1. Quantitative results for scene-specific experiment on syn-

thetic dataset averaged across the 8 scenes from the NeRF-LLFF

dataset. The best scores and second best scores are highlighted

with their respective colors

Models PSNR↑ SSIM↑ LPIPS↓
FlatNet+NeRF 13.7 0.057 0.705

FlatNet+GNT 20.2 0.27 0.59

Ours 22.8 0.71 0.27

5.5. Results

Scene-Specific Finetuning. We aim to synthesize re-

fined novel views from multi-view lensless images by train-

ing the model with supervision from corresponding ground

truth RGB images. To evaluate the effectiveness of our ap-

proach, we compare the results with two baseline methods:

FlatNet+NeRF and FlatNet+GNT. We supervise the NeRF

model using FlatNet outputs as it is not possible to supervise
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Figure 6. Qualitative results on the real-world LenslessScenes dataset. We show results for 4 scenes from the LenslessScenes dataset. Even

though our model was trained on synthetic data, it learns to generalize to the real world captures and outperforms both the baselines in

terms of render quality.

it with ground truth labels since it takes in coordinates and

viewing directions as input rather than an image. In con-

trast, for the FlatNet+GNT baseline, the outputs of FlatNet

are provided as input to GNT, and supervision is conducted

using ground truth RGB images. The evaluation is car-

ried out on the synthetic NeRF-LLFF dataset, with the re-

sults detailed in Table 1. Our proposed method, GANESH,

demonstrates superior performance across all three metrics

compared to both baseline models. This improvement can

be attributed to the joint refinement and rendering strat-

egy, which enhances the overall reconstruction quality. In

a multi-view setup like ours, information lost in one view

can be recovered from another, a feature that our method

leverages. In contrast, the baseline methods perform refine-

ment and rendering sequentially, missing out on the poten-

tial benefits of joint optimization.

Figure 4 illustrates the qualitative differences in per-

formance. The FlatNet+NeRF model suffers from promi-

nent ghosting artifacts, likely due to inconsistencies in the

outputs generated by FlatNet, which are used for super-

vising NeRF. While FlatNet+GNT improves upon these

issues through its more complex architecture, it still ex-

hibits excessive smoothening effects. In contrast, our

method achieves superior refinement and rendering, pro-

ducing high-quality novel views. This demonstrates that our

joint approach to refining and rendering in a 3D context sig-

nificantly enhances the accuracy of novel view synthesis in

lensless imaging.

Table 2. Quantitative results for generalizable setting on synthetic

NeRF-LLFF dataset.

Models PSNR↑ SSIM↑ LPIPS↓
FlatNet+IBRNet 15.31 0.42 0.645

FlatNet+GNT 16.47 0.43 0.63

Ours 21.75 0.68 0.366

Generalizable Setting. We evaluate our approach

in a generalization scenario where the model is tested on

unseen scenes, using eight scenes from the NeRF-LLFF

dataset. The average results across these scenes are summa-

rized in Table 2. Our method demonstrates clear superior-

ity over both the FlatNet+IBRNet and FlatNet+GNT base-

lines, achieving higher performance across all three evalua-

tion metrics. Figure 5 provides a visual comparison of the

novel views rendered by our method and the baselines. Our
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model successfully recovers intricate scene details, such as

the subtle grooves on the plastic fortress and the veins on

the leaves. This highlights the effectiveness of our method

in rendering high-quality novel views, even in challenging

generalization settings.

Table 3. Quantitative results on the real-world LenslessScenes
dataset. Our method shows strong generalisable capability across

real scenes compared to the other baselines.

Models PSNR↑ SSIM↑ LPIPS↓
FlatNet+NeRF 11.2 0.34 0.67

FlatNet+GNT 13.56 0.44 0.60

Ours 18.45 0.62 0.47

Quantitative results on Real-world dataset To assess

the robustness of our model on real-world data, we evaluate

its performance on the LenslessScenes dataset. We compare

the results against the FlatNet+NeRF and FlatNet+GNT

baselines. As in previous experiments, the FlatNet+NeRF

baseline supervises NeRF using the output from FlatNet,

while FlatNet+GNT is applied directly to the real scenes

without any finetuning for the real-world data. Quantita-

tive and qualitative evaluations of these comparisons are

presented in Table 3 and Fig. 6. Qualitatively, our model

demonstrates a superior ability to recover fine scene details

compared to the baselines. For example, the shape and ge-

ometry of the toys surrounding the torch in the figure are

visible, contrasting with the results of the baseline methods,

where they are hardly discernable. Quantitative results fur-

ther support this observation, showcasing improved perfor-

mance when transferring from synthetic to real-world data.

These findings highlight the efficacy of our joint refinement

and rendering approach, which significantly enhances 3D

scene reconstruction compared to methods that treat refine-

ment and rendering as independent tasks.
Models PSNR↑/SSIM↑/LPIPS↓
RGB PSF 22.43/0.62/0.47

Gray PSF 22.75/0.63/0.39

Table 4. Ablation Study:

Grayscale vs RGB PSF.

Models PSNR↑/SSIM↑/LPIPS↓
Ours w/o noise 11.2/0.34/0.67

Ours with noise 18.45/0.62/0.47

Table 5. Ablation Study:

Noise Augmented Training.

5.6. Ablation Studies

We conduct the following ablations to validate our lens-

less simulation pipeline and provide quantitative results

evaluated on real world data to test the effectiveness of our

simulation.

Grayscale vs RGB PSF map. Our experimental results

indicate that utilizing a grayscale PSF for reconstructing

lensless images consistently outperforms using a 3-channel

RGB PSF, as demonstrated in Table 4. We hypothesize that

this advantage stems from the fact that the grayscale PSF

more closely mirrors how actual lensless cameras capture

images. Consequently, using the grayscale PSF map during

the simulation process yields superior results when tested

on to real-world datasets.

Synthetic Noise. While our model is resilient to low

levels of noise, training with synthetic noise added to the

lensless images proved crucial for adapting to real-world

scenes. Gaussian noise was artificially introduced before

reconstruction during the training on synthetic captures as

read noise. We tested this model on real-world data, and

the results are presented in Table 5. The significant noise

observed in real-world captures necessitated this approach,

and incorporating noise in the training pipeline enhanced

the model’s robustness and ability to generalize to real-

world scenarios.

6. Discussion
Limitations and Future Work. While GANESH

demonstrates the ability to refine and render novel views

from lensless captures in both scene-specific and generaliz-

able settings, it is not without limitations. A primary chal-

lenge it faces is that the model requires substantial training

time when generalizing across diverse scenes, and its in-

ference speed is not optimized for real-time applications,

posing a limitation for on-the-fly rendering tasks. Finally,

GANESH is an entirely data-driven model trained on an ex-

tensive dataset to mimic the reconstruction task. Integrating

physical light transport models into radiance fields could be

a promising direction for future improvements, combining

data-driven approaches with physical principles for more

accurate and efficient lensless rendering. We depend on

Flatnet to get camera poses and we aim to develop pose free

rendering in the future.

Conclusions. In this work, we present GANESH, a

novel framework that integrates refinement and novel view

rendering from multi-view lensless captures within a gener-

alizable framework, demonstrating robustness in real-world

scenarios. While existing approaches such as FlatNet for re-

finement and NeRF or Gaussian Splatting (GS) for render-

ing could be employed sequentially, they are fundamentally

constrained by their reliance on image supervision, making

training on extensive synthetic datasets impractical. In con-

trast, GANESH enables joint refinement and rendering, ad-

dressing this limitation and achieving superior performance

in novel view synthesis. This approach is crucial for various

applications, including medical imaging (e.g., endoscopy),

augmented and virtual reality (AR/VR), and wearable tech-

nologies.
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