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Abstract

Point cloud color upsampling is an important and less
explored research topic. State-of-the-art methods colorize
points based on the colors of neighboring points and geo-
metric distances. However, these methods often suffer from
blurring and noise at color boundaries since object tex-
tures can have large color variations even between geomet-
rically neighboring positions. In this paper, we propose a
point cloud color upsampling method with attention weights
for neighboring points. The proposed method first per-
forms coarse colorization with the colors of low-resolution
points neighboring the high-resolution points and predicted
weights. Then, it refines the colors by predicting offsets
for high-resolution points with aggregate features obtained
from the low-resolution points. Both quantitative and qual-
itative experimental results on datasets acquired in real-
world environments demonstrate that the proposed method
achieves significantly superior color upsampling perfor-
mance compared to state-of-the-art methods.

1. Introduction
A point cloud is a set of discrete points that represent the

three-dimensional (3D) surface of objects. Each point has
geometry information represented as a 3D coordinate, with
optional attribute information such as RGB color, normal,
reflectance, and opacity. Point clouds are essential in a wide
range of applications, including virtual/augmented reality,
shape modeling, and automated navigation. The develop-
ment of 3D sensors as represented by LiDAR and RGB-D
cameras has made it possible to accurately acquire 3D point
clouds. However, the point clouds acquired by these sensors
are often low-density. Therefore, upsampling of geometry
information is an important issue to generate high-density
point clouds [9, 12, 16, 17, 27, 28, 30, 39].

In addition, the upsampling of geometry information as
a post-processing step for point cloud compression is also
being considered [1, 3, 8, 21, 41]．Point cloud compres-
sion is critical to reduce the required storage capacity and
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Figure 1. Overview of point cloud color upsampling. Given
a high-resolution point cloud with geometry only and a low-
resolution point cloud with both geometry and color, the color of
the high-resolution point cloud is predicted.

transmission bandwidth when point clouds represent a large
number of points and the amount of data becomes enor-
mous [10, 15, 29, 32, 42]. Most of these methods perform
downsampling of point clouds based on voxelization dur-
ing the compression process, which introduces distortions.
The upsampling of geometry information for decompressed
point clouds is effective in reducing these distortions.

While upsampling of geometry information has been ac-
tively researched, upsampling of attribute information has
been less explored. Attribute upsampling is also an im-
portant issue since newly generated points may lack cor-
responding attribute information after the geometry infor-
mation has been upsampled. We focus on the upsampling
of color information in this paper. Traditional color upsam-
pling methods estimate the color of generated points based
on optimization using hand-crafted priors [7,13]. However,
these methods tend to perform poorly when the prior as-
sumption is not satisfied.

Recently, learning-based point cloud color upsampling
methods have been proposed to reduce the distortion caused
by point cloud compression [35, 41]. As shown in Fig. 1,
these methods assume that a high-resolution (HR) point
cloud with only geometry information is obtained from a
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low-resolution (LR) point cloud with geometry and color
information by geometry upsampling. Then, the color of
the HR point cloud is predicted using both point clouds.
More specifically, these methods first perform coarse col-
orization in a non-learning-based manner for each HR point
using the colors of its neighboring LR points, and then pre-
dict an offset for color refinement. These methods rely on a
strong correlation between the colors of neighboring points
and provide higher importance to points closer in geomet-
ric distance. However, colors can significantly vary even
between geometrically neighboring positions at the object
textures. Therefore, these methods often produce blurring
and noise at color boundaries.

To address this problem, we propose a point cloud color
upsampling method with attention weights that represent
the importance of neighboring points. The proposed method
predicts the weights of LR points neighboring HR points
with a deep neural network. Then, coarse colorization is
performed by assigning weighted sums of the colors of the
neighboring LR points to the HR points using the predicted
weights. Furthermore, offsets for color refinement are pre-
dicted for the HR points with aggregated features obtained
from the LR points. Finally, the offsets are added to the col-
ors obtained by the coarse colorization, resulting in the final
colors. The proposed method achieves accurate colorization
and refinement since it learns to provide higher weights to
the neighboring points that are effective for color upsam-
pling. One potential use case for the proposed method is as
a post-processing step for point cloud compression as with
the previous works [35, 41]. However, we design the pro-
posed method to be able to handle any type of point cloud
in order to make it applicable for general purposes. Evalua-
tion experiments on the OmniObject3D [36] and ScanNet-
v2 [5] datasets acquired in real-world environments demon-
strate that the proposed method achieves significantly supe-
rior performance compared to state-of-the-art color upsam-
pling methods. We also conduct experiments on unstruc-
tured point clouds and demonstrate the robustness of the
proposed method to various types of point clouds.

The following summarizes our main contributions:
• We propose a novel point cloud color upsampling

method that performs attention-based coarse coloriza-
tion and refinement. To the best of our knowledge, our
work is the first to propose a learnable coarse coloriza-
tion method for color upsampling.

• We design a deep neural network that is able to predict
the colors of points with arbitrary coordinates. This
network can upsample colors on unstructured point
clouds without point vanishing and geometry errors.

• Experiments on datasets acquired in real-world envi-
ronments show that the proposed method achieves su-
perior performance compared to state-of-the-art meth-
ods in terms of point cloud color upsampling.

2. Related Work
2.1. Point Cloud Geometry Upsampling

Point cloud geometry upsampling is the task of gener-
ating a point cloud with higher-resolution geometry infor-
mation from an input point cloud. While traditional works
have proposed optimization-based methods [2,6,14,18,24],
learning-based methods [9,12,16,17,27,28,30,39] have re-
cently attracted attention due to the success of deep learning
techniques in point cloud analysis. The pioneering learning-
based method is PU-Net [39], which generates the coordi-
nates of HR point clouds through feature extraction with
PointNet++ [26] and feature expansion. Dis-PU [17] in-
troduces a framework that first generates the coordinates of
HR point clouds and then predicts offsets to refine those co-
ordinates. Grad-PU [12] generates HR point clouds by co-
ordinate interpolation based on a k-nearest neighbor search
and predicts offsets for coordinate refinement with an im-
plicit neural representation. PUDM [28] generates HR point
clouds using a conditional denoising diffusion probabilistic
model that treats the input point cloud as a condition.

Apart from unstructured point clouds, several works pro-
pose geometry upsampling methods for decompressed point
clouds, aiming to reduce the distortions caused by point
cloud compression [1, 3, 8, 21, 41]. These methods assume
a voxelized point cloud generated by an octree-based point
cloud compression method [10] as input. Then, a HR point
cloud is generated from the input point cloud to reduce dis-
tortions by addressing point vanishing and geometry errors
due to voxelization. Many of these methods rely on voxel-
based convolution with sparse tensor representation [4, 33],
and geometry upsampling is formulated as a voxel super-
resolution problem.

Although there are many existing works on the geome-
try upsampling of point clouds, attribute information is ig-
nored in most cases. In contrast, our work focuses on color
upsampling on geometry-upsampled point clouds.

2.2. Point Cloud Color Upsampling

Point cloud color upsampling is the task of estimating
the color of a HR point cloud whose geometry has been
upsampled since attribute information is incidental to ge-
ometry information in a point cloud. Although some works
upsample geometry and color simultaneously [11,22], most
existing works consider geometry upsampling and color up-
sampling independently [3,7,13,35,40,41]. In these works,
the color of the HR point cloud is estimated from the HR
point cloud with only geometry information and the LR
point cloud with both geometry and color information.

The nearest neighbor method [40] assigns the color of
the nearest neighbor LR point to each HR point. FGTV [7]
constructs a Delaunay triangulation from the LR point
cloud and performs coarse colorization using the average
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Figure 2. Overall framework of the proposed method. The proposed method takes as input a colored LR point cloud P l = {Gl, Cl} and a
geometry-only HR point cloud Ph = {Gh}. The green, blue, and orange blocks represent the inputs, intermediate products, and outputs,
respectively. The purple block represents the color of the HR point cloud Ch, which is given to compute the loss function only during
training. The ⊕ and ⊖ denote the sum and difference of elements, respectively. The circled C, A, and N represent the operations of
concatenation, aggregation, and retrieval of element sets using the k-NN indices, respectively.

colors of the triangle vertices associated with HR points.
Then, it refines the colors of the HR points by minimiz-
ing the weighted L1-norm of the neighboring colors in the
k-nearest neighbor graph. FSMMR [13] creates the col-
ors of HR points by first projecting the points onto a two-
dimensional plane using a minimum spanning tree and then
superimposing weighted basis functions with selected fre-
quency coefficients. WAAN [3] first calculates weights
based on the inverse Euclidean distance between HR points
and LR points that share an edge in voxel space. Then, it
performs colorization on the HR points using the weighted
average colors of the LR points.

Recently, learning-based point cloud color upsampling
methods [35,41] have been proposed. CU-Net [35] assumes
that the LR point cloud is generated by voxelization of the
HR point cloud, and performs coarse colorization on the
HR point cloud with devoxelization. Then, it predicts the
color offset for each HR point with a color prediction mod-
ule analogous to a neural implicit function. AttNet [41] first
performs coarse colorization on the HR point cloud by as-
signing the weighted average colors of k-nearest neighbor
LR points calculated with distance-based weights. Then,
it takes the colored HR point cloud as input and predicts
the color offset for each HR point with a deep neural net-
work based on sparse convolution. Although these meth-
ods achieve promising results, the coarse colorization is per-
formed in a non-learning-based manner and may not yield
optimal performance. In contrast, the proposed method per-
forms both coarse colorization and refinement in a learning-
based manner.

3. Proposed Method
We propose a point cloud color upsampling method with

attention-based coarse colorization and refinement. Fig. 2
shows the framework of the proposed method. In this

figure, the green, blue, and orange blocks represent the
inputs, intermediate products, and outputs, respectively.
The proposed method takes as input a colored LR point
cloud P l = {Gl, Cl} and a geometry-only HR point cloud
Ph = {Gh}. Gl = {gl

i ∈ R3}Ni=1 and Gh = {gh
i ∈ R3}Mi=1

represent the geometry information of the LR and the HR
point clouds, respectively. Cl = {cli ∈ R3}Ni=1 represents
the color information of the LR point cloud. N and M rep-
resent the number of points in the LR and the HR point
clouds, respectively. We assume that the geometry infor-
mation of the HR point cloud Gh is obtained from Gl us-
ing any geometry upsampling method, as shown in Fig. 1.
The output of the proposed method is the predicted color
of the HR point cloud Ĉh = {ĉhi ∈ R3}Mi=1. Only during
training, the ground truth color information of the HR point
cloud Ch = {chi ∈ R3}Mi=1, represented by a purple block,
is given. The loss function L is calculated using the ground
truth and predicted colors of the HR point cloud.

The proposed method first extracts point-wise features
from P l using a feature extractor. Then, the proposed
method performs coarse colorization for each point in Ph

using the colors and predicted weights of its k-nearest
neighbor LR points. Let Qh = {qh

i ∈ R3}Mi=1 denote the
resulting coarse colors. Furthermore, the proposed method
predicts a color offset for refinement to each point in Ph

using aggregated features Yh = {yh
i ∈ RD}Mi=1 obtained

from the features and predicted weights of the LR point
cloud. Let Oh = {oh

i ∈ R3}Mi=1 denote the predicted color
offsets. Finally, the proposed method obtains the predicted
colors of the HR point cloud Ĉh as follows:

Ĉh = Qh ⊕Oh, (1)
where ⊕ represents the element-wise sum. The proposed
method functions as a conditional neural field [38] that is
conditioned based on the LR point cloud, and can predict
the colors of points with arbitrary coordinates.

36



In the following, we describe feature extraction in Sec-
tion 3.1, coarse colorization in Section 3.2, color refinement
in Section 3.3, and loss function in Section 3.4 in detail.

3.1. Feature Extraction

The proposed method extracts point-wise features from
a LR point cloud P l using a feature extractor. We adopt
the point transformer v3 (PTv3) [37] as the feature extrac-
tor. The network architecture of PTv3 is consistent with
the U-Net [31] framework, which consists of four-stage en-
coders and decoders. At each stage, the processing of the
encoder and decoder blocks is repeated for the specified
depths. The encoder and decoder blocks mainly consist of
pooling layers, positional encoding layers, attention layers,
and multi-layer perceptrons (MLP). The input to PTv3 is
the LR point cloud, which is composed of pairs of geometry
and color information associated with point indices. PTv3
performs point cloud serialization, leveraging geometry in-
formation and a regular grid to transform the input point
clouds into manageable sequences while maintaining cer-
tain spatial proximity. Then, the serialized point cloud is
grouped into patches to take advantage of spatial neighbor
relationships, and attention is performed within each patch.
The color information associated with the geometry infor-
mation is processed by the encoders and decoders to obtain
point-wise features F l = {f li ∈ RD}Ni=1.

3.2. Coarse Colorization

We first obtain the k-nearest neighbors of HR points
from the LR point cloud based on the geometry informa-
tion. Let N (gh

i ) denote the index set of k-nearest neigh-
bor LR points for the i-th HR point gh

i . Then, we obtain
the features of the HR points by expanding the features of
the LR points. For each HR point, we generate features
xh
ij ∈ RD+3 by concatenating the residuals in coordinates

and features of the neighboring points as follows:
xh
ij = [gh

i − gl
j , f

l
j ], ∀j ∈ N (gh

i ), (2)
where [·, ·] represents the concatenation operator. We pro-
cess xh

ij using a point-wise MLP with rectified linear unit
(ReLU) [23] activation functions parameterized by θ to
produce features θ(xh

ij) ∈ RD that incorporate relative
spatial information．This MLP consists of three layers,
and the output size of all layers is D. Then, we pre-
dict weights for the k-nearest neighbor LR points with
an attention mechanism [34]. We process θ(xh

ij) with
a linear layer parameterized by ϕ to obtain the features
ϕ(θ(xh

ij)) ∈ RD. We normalize them with the softmax
function ρ over the spatial dimension, resulting in the
weight vectors wij = ρ(ϕ(θ(xh

ij))). Then, the weight vec-
tors are converted to scalar values by averaging over the
feature dimensions to obtain the weights wij ∈ R for the
k-nearest neighbor LR points. These weights can be rep-
resented as a matrix W ∈ RM×k, where the elements of

each row sum to 1. Each weight represents the impor-
tance of each of k-nearest neighbor LR points to the HR
point. Therefore, we perform coarse colorization using the
weights and the colors of LR points by an aggregation pro-
cess consisting of element-wise multiplication and summa-
tion as follows:

qh
i =

∑
j∈N (gh

i )

wijc
l
j , (3)

where qh
i is the predicted coarse color assigned to the i-th

HR point with geometry information gh
i .

3.3. Color Refinement

We also predict offsets for color refinement using aggre-
gated features with W, which is shared with coarse col-
orization to ensure consistency in the importance of LR
points. We process the features θ(xh

ij) with a linear layer pa-
rameterized by ψ, resulting in the features ψ(θ(xh

ij)) ∈ RD.
Then, we aggregate the features corresponding to the k-
nearest neighbor LR points using the weights to obtain the
aggregated feature yh

i ∈ RD of i-th HR point as follows:

yh
i =

∑
j∈N (gh

i )

wijψ(θ(x
h
ij)). (4)

Then, these features are processed in a linear layer parame-
terized by γ to predict the offset oh

i = γ(yh
i ).

Finally, we predict the colors of the HR points by adding
the offsets to the coarse colorization results as follows:

ĉhi = qh
i + oh

i , (5)
where ĉhi is the predicted color for the i-th HR point. Only
at testing time, we restrict the range of values by replac-
ing elements of the predicted color that are smaller than the
specified minimum value cmin or larger than the specified
maximum value cmax with cmin or cmax, respectively. In
this paper, we set cmin = 0 and cmax = 1.

3.4. Loss Function

We aim to minimize the error between the predicted
color of the HR point cloud Ĉh and its ground truth Ch. To
this end, we train the model using the mean squared error
(MSE) loss function defined as follows:

L(Ch, Ĉh) =
1

M

M∑
i=1

∥chi − ĉhi ∥2, (6)

where M represents the number of HR points, ∥ · ∥ repre-
sents the L2-norm, and chi and ĉhi represent the ground truth
color and predicted color of the i-th HR point, respectively.

4. Experiments
We experimentally demonstrate the effectiveness of the

proposed method for point cloud color upsampling. In our
experiments, we assume that the geometry information is
losslessly upsampled in order to focus on evaluating the
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performance of color upsampling. This is necessary to ac-
curately obtain the ground truth colors of HR point clouds
corresponding to the LR point clouds. To emulate lossless
geometry upsampling, we first generate LR point clouds
from HR point clouds by downsampling them. Then, we
predict the colors of the HR point clouds from the colored
LR point clouds and the geometry-only HR point clouds.

4.1. Experimental Setups

Datasets. We use the OmniObject3D dataset [36] and the
ScanNet-v2 dataset [5] for the evaluation of object-level and
scene-level color upsampling, respectively. The OmniOb-
ject3D dataset consists of 6k objects across 190 categories
scanned in real-world environments. We randomly split the
dataset into training, validation, and testing sets in a ratio
of 8:1:1 since the OmniObject3D dataset does not provide
an official split. The ScanNet-v2 dataset contains 1513 in-
door scenes scanned in over 707 unique real-world indoor
environments. According to the official split, the dataset is
split into 1201, 312, and 100 scenes for the training, vali-
dation, and testing sets, respectively. We uniformly sample
colored points from the surface of each textured 3D model
to generate dense point clouds. We perform downsampling
on the point clouds using voxelization similar to previous
work [3, 35, 41]. Specifically, we apply voxelization to the
dense point clouds using grid sizes of 0.2 mm and 2 mm
for the OmniObject3D and ScanNet-v2 datasets, respec-
tively. We consider the resulting point clouds as the HR
point clouds. We generate LR point clouds by re-applying
voxelization with larger grid sizes to the HR point clouds.
Evaluation Metric. To measure the quality of color upsam-
pling, we adopt the peak signal-to-noise ratio (PSNR) in the
RGB color space as an evaluation metric. The PSNR is cal-
culated between the predicted colors and the ground truth
colors of the HR point clouds.
Implementation Detail. We implement the proposed
method using the PyTorch [25] framework. We use the
AdamW optimizer [20] with a learning rate of 0.001 for
training. We adopt the cosine annealing strategy [19] to
decay the learning rate. We train our model for 200k it-
erations with a batch size of 8 and select a model that
achieves the best PSNR on the validation set. We use an
NVIDIA RTX A6000 GPU to train the model. For effi-
cient training, we split each LR point cloud into patches
of 5k and 10k points on OmniObject3D and ScanNet-v2
datasets, respectively. In each patch, we associate the HR
points with the LR points that are assigned to a common
grid using the grid size set to generate the LR point clouds.
We use the full point clouds for testing. For PTv3, we
set the encoder channels to {64, 128, 256, 512}, the de-
coder channels to {32, 64, 128, 256}, the encoder number
of heads to {4, 8, 16, 32}, and the decoder number of heads
to {2, 4, 8, 16}. The grid size in PTv3 is set to the same as

Table 1. Performance comparison of color upsampling. PSNR
[dB] metric is shown (higher is better).

(a) OmniObject3D dataset

Method 2× 4× 6× 8× average
NN 41.06 34.17 31.59 30.08 34.23
k-NN 37.41 33.61 31.35 29.88 33.06
WAAN [3] 40.54 34.25 31.57 29.87 34.06
CU-Net [35] 40.89 34.21 32.55 30.45 34.53
AttNet [41] 38.43 34.44 31.99 30.35 33.80
Ours 42.15 36.50 33.78 31.86 36.07

(b) ScanNet-v2 dataset

Method 2× 4× 6× 8× average
NN 43.60 36.95 34.20 32.46 36.80
k-NN 39.73 36.52 34.13 32.45 35.71
WAAN [3] 42.91 37.31 34.49 32.51 36.81
CU-Net [35] 43.62 37.01 34.33 33.79 37.19
AttNet [41] 40.86 37.39 34.95 33.16 36.59
Ours 44.71 39.70 37.32 35.68 39.35

the grid size used to generate the LR point clouds. We set
the encoder depths to {2, 2, 6, 2} and the decoder depths to
{2, 2, 2, 2}. We set k = 8 in the k-nearest neighbor search.
The dimension of the feature is set to D = 32.

4.2. Comparison with Conventional Methods

We compare the proposed method with conventional
point cloud color upsampling methods, including the near-
est neighbor (NN), k-nearest neighbors (k-NN), WAAN [3],
CU-Net [35], and AttNet [41]. The NN assigns the color of
the nearest neighbor LR point to each HR point. The k-
NN assigns the average color of the k-nearest neighbor LR
points to each HR point. We set k = 3 in our experiments.
We generated LR colored point clouds using grid sizes 2, 4,
6, and 8 times the grid size used to generate the HR point
clouds. Then, we predicted the color of the HR point clouds
using each method.

Table 1 summarizes the color upsampling performance
on the OmniObject3D and ScanNet-v2 datasets. It can be
seen that the proposed method achieves the best perfor-
mance on both datasets. PSNR tends to decrease with in-
creasing grid size for all methods. This is because the res-
olution of the LR point cloud decreases as the grid size
increases, resulting in the loss of detailed color informa-
tion. While NN achieves a higher PSNR than other meth-
ods when the grid size is small, the PSNR becomes rela-
tively lower as the grid size increases. k-NN has relatively
low PSNR across all grid sizes, which indicates less ef-
fectiveness. Although WAAN achieves superior PSNR for
some grid sizes, on average it is comparable to NN. CU-
Net achieved relatively high PSNR for many grid sizes, with
the second-best results on average. While AttNet achieved
high PSNR on average, it shows relatively low PSNR when
the grid size is small. In contrast, the proposed method
achieves significant improvements over other methods for
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(a) 4× on OmniObject3D dataset

Ground truth NN -NN CU-NetOurs AttNetWAANLR input

(b) 8× on OmniObject3D dataset

Ground truth NN -NN CU-NetOurs AttNetWAANLR input

(c) 4× on ScanNet-v2 dataset

Ground truth NN -NN CU-NetOurs AttNetWAANLR input

(d) 8× on ScanNet-v2 dataset

Figure 3. Visualization of color upsampling results for 4 and 8 times settings on OmniObject3D and ScanNet-v2 datasets. The lower part
shows an enlarged view of the area enclosed in a rectangle in the upper part. Ground truth represents the HR point cloud with the ground
truth color. LR input represents the low-resolution point cloud used as input. Best viewed in color.

all settings.
Fig. 3 visualizes the color upsampling results for 4 and

8 times settings on the OmniObject3D and ScanNet-v2
datasets. The first column in these figures represents the
HR point cloud with the ground truth color, and the sec-
ond column represents the LR point cloud used as input.
It is observed that conventional methods produce blurring
and blocky noise in many cases. In contrast, the pro-
posed method most faithfully predicts the color of HR point
clouds. Even the proposed method may produce smoothed
results for regions with large blurs in the LR point clouds.
Nevertheless, they are of higher quality than those of other
methods. Although CU-Net appears to have a similar vi-
sual quality as the proposed method, it produces significant
errors near color boundaries, as shown in Fig. 4.

CU-Net, AttNet, and the proposed method all first per-

CU-NetOurs

Figure 4. Visualization of color error. The point-wise L2 error
between the ground truth color and the predicted color is shown.

form coarse colorization, then predict the color offsets for
refinement. The coarse colorization methods are devox-
elization for CU-Net, the weighted average of k-NN col-
ors using Gaussian distance weights for AttNet, and the
weighted sum of k-NN colors using the predicted weights
for the proposed method, respectively. We compare the per-
formance of these coarse colorization methods. Table 2
summarizes the performance of coarse colorization on the
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Table 2. Performance comparison of coarse colorization. PSNR
[dB] metric is shown (higher is better).

(a) OmniObject3D dataset

Method 2× 4× 6× 8× average
CU-Net [35] 41.06 34.17 31.59 30.08 34.23
AttNet [41] 37.50 33.59 31.34 29.88 33.08
Ours 41.99 36.01 33.23 31.36 35.65

(b) ScanNet-v2 dataset

Method 2× 4× 6× 8× average
CU-Net [35] 43.60 36.95 34.20 32.46 36.80
AttNet [41] 40.01 36.55 34.14 32.45 35.79
Ours 44.68 39.06 36.62 34.98 38.84

Ground truth CU-NetOurs AttNet

Figure 5. Visualization of coarse colorization results on OmniOb-
ject3D dataset.

OmniObject3D and ScanNet-v2 datasets. The PSNR of de-
voxelization on the voxelized point cloud exactly matches
that of NN in Table 1 since LR points always become near-
est neighbors of HR points in the same voxel. The coarse
colorization of AttNet achieves slightly better PSNR on av-
erage than simple k-NN. It can be seen that the coarse col-
orization of the proposed method achieves a significantly
better PSNR than other methods. This demonstrates that
the colorization based on the predicted weights for neigh-
boring points is more effective than the colorization based
only on geometric distances. Fig. 5 visualizes the coarse
colorization results in the 4 times setting on the OmniOb-
ject3D dataset. Even in this case, it can be confirmed that
the proposed method can faithfully predict the color of the
HR point cloud.

We also evaluate the generalization capability of the
learning-based methods, CU-Net, AttNet, and the proposed
method, for arbitrary-scale color upsampling without re-
training. We use models trained on point clouds generated
in the 4 times setting to measure color upsampling perfor-
mance on point clouds generated in the 3, 5, 7, and 9 times
settings. Table 3 summarizes the color upsampling perfor-
mance on the OmniObject3D and ScanNet-v2 datasets. The
proposed method achieves better performance than conven-
tional methods and demonstrates generalization capability
to point clouds upsampled at arbitrary scales.

4.3. Ablation Study

We provide ablation studies that verify how the design
choices of the proposed method impact its performance. In

Table 3. Arbitrary-scale color upsampling. Models are trained on
the 4× setting. PSNR [dB] metric is shown (higher is better).

(a) OmniObject3D dataset

Method 3× 5× 7× 9× average
CU-Net [35] 36.52 32.72 30.79 29.53 32.39
AttNet [41] 35.82 32.95 30.90 29.51 32.30
Ours 38.15 34.93 32.38 30.25 33.93

(b) ScanNet-v2 dataset

Method 3× 5× 7× 9× average
CU-Net [35] 39.29 35.40 33.27 31.78 34.94
AttNet [41] 38.65 35.88 33.66 32.02 35.05
Ours 39.78 37.75 34.96 33.15 36.41

Table 4. Ablation study. PSNR [dB] metric is shown (higher is
better). CC: Coarse Colorization. FA: Feature Aggregation.

CC FA OmniObject3D ScanNet-v2
× × 33.39 35.21
× ✓ 34.23 36.52
✓ × 36.43 39.60
✓ ✓ 36.50 39.70

Ground truth Ours CCOurs CC FA Ours FA Ours

Figure 6. Visualization of color upsampling results in the ablation
study on OmniObject3D dataset.

this experiment, we fix the grid size setting for LR point
cloud generation to 4 times.

Table 4 summarizes the performance of the proposed
method that ablated coarse colorization (CC) and fea-
ture aggregation (FA). When CC is ablated, the proposed
method directly predicts the color of the HR point clouds.
The ablation of FA means using only the nearest neighbor
features instead of the aggregated features obtained from
the k-nearest neighbors. As shown in the first and second
rows of the table, ablation of CC results in a significant per-
formance degradation. This is because predicting the color
itself is a more difficult problem than predicting the resid-
ual for coarse color. These results confirm the effectiveness
of the proposed CC in color upsampling. Additionally, it
can be seen that FA contributes to improving the color up-
sampling performance by comparing the first and second
rows. In the third row, we use the color of the k-nearest
neighbor LR points for coarse colorization, while predict-
ing color offsets using only the nearest neighbor features.
The last row shows the complete proposed method, which
achieves the best performance. A comparison of the third
and last rows shows that FA is also effective even when CC
is introduced. Fig. 6 visualizes the color upsampling re-
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Table 5. Effect of k in the k-nearest neighbor search. PSNR [dB]
metric is shown (higher is better).

k 1 2 4 8 16
OmniObject3D 36.23 36.34 36.41 36.50 36.49
ScanNet-v2 39.35 39.52 39.65 39.70 39.70
average 37.79 37.93 38.03 38.10 38.10

Table 6. Robustness to unstructured point clouds. PSNR [dB]
metric is shown (higher is better). R denotes the upsampling rate.

(a) OmniObject3D dataset

R 2 4 6 8 average
NN 36.18 32.77 31.31 30.40 32.67
k-NN 35.79 33.11 31.80 30.94 32.91
Ours 39.59 35.64 33.83 32.51 35.39

(b) ScanNet-v2 dataset

R 2 4 6 8 average
NN 38.26 34.92 33.45 32.46 34.77
k-NN 37.97 35.38 34.01 33.09 35.11
Ours 41.88 38.47 36.97 35.99 38.33

sults of the ablation study on the OmniObject3D dataset.
Although significant artifacts may occur when ablating the
CC, it can be seen that visual quality is improved by in-
troducing FA. When CC is introduced, the visual quality is
almost the same as that of the complete proposed method
even when FA is ablated.

We also investigate the effect of k in the k-nearest neigh-
bor search for the proposed method. Table 5 summarizes
the color upsampling performance with different k values,
including {1, 2, 4, 8, 16}. It can be seen that larger k values
tend to result in better PSNR, with a plateau being reached
at k = 8. If k is too large, the PSNR may decrease since
the colors of points that do not contribute to accurate color
prediction are included in the k-nearest neighbors.

4.4. Robustness to Unstructured Point Clouds

Many conventional methods, including WAAN [3], CU-
Net [35], and AttNet [41] cannot achieve color upsampling
without occurring point vanishing and geometry errors for
unstructured point clouds since they require voxelized point
clouds as input. In contrast, the proposed method can take
unstructured point clouds as input, allowing color upsam-
pling without occurring these issues. In this section, we
evaluate the performance of the proposed method on un-
structured point clouds. To this end, we perform experi-
ments using LR point clouds generated by random sampling
from HR point clouds. We set the upsampling rate R to 2,
4, 6, and 8. We compare the performance of the proposed
method with NN and k-NN.

Table 6 shows the color upsampling performance on the
OmniObject3D and ScanNet-v2 datasets. It can be seen that
k-NN achieves a better average PSNR than NN. This is be-

Ground truth -NNNNOurs

Figure 7. Visualization of color upsampling results for unstruc-
tured point clouds on OmniObject3D dataset.

cause each point in an unstructured point cloud often may
be far from its nearest neighbor, resulting in large color er-
rors in the NN. The proposed method demonstrates a signif-
icant improvement in PSNR over these methods, confirming
its robustness to unstructured point clouds. Fig. 7 visual-
izes the color upsampling results of these methods with an
upsampling ratio of R = 4. It can be observed that the
proposed method achieves faithful color upsampling while
other methods produce blurring and noise.

5. Conclusion and Limitation

In this paper, we propose an attention-based point cloud
color upsampling method. The proposed method first pre-
dicts the weights for the k-nearest neighbor LR points of the
HR points. Then, it predicts the color of the HR points with
coarse colorization and refinement based on the predicted
weights. Both qualitative and quantitative experimental re-
sults on real-world datasets demonstrate that the proposed
method achieves superior performance compared to state-
of-the-art methods in point cloud color upsampling. We
also provide evaluations on unstructured point clouds and
confirm the robustness of the proposed method to various
types of point clouds.

The proposed method has several limitations, which are
also directions for improvement in future research. The
color prediction of the proposed method is based on neigh-
boring points, and thus it is difficult to accurately predict
the color of isolated points where no points exist in close
proximity. Extending the proposed method to exploit more
global information may improve performance. Addition-
ally, the proposed method faces high computational com-
plexity due to the k-nearest neighbor search. This could be
overcome by introducing an approximation method as an
alternative to the exact neighbor search.
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