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Abstract

In real-world scenarios, using multiple modalities like

visible (RGB) and infrared (IR) can greatly improve the

performance of a predictive task such as object detection

(OD). Multimodal learning is a common way to leverage

these modalities, where multiple modality-specific encoders

and a fusion module are used to improve performance. In

this paper, we tackle a different way to employ RGB and

IR modalities, where only one modality or the other is ob-

served by a single shared vision encoder. This realistic set-

ting requires a lower memory footprint and is more suitable

for applications such as autonomous driving and surveil-

lance, which commonly rely on RGB and IR data. How-

ever, when learning a single encoder on multiple modali-

ties, one modality can dominate the other, producing un-

even recognition results. This work investigates how to ef-

ficiently leverage RGB and IR modalities to train a com-

mon transformer-based OD vision encoder while counter-

ing the effects of modality imbalance. For this, we intro-

duce a novel training technique to Mix Patches (MiPa) from

the two modalities, in conjunction with a patch-wise modal-

ity agnostic module, for learning a common representation

of both modalities. Our experiments show that MiPa can

learn a representation to reach competitive results on tra-

ditional RGB/IR benchmarks while only requiring a sin-

gle modality during inference. Our code is available at:

https://github.com/heitorrapela/MiPa.

1. Introduction

In recent years, the reducing costs in data acquisition

and labeling have proportioned the advancements in multi-

modality. Various fields are increasingly using this form of

learning to enhance applications, such as surveillance [1, 6,

28], industrial monitoring [17, 21, 22], smart buildings [10,

13], self-driving cars [27, 29, 35], and robotics [14, 20, 32],

*Equal contribution. Contact: heitor.rapela-medeiros.1@ens.etsmtl.ca

due to their powerful ability to operate better in the presence

of diverse environmental information [37]. For instance, the

combination of visible (RGB) and infrared (IR) has been

showing promising results regarding such applications due

to the difference in light spectrum sensing by different sen-

sors, which provide not only additional but also comple-

mentary information [40].

An unimodal learning (Figure 1a), utilizes data from a

single modality, for instance, an object detector trained and

used in production with RGB images. In multimodal learn-

ing (Figure 1b), the objective is to create a model able to

incorporate information from multiple modalities, such as

RGB and IR, from different sensors and requires paired

modalities for both training and inference. Although this

multimodal learning covers a wide range of applications, as

aforementioned, we have identified an underserved scenario

where one might want an RGB/IR modality agnostic model

that is trained on both modalities but is subjected to only

either one or another during inference (Figure 1c). One ex-

ample of that is a surveillance system where a server model

is running all the time, and this model can provide detec-

tions for different RGB or IR sensors to address the need to

make accurate detection in every lighting condition during

different pre-defined conditions.

Despite the strong interest and business value in multi-

modal systems, most publicly available datasets and power-

ful pre-trained models are built around one modality: RGB.

Furthermore, the lack of IR data gives additional motives

to build a detector upon an already pre-trained unimodal

RGB detector. However, the current methods proposed in

research to incorporate dual-modality information into a

model require dedicated components associated with each

modality, making them incompatible with such RGB detec-

tors. These methods are mainly based on fusion. For in-

stance, these techniques adopt different modalities by dis-

tributing the RGB/IR across a four-channel input (three

RGB followed by one for IR), in the case of early fu-

sion [39]., or merging both modalities later in the model

architectures [4, 43, 45] for mid-stage fusion or ensembling

This WACV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

9005



head

(a) Unimodal (b) Mult imodal (c) Ours

AND ORFusionhead
head

Figure 1. Differences in inputs for different modality learning. (a) Unimodal learning assumes that only one modality is used for

both training and testing. (b) Multimodal learning requires multiple modalities and a special architecture to fuse them in order to improve

performance. (c) Ours assumes that a model should be able to perform well for both modalities by using both for training but only one at

a time for testing and with a shared vision encoder.

different unimodal modality detectors [8] for late-stage fu-

sion. This constrains the model to utilize both modalities

during inference, which significantly increases inference

speed compared to an unimodal architecture.

Typically, one probable phenomenon that can occur dur-

ing multimodal training is modality imbalance. This hap-

pens when the strongest modality is leveraged more than

the others, leading to better overall performance while dis-

carding contributions from the others. [9]. In this work, we

provide a way to train a single shared vision encoder to be

agnostic to its input RGB/IR modality yet still extract its

knowledge during training to attain results almost as good

on both modalities as if it was trained solely on each during

testing/production. The naive solution for this type of task

is to train a model with a dataset that blends both modalities.

Recently advances on patch-based transformers, such as

ViT [11], and Multi-Modal Masked Autoencoders [2] have

steered us towards exploring patch-based architectures to

build a powerful and yet simple training technique to cre-

ate a RGB/IR modality agnostic vision encoder for object

detection. Such approaches have been promising for multi-

modal learning, which allows an efficient combination of

different information [2, 18]. Our work investigates how

to use RGB and IR modalities efficiently by using a patch-

based transformer encoder. Thus, Mi(xed) Pa(tch) does not

introduce any inference overhead during the testing phase

while exploring an effective way to use the two modalities

during the training. To accomplish such a task, we introduce

a stochastic complementary patch mixing method, allowing

the detector to explore each modality without having to rely

on both of them simultaneously. This is possible by effec-

tively sampling the optimal ratio of patches for each modal-

ity, which is then mixed using our technique. Subsequently,

we enhance the training by suppressing the modality imbal-

ances by proposing a modality-agnostic training technique,

making the modalities indistinguishable from each other, a

module inspired by Gradient Reversal Layer (GRL) [16] but

with a novel design for patch based architectures. This ap-

proach is designed to allow low-cost inference in production

while removing all requirements to know beforehand which

modality the detector is going to be used with. Hence, in

applications that run a detector all day, we can know be-

forehand that any of the modalities, RGB or IR, whenever

they are being used, are going to perform optimally for the

same shared vision encoder.

Our work provides empirical results alongside a theoret-

ical explanation based on information theory describing the

benefits of using MiPa with transformer-based backbones.

Additionally, we study the ability of our MiPa to also be

used as a regularization method for the more robust modal-

ity to boost the overall performance of the detector and we

show that we can achieve competitive results on two tradi-

tional RGB/IR benchmarks: LLVIP and FLIR.

Our main contributions can be summarized as follows:

(1) We introduce MiPa, a novel mix patches RGB/IR

modality agnostic training method for transformer-based

object detectors, which learns how effectively sample the

RGB and IR patches for best compressing the information

of both modalities in a single encoder, without additional

inference overhead.

(2) We propose a novel patch-wise modality agnostic mod-

ule, which is inspired by the gradient reversal layer (GRL)

for modality adaptation and is responsible for making the

RGB/IR modalities invariant by the detector.

(3) We empirically demonstrate that the proposed method

can also be used to improve the overall performance of

detection when utilized as regularization for the strongest

modality and achieve competitive results when compared

with multimodal fusion methods, with less information dur-

ing inference. Furthermore, MiPa can simply be applied to

different transformer-based detectors, such as DINO [46]

and Deformable DETR [48].
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2. Related Work

2.1. PatchBased Vision Encoding

With the integration of Transformers in the vision field,

researchers have started to deconstruct images into patches

to allow the modeling of long-range relationships between

patches [11]. This powerful approach yielded great results

and quickly became the norm amongst the top-performing

models, ranking well on popular benchmarks such as

ImageNet-1k [34]. Multiple variants of the vision trans-

former have been proposed in recent years, for instance,

ViT [11], DeiT [38], Swin [25], and VOLO [42]. Alongside

the new way of utilizing input images came a novel pretrain-

ing method for vision encoding: Masked Autoencoders [19]

(MAE). Indeed, this technique, which is simple to under-

stand and easy to implement, consists of using a classifier

as an encoder in an autoencoder architecture to generate im-

ages by only using a small fraction of the patches as input.

This unsupervised method has proven to be very useful in

terms of improving results for downstream tasks. Further-

more, a similar idea has also been influential in the world

of multi-modality models by building a multimodal MAE

with one encoder and multiple decoders to reconstruct all

the different modalities [2]. Recently, advances towards us-

ing Swin Transformer as a backbone of DINO [46], an ob-

ject detector descendant of the DETR [5], were responsible

for reaching competitive results in detection benchmarks,

such as in COCO dataset [24].

2.2. Multimodal VisibleInfrared Object Detectors

Regarding object detection, the primary methods of ex-

ploiting pairs of modalities, even when unaligned, are mul-

timodal techniques; mainly fusion [3]. Fusion is a tech-

nique where the advantage of multiple modalities is taken

to better optimize one training objective by combining them

to develop a multimodal representation [30]. Fusion can

be achieved at different stages, i.e., early-stage fusion,

which concatenates the modalities across the channels, mid-

stage fusion, where modalities are processed through ded-

icated decoders then merged e.g., Channel Switching and

Spatial Attention (CSSA) [4], Halfway Fusion [43], RS-

Det [47], CrossFormer [23] or Guided Attentive Feature Fu-

sion (GAFF) [45], and finally late-stage fusion, where typi-

cally modalities are processed independently through differ-

ent models and combined at the end using ensembling [8],

e.g. ProbEn [8]. The limitations of multimodal learning

are that they require a custom architecture to handle each

modality and are constrained to use both modalities during

inference. A cross-modal with shared encoder vision mod-

els, however, are not affected by these limitations as the dif-

ferent modalities are only used during training and share the

same encoder. This type of architecture unlocks the ability

for detectors to have a higher degree of freedom for infer-

ence without compromising real-time applications.

2.3. Modality Imbalance

A potential obstacle to an RGB/IR modality-agnostic

network is the phenomenon of modality imbalance. Given a

dataset with multi-modal inputs, modality imbalance occurs

when a model becomes more biased towards the contribu-

tion of one modality [9] than the others. To counter that,

some methods have been proposed for classification, for in-

stance, gradient modulation [31], Gradient-Blending [41],

and Knowledge Distillation from the well-trained uni-

modal model [12]. In gradient modulation, Peng et al.

proposed a mechanism to control the adaptive optimization

of each modality by monitoring their contributions to the

learning objective. In gradient blending, Wang et al. iden-

tified that multi-modal learning can overfit due to the in-

creased capacity of the networks and proposed a mechanism

to blend the gradients effectively [41]. Du et al. [12] show

that training multi-modal models on joint training can suf-

fer from learning inferior representations for each modality

because of the imbalance of the modalities and the implicit

bias of the common objectives in the fusion strategy. An

effective approach to help on the modality imbalance in a

shared encoder consists of using a Gradient Reversal Layer

(GRL) [15], which was introduced for domain adaptation to

reduce a network’s reliance on a specific domain. GRL was

exhaustively applied in object detection to create a shared

domain; for instance, in the work of Chen et al. [7], the

GRL is used to adapt Faster R-CNN to distribution shifts in

illumination or object appearance. The core idea of GRL

involves training a classifier to identify the class of a data

example during training. During backpropagation, the gra-

dients are reversed to train the network to deceive the clas-

sifier.

In this work, we adapt this technique to address modal-

ity imbalance learning. Unlike typical cases where data

belongs to a single domain/modality, a single training ex-

ample of MiPa consists of a mosaic of the two modalities:

RGB and IR. Therefore, our classifier is trained to predict a

modality map instead. In our work, we tackle the imbalance

with an adjustable balancing sampling, which learns how to

effectively sample the RGB and IR patches during training,

and a patch-based GRL module responsible for encoding in

the same vision encoder the information of both modalities

while improving detection performance.

3. Proposed Method

While the naive way to create a multimodal vision en-

coder for an OD is to blend both modalities during training,

we empirically show, in Section 4, that this approach leads

to an imbalanced performance across modalities. In this

section, we present our proposed solution.
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Figure 2. Mixed Patches (MiPa) with Modality Agnostic (MA) module. In yellow is the patchify function. In purple is the MiPa module,

followed by the feature extractor (encoder). In green is the modality classifier, and in pink is the detection head.

3.1. Preliminary definitions

Let us consider a set of training samples D = {(xi, Bi)}
where xi ∈ R

W×H×C is the image i with spatial reso-

lution W × H and C channels. Here, a set of bound-

ing boxes is represented by Bi = {b0, b1, ..., bN} with

b = (cx, cy, w, h) being cx and cy coordinates of the center

of the bounding box with size w × h. During the training

process of a neural network-based detector, we aim to learn

a parameterized function fθ : RW×H×C → B, being B the

family of sets Bi and θ the parameters vector. For such, the

optimization is guided by a loss function, which is a combi-

nation of a regression Lr and a classification Lc term, i.e., l2
loss and binary cross-entropy, respectively. The following

Equation (1) defines a general loss function (Ld) for object

detection:

Ld(θ) =
1

|D|

∑

(x,B)∈D

Lc(fθ(x), B) + λLr(fθ(x), B). (1)

3.2. Mixed Patches (MiPa)

The MiPa training method is a training technique that

leverages the patch input channel from transformer-based

feature extractors to build a powerful common representa-

tion between RGB/IR modalities for the unique vision en-

coder, which can be used in different transformer-based de-

tectors. In short, it consists of a single encoder that receives

sampling complementary patches from each modality and

rearranges the input into a sort of mosaic image as shown

in Figure 2. Such a mechanism forces the model to see

both modalities for each inference without being forced to

have parameters specialized on a specific one. Depending

on how the nature of the patches are sampled, the technique

can act as a way to gather the union of information be-

tween both modalities or as a regularization for the strongest

modality (the easiest modality that tends to drive the learn-

ing process). Throughout this paper, we will reference the

sampling ratio of the patches as ρ. There are several ways

to pick the sampling ratio ρ; the naive way of selecting ρ is

to use a fixed ratio during the training of 50%. Then, we can

randomly generate a ρ value for each inference. If we have

an intuition of which modality needs to be sampled more,

we can manually move ρ during the training with a certain

curriculum. Finally, we can let the model learn the opti-

mal ratio by itself. In this work, we have explored all these

variations to see which one is the most suitable for MiPa.

Theoretical explanation behind the MiPa approach.

Here, we detail our theoretical understanding of the MiPa

method. We refer to Table 1 for all definitions. The variable

X can be thought of as a scene where you would see indi-

viduals walking in the street, for instance, and the functions

f and g are camera lenses capturing the information of the

scene via IR and RGB, respectively. The goal of MiPa (M)

is to enhance learning efficiency by merging information

from both modalities, eliminating redundancy, and filtering

out noise, all in a single inference. Thus, say we have:

f(X ) = P + ηf ; g(X ) = Q+ ηg, (2)

where Equation (2) represents the visualization of the scene,

which is composed of the information captured by the sen-

sor (P or Q), P is information captured from the sensor of

one modality and Q for the other modality, and some noise

(η). Then the application of MiPa (M) can be summarized

as the following Equation (3):

M(f(X ), g(X )) =

{

f(Xi), i ∈ m

g(Xi), i ∈ l,
(3)

where f(Xi) represents the mapping of the patch X with id

i using f (IR lens) and g(Xi) using RGB lens. Then, the
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combination of the individual patches of each modality is

given by Equation (4):

M = (P0+P1+Q2+...+Qn−1+Pn)+(m·ηf+l·ηg). (4)

As RGB and IR patches do not encode the same information

in the same patch visualization Xi, the additional informa-

tion of one modality improves, for instance, IR on the night,

the other one. Also, this variation in the sense of informa-

tion for both modalities is responsible for regularizing the

training when the patches are mixed. The following Equa-

tion (5) represents the approximation of the real mutual in-

formation I by M using Equation (4) and approximating

the noise from the scene to be similar for both sensors:

M = Ia + η. (5)

This approximation means that the encoded information on

MiPa represents the total scene composed by both sensors,

which are compressed on the vision encoder while remov-

ing the redundancy information and noise by the training

process.

3.3. PatchWise Modality Agnostic Training

As previously mentioned, modality imbalances can po-

tentially cause the model to rely mostly on one modality.

Since the objective of this work is to preserve the origi-

nal architecture of the model for inference, we opted for

an approach where the backbone would be responsible for

mediating the modalities. To do so, we designed an adap-

tion of the GRL technique [15] called patch-wise modality

Table 1. Definition of the random variables and information mea-

sures used to explain MiPa.

General

Input scene in patches Xn

Number of patches n ∈ N

Patch id i ∈ N

Random variables (RVs)

Patch ratio ρ ∼ U(0, 1)

Patch channel f m ∼
(

n·ρ
p

)

, p = 1
2

Patch channel g l ∼ n - m

Functions

MiPa M

Self-Attention SA

Modality channels f , g

Information measures

Entropy of V H(V ) := EpV
[− log pV (V )]

Information of X Q,P where Q =H(q), P = H(p)

Noise modality channels η

Mutual information between P and Q I(Q,P ) = Q + P - Q∩P

Approximation of mutual information between P and Q Ia ≈ I

agnostic (MA) module. The key idea is to prevent the de-

tector from relying too much on the strongest modality, the

easiest modality driven by the learning process, by making

the features from each modality indistinguishable, therefore

sharing the same encoding. Considering that the input has

a different modality for each patch, a modality that we pick

during the patch mixing process, we build what we call a

modality map, denoted as M , that specifies which modal-

ity each patch belongs to for each inference during training.

Then, we use a modality classifier to predict the modality

map of the features coming from the backbone. Finally, we

compute the loss between the target and outputted modal-

ity maps and back-propagate the opposite gradients to the

backbone encoder. To reduce the noise coming from the

classifier at the beginning of the training, we slowly increase

the weight (λ) of the gradients propagated to the backbone

as the training goes on. We use the Binary Cross-Entropy

(BCE) to compute the loss between the predicted and target

modality maps, as described by the following Equation (6):

LMA =
1

n

n
∑

i=1

−M log(M̂)− (1−M) log(1− M̂), (6)

where M is the modality map generated from ρ. The afore-

mentioned approach for the full training pipeline can be

seen in Figure 2. We use the following Equation (7) to in-

crement the factor λ.

λ =
2

1 + exp(−γs)
− 1, (7)

where s is the speed to which λ increases based on training

epoch and γ is a hyperparameter to adjust this speed. The

modality classifier can be used at any stage of the backbone;

we have found empirically that using it on the features from

the stage 1 works well. Finally, MiPa loss (LMiPa) can be

defined as the following Equation (8):

LMiPa = Ld + λLMA. (8)

4. Results and Discussion

4.1. Experimental Methodology

(a) Datasets: During our experiments, we explored two dif-

ferent RGB/IR benchmarking datasets: LLVIP and FLIR.

LLVIP: The LLVIP dataset is a surveillance dataset com-

posed of 12, 025 RGB/IR pairs of images for training and

3, 463 pairs for testing. The original resolution is 1280 by

1024 pixels but was resized to 640 by 512 to accelerate the

training. The sole annotated class of this dataset is pedes-

trians. FLIR ALIGNED: For the FLIR dataset, we used

the sanitized and aligned paired sets provided by Zhang

et al. [44], which has 4, 129 aligned pairs for training and

1, 013 pairs for testing. The FLIR images are taken from
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the perspective of a camera in front of a car, and the resolu-

tion is 640 by 512. It contains annotations of bicycles, dogs,

cars, and people. It has been found that for the case of FLIR,

the “dog” objects are inadequate for training [4], but since

our objective is to evaluate if our method can make a detec-

tor modality agnostic and not beat any prior benchmark, we

have decided to keep it during our evaluations.

(b) Implementation Details: All detectors were trained on

an A100 NVIDIA GPU and were implemented using Py-

Torch. We use AdamW [26] as an optimizer with a learning

rate of 1e−4, a batch size of 6, and for a total of 12 epochs

for the case of the DINO [46] OD. For Swin, we start with

the pre-trained weights from ImageNet [34]. The models

are evaluated in terms of performance AP50, and we ad-

ditionally reported the AP75 and AP in the supplementary

material. The evaluation is also performed in terms of RGB

performance, IR performance, and our target metric, the av-

erage of both, because our setup requires a model that is

equally good on both modalities during test time. In this

work, we replicate the 1-channel IR to have 3-channel input

for further use with 3-channel RGB data.

(c) Baseline Methods: In the course of this work, we

considered different baselines to compare to our proposed

method (MiPa). Firstly, we measure the performance of

the detector trained on one modality, unimodal setup, to

gain a reference of the expected detection coming from each

modality. Secondly, we evaluate the naive solution of sim-

ply using a dataset comprised of both modalities during

training (multimodal setting), which we call Both. To ac-

count for the modality imbalances and further increase the

fairness of our comparisons, we balanced the datasets with

25%, 50%, and 75% of one modality and the rest of the

other. All models were evaluated separately on RGB and

IR. Additionally, the mean of the modalities, which repre-

sents how well the model is balanced for the two desired

modalities, is calculated.

Table 2. Comparison of different ratio ρ sampling methods on

LLVIP. Using DINO with Swin backbone.

Dataset: LLVIP (AP50 ↑ )

Model
RGB IR Average

Fixed [ρ=0.25] 78.9 98.2 88.55

Fixed [ρ=0.50] 73.0 97.6 85.30

Fixed [ρ=0.75] 77.4 97.5 87.45

Curriculum (ρ=0.25 / 4 epochs) 76.6 97.8 87.20

Curriculum (ρ=0.25 / 8 epochs) 80.1 97.8 88.95

Variable 88.5 97.5 93.00

4.2. Towards the optimal ρ

Since the way of selecting the ideal ρ was unclear, we

designed different experimental settings to study the influ-

ence of ρ on learning the best way to balance the amount of

RGB/IR information during the training. Let us start with a

few definitions:

- Fixed ρ. In this setting, we selected a fixed proportion of

RGB/IR samples, such as 0%, 25%, 50%, 75% and 100%,

in which 0% correspond to no IR images in the training

batch, and 100% correspond to only IR in the batch.

- Curriculum ρ. For this strategy, we analyzed which

modalities were easy to learn; in this case, it was IR. Then,

during the initial epochs over the training, the model fo-

cuses on the easier-to-learn modality (IR modality tends to

drive the learning process when a balanced jointly dataset is

given), providing between 0% to 25% of ratio for IR, which

means that the model for the initial epochs is going to see

more RGB data, which is harder. Then, over the rest of the

training epochs, it samples from the uniform distribution

such as variable ρ.

- Variable ρ. In the variable ρ, the ratio of mixed patches

per batch is drawn from a uniform distribution. For each

batch, a different ρ is redrawn.

We tested all the different configurations of ρ on LLVIP

(see Table 2). For this experiment, we have made two find-

ings. First, using an Ia following a uniform distribution

gives us a better approximation of the range of information

from IR ∪ RGB as the results from the variable give us a

better balance between both modalities. Second, using less

of the weaker modality (hard to learn) strengthens the learn-

ing of the strongest one (easier to learn modality), as it can

be seen in Sec. 4.4 (Table 5), that we were actually able to

beat the state-of-the-art by sampling 25% of RGB images

and 75% of IR.

4.3. Patchwise Modality Agnostic Training

The subsequent ablation shows the efficacy of the patch-

wise modality agnostic method towards obtaining a sin-

gle model capable of dealing with both modalities while

keeping the performance stable, see Table 3. Additionally,

we studied the sensibility of the model performances influ-

enced by different γ hyperparameters (see Table 4), seen

in Equation (7), which tunes the speed that the λ factor in-

creases at each step the weight of gradients propagated to

the encoder. We empirically demonstrate that the optimal γ

varies between datasets and detectors due to the number of

epochs required for each one, whereas if the model requires

more training epochs, the γ should be higher. Additionally,

MiPa was designed for computational efficiency during test

time, so it does not increase the computational cost when

the model is deployed in real-world scenarios.
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Figure 3. Detection over different methods for two different daytimes: Night and Day and two different modalities: RGB and IR.

Detectors trained on RGB work better in the daytime. Detectors trained on IR work better at nighttime. Detectors trained on Both

modalities in a naive way cannot work only on the dominant modality. Our MiPa manages to work well in all conditions.

4.4. Comparison with RGB/IR Competitors

In this section, we compare our approach in terms of de-

tection performance with other strong methods in the litera-

ture that use RGB/IR modalities. Table 5 shows that MiPa

is a competitive method under RGB/IR benchmarks. For in-

stance, on FLIR, MiPa has 81.3 AP50, while CSSA [4] has

79.2, ProbEn [8] has 75.5, GAFF [45] 74.6 and Halfway

Fusion [44] 71.5, RSDet [47] 81.1 and CrossFormer [23]

79.3. Furthermore, we report competitive results on LLVIP,

which can be seen in the table as the people detection per-

formance over different methods inclusively; for competi-

tors, both modalities are used during training and inference,

which is not our case (as we just use the IR modality for in-
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Table 3. Comparison of detection performance over different base-

lines and MiPa for different models on Swin backbone for DINO

and Deformable DETR. The evaluation is done for RGB, IR, and

the average of the modalities.

Dataset: LLVIP (AP50 ↑ )

Detector Model
RGB IR Average

RGB 90.87 ± 0.84 94.23 ± 0.57 92.55

IR 66.87 ± 0.90 96.87 ± 0.12 81.87

DINO

Both [ρ = 0.25] 79.73 ± 1.03 97.40 ± 0.22 88.57

Both [ρ = 0.50] 82.40 ± 1.50 96.50 ± 0.29 89.45

Both [ρ = 0.75] 81.23 ± 2.89 97.07 ± 0.25 89.15

MiPa (Ours) 88.70 ± 0.45 96.97 ± 0.26 92.83

MiPa + MA (Ours) 89.10 ± 0.28 96.83 ± 0.09 92.90

RGB 80.00 ± 1.50 90.03 ± 00.87 85.02

IR 56.10 ± 2.50 94.20 ± 00.08 75.15

Def.DETR

Both [ρ = 0.25] 51.20 ± 3.47 83.73 ± 16.57 67.47

Both [ρ = 0.50] 53.57 ± 4.17 83.87 ± 16.17 68.72

Both [ρ = 0.75] 53.53 ± 4.55 82.33 ± 18.48 67.93

MiPa (Ours) 78.60 ± 0.42 95.20 ± 0.16 86.90

MiPa + MA (Ours) 79.02 ± 0.21 95.36 ± 0.25 87.19

Dataset: FLIR (AP50 ↑ )

Detector Model
RGB IR Average

RGB 66.07 ± 0.98 56.60 ± 0.80 61.33

IR 56.47 ± 0.79 70.40 ± 0.38 63.43

DINO

Both [ρ = 0.25] 56.53 ± 0.76 67.57 ± 1.73 62.05

Both [ρ = 0.50] 60.50 ± 0.66 68.93 ± 0.60 64.72

Both [ρ = 0.75] 58.53 ± 0.92 70.43 ± 0.65 64.48

MiPa (Ours) 63.53 ± 1.94 69.50 ± 1.84 66.52

MiPa + MA (Ours) 64.80 ± 2.30 70.43 ± 0.53 67.62

RGB 49.33 ± 1.39 43.77 ± 00.56 46.55

IR 39.17 ± 1.48 59.20 ± 00.29 49.18

Def.DETR

Both [ρ = 0.25] 35.73 ± 4.95 43.00 ± 13.54 39.37

Both [ρ = 0.50] 33.93 ± 5.15 43.33 ± 14.14 38.63

Both [ρ = 0.75] 32.90 ± 3.54 44.13 ± 14.85 38.52

MiPa (Ours) 48.00 ± 0.57 54.97 ± 00.90 51.48

MiPa + MA (Ours) 48.27 ± 1.76 55.80 ± 00.22 52.03

ference, in Table 5). For example, in LLVIP, MiPa reached

98.8 AP50, and the second best was CFT with 97.5.

5. Conclusion

In this work, we have introduced a novel training method

leveraging a patch-based strategy using a single vision en-

coder for OD to consolidate the mutual information be-

tween different modalities. This method, named MiPa, has

enabled two different object detectors, DINO [46] and De-

formable DETR [48], to achieve modality invariance on

LLVIP and FLIR datasets without having to make any spe-

cific changes for each modality, for example, additional en-

coding parameters for each modality, to their architecture

or increase the testing inference time. Additionally, our

method outperformed competitors on both datasets. Fur-

thermore, we provide a definition from information theory

regarding the knowledge captured by the MiPa method.

Table 4. MiPa ablation on γ and comparison with different base-

lines for DINO Swin. The evaluation is done for RGB, IR, and the

average of the modalities in terms of AP50 performance.

Dataset: LLVIP (AP50 ↑ )

Modality
RGB IR Average

RGB 90.87 ± 0.84 94.23 ± 0.57 92.55

IR 66.87 ± 0.90 96.87 ± 0.12 81.87

Both [ρ = 0.25] 79.73 ± 1.03 97.40 ± 0.22 88.57

Both [ρ = 0.50] 82.40 ± 1.50 96.50 ± 0.29 89.45

Both [ρ = 0.75] 81.23 ± 2.89 97.07 ± 0.25 89.15

MiPa 88.70 ± 0.45 96.97 ± 0.26 92.83

MiPa [γ = 0.05] 89.20 ± 0.43 96.57 ± 0.39 92.88

MiPa [γ = 0.10] 89.43 ± 0.25 96.57 ± 0.31 93.00

MiPa [γ = 0.15] 89.10 ± 0.28 96.83 ± 0.09 92.97

Dataset: FLIR (AP50 ↑ )

Modality
RGB IR Average

RGB 66.07 ± 0.98 56.60 ± 0.80 61.33

IR 56.47 ± 0.79 70.40 ± 0.38 63.43

Both [ρ = 0.25] 56.53 ± 0.76 67.57 ± 1.73 62.05

Both [ρ = 0.50] 60.50 ± 0.66 68.93 ± 0.60 64.72

Both [ρ = 0.75] 58.53 ± 0.92 70.43 ± 0.65 64.48

MiPa 63.53 ± 1.94 69.50 ± 1.84 66.52

MiPa [γ = 0.05] 64.80 ± 2.30 70.43 ± 0.53 67.62

MiPa [γ = 0.10] 64.03 ± 2.11 69.63 ± 1.45 66.83

MiPa [γ = 0.15] 64.27 ± 0.47 69.93 ± 1.02 67.10

Table 5. Comparison with different multimodal works on RGB/IR

benchmarks.

Method

Dataset

FLIR LLVIP

AP50 AP75 AP AP50 AP75 AP

Halfway F. [44] 71.5 31.1 35.8 91.4 60.1 55.1

GAFF [45] 74.6 31.3 37.4 94.0 60.2 55.8

ProbEn [8] 75.5 31.8 37.9 93.4 50.2 51.5

CSSA [4] 79.2 37.4 41.3 94.3 66.6 59.2

CFT [33] 78.7 35.5 40.2 97.5 72.9 63.6

DIVFusion [36] - - - 89.8 - 52.0

RSDet [47] 81.1 - 41.4 95.8 - 61.3

CrossFormer [23] 79.3 38.5 42.1 97.4 75.4 65.1

MiPa (Ours) 81.3 41.8 44.8 98.2 78.1 66.5
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