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Abstract
Transformer-based methods have shown great promise

in underwater image enhancement (UIE) tasks due to their
capability to model long-range dependencies, which are vi-
tal for reconstructing clear images. While numerous ef-
fective attention mechanisms have been devised to handle
the computational requirements of transformers, they fre-
quently incorporate redundant information and noisy in-
teractions from irrelevant regions. Additionally, the cur-
rent methods focusing solely on the raw pixel space con-
strains the exploration of the underwater image frequency
dynamics, thus hindering the models from fully leveraging
their potential for producing high-quality images. To ad-
dress these challenges, we propose USWformer, an efficient
UIE Sparse Wavelet Transformer Network (1.19 M param-
eters) to eliminate the redundant features in both the spatial
and frequency domains. The USWformer consists of two
fundamental components: a Sparse Wavelet Self-Attention
(SWSA) block and a Multi-scale Wavelet Feed-Forward Net-
work (MWFN). The SWSA block selectively preserves es-
sential attention scores from the keys corresponding to each
query, adjusting the feature details. MWFN further di-
minishes the feature redundancy in the aggregated features
thereby improving the enhancement of the underwater im-
ages. We assess the efficacy of our approach across bench-
mark datasets comprising synthetic and real-world under-
water images, showcasing its superiority via thorough ab-
lation studies and comparative analyses.

1. Introduction
Over the past decades, underwater image analysis has

emerged as a significant area of focus within the com-
puter vision community, becoming even more critical as
the pace of the human quest for sea exploration increases.
This is particularly relevant in domains such as marine biol-
ogy, ecology [38], autonomous underwater vehicles (AUV)
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Figure 1. Model complexity trade-off. Visualization of PSNR,
parameters, and GFLOPS on the challenging UIEB dataset. The
proposed USWformer delivers state-of-the-art performance while
maintaining the lowest parameters (1.19M) and GFLOPs (9.14).

[5, 30], underwater robotics [47], and archaeology [2, 9].
Unlike costly and complex, specialized underwater imag-
ing devices, deep learning methods for underwater image
enhancement provide a more efficient and practical solu-
tion. Despite significant advances in terrestrial image en-
hancement [13, 34, 37], underwater image enhancement re-
mains challenging due to light attenuation, scattering, and
water turbidity [1, 20], resulting in issues such as low con-
trast, color distortion, blur, and noise [3]. These challenges
impede subsequent computer vision tasks [49], emphasiz-
ing the need for a robust underwater image enhancement
method.

To handle these issues, traditional underwater image en-
hancement (UIE) methods based on the physical properties
of underwater images have been proposed [11, 21, 32, 33].
These approaches examine the degradation mechanisms
caused by color cast or scattering and compensate for them
to enhance the images. However, these physics-based mod-
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els, with their limited representation capacity, fail to address
all the complex physical and optical factors in underwater
scenes, leading to sub-optimal enhancement under highly
complex and diverse conditions. Recently, learning-based
methods [16, 19, 20, 35] have demonstrated superior results
due to the powerful feature representation and nonlinear
mapping capabilities of neural networks using substantial
paired training data. Besides the inevitable success of the
above-mentioned Convolutional neural network based UIE
methods, their limited receptive field reduces effectiveness
in capturing long-range dependencies, that are usually cru-
cial for accurate color restoration and attenuation mitigation
in degraded images. The more recent, Transformer-based
networks [40, 45] are capable of dealing this limitation via
incorporating self-attention mechanisms where they typi-
cally consider all query-key pair attention relations to ag-
gregate the incoming features. However, this approach is
inefficient for underwater image reconstruction, as not all
query tokens are closely relevant to their corresponding key
tokens. Thus, crafting an efficient mechanism that discerns
the most valuable features within information flow, while
maintaining reduced sensitivity to specific UIE tasks seems
to be the probable solution. Intuitively, the development of a
sparse Transformer that selectively identifies the most perti-
nent interactions among tokens could significantly enhance
feature aggregation efficiently.

Few works on sparsity [39, 52] deploy squared-ReLU
based activation function in the spatial domain as a prob-
able solution to eradicate any negative irrelevant interac-
tion for general image restoration tasks. Nevertheless, the
properties of sparsity for underwater images remain insuffi-
ciently explored, thereby hindering the effective utilization
of the representational capabilities of the proposed works.
Since underwater image acquisition engages both frequency
and spatial domains to extract valuable insights, integrating
these domains enhances the overall color accuracy and con-
trast. Building on these insights and owing to the inherent
sparsity of of Discrete Wavelet Transform (DWT), we ex-
plore the concept of sparsity for efficient UIE, fundamen-
tally in the frequency domain.

In this work, we propose an efficient transformer-based
network, USWformer for underwater image enhancement
that leverages the most valuable features within information
flow in the wavelet space to save the computational com-
plexity. As shown in Figure 1, our model outperforms the
SoTA UIE methods by a considerable margin, while utilis-
ing around half or even less GFLOPs. The central element
of the proposed USWformer is the Sparse Wavelet Trans-
former Block (SWTB) which comprises a Sparse Wavelet
Self-Attention (SWSA) to retain the most pertinent color
features, and the Multi-scale Wavelet Feed-Forward Net-
work (MWFN) that refines the aggregated multi-scale fea-
tures at different resolutions. SWSA incorporates two

branches: the upper branch ensures the essential infor-
mation flow from the low-frequency components acquir-
ing comprehensive features and complex details, and the
lower branch filters out the irrelevant tokens from the high-
frequency components to significantly augment the image
visibility. To efficiently integrate the pixel-specific and
globally consistent information while minimizing the com-
putational complexity, we adaptively weigh the outputs of
the two branches, following the approach in [52]. Addi-
tionally, our effective alternative to the regular feed-forward
network [48], i.e., MWFN, enhances the feature transforma-
tion by suppressing the redundant operations in the wavelet
space. Specifically, the recursive application of DWT to the
low-frequency sub-band at each resolution helps in enhanc-
ing the visual clarity and detail. To summarise, the main
contributions of our work are:

• We propose USWformer, an efficient Transformer-
based network for enhanced texture and detail recovery
in underwater image enhancement.

• We propose an efficient learnable Sparse Wavelet Self-
Attention mechanism that adaptively integrates the
most pertinent self-attention values.

• We propose a Multi-scale Wavelet Feed-Forward Net-
work leveraging multi-resolution analysis to further
suppress any invaluable information.

The ablation study is conducted on various configura-
tions of the proposed approach. Through a series of exper-
iments on both synthetic and real-world settings, the effec-
tiveness of the proposed method has been validated.

2. Related Work
2.1. Underwater Image Enhancement

Existing Underwater image enhancement (UIE) methods
can be broadly divided into physical model-based, visual
prior-based, and deep model-based approaches [11, 20, 31,
32, 40]. The majority of physical model-based UID meth-
ods leverage prior knowledge to construct models, such as
attenuation curve priors [43], fuzzy priors [8], and water
dark channel priors [33]. However, the scalability and ro-
bustness of the model are hindered by externally set priors
when faced with complex and diverse conditions. Recently,
deep learning methods have shown promising performance
in underwater imaging. To address the scarcity of real-
world underwater paired training data, numerous methods
have adopted GAN-based frameworks for UIE, including
UGAN [12], UIE-DAL [41], and WaterGAN [23]. Semi-
UIR [15] introduced a mean teacher-based semi-supervised
network that utilizes unlabeled data effectively. Lately, few
research works have been done where the frequency domain
properties have been utilized which showcases the tremen-
dous potential that the frequency domain holds. Spectro-
former [18] exploits the frequency domain characteristics
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via its Hybrid Fourier-Spatial Upsampling for improving
the feature resolution of degraded images. WF-Diff [50]
utilises the frequency domain characteristics and diffusion
models for image enhancement and adjustment. Recent
work on wavelet-pixel domain fusion, such as WPFNet
[28], has shown improved underwater image enhancement
by combining wavelet and pixel domains, preserving de-
tails, and improving color and noise reduction compared to
existing methods. However, the aforementioned frequency-
based approaches, owing to their computational complexity
potentially introduce unwanted interactions in the irrelevant
areas. Unlike these approaches, we adopt a novel Trans-
former based approach in the wavelet space to enhance the
most useful features and relieve the less informative ones.

2.2. Transformers in Vision
Inspired by the success of Transformers in NLP and

high-level vision tasks, they have been applied to image
restoration, outperforming previous CNN-based methods
by effectively modelling non-local information [7]. How-
ever, the quadratic complexity of vanilla self-attention lim-
its the application of Transformers to high-resolution im-
ages. To address this, the authors in [48] introduced an ef-
ficient transformer network designed for restoration tasks
such as image deraining, deblurring, and denoising, which
calculates attention along the channel dimension to reduce
computational costs. Another solution is window-based at-
tention, as seen in Uformer [45], which enhances locality
within the Transformer architecture. SwinIR [25] also em-
ploys window-based attention, incorporating a shift mech-
anism for improved cross-window interactions. Few other
approaches have investigated the novel use of Transformers
through channel-wise and spatial-wise attention layers [31],
or by employing customized transformer blocks that uti-
lize both frequency and spatial domains as inputs for self-
attention [18]. Unlike the aforementioned approaches, we
introduce an adaptive sparse self-attention mechanism in
the wavelet space to minimize the overall redundancy by
selecting the most informative interactions.

2.3. Sparse Representation
While efficient attention mechanisms reduce computa-

tional costs but still suffer from redundancy and irrelevant
features [7, 51]. DRSformer [7] addresses this with a top-k
channel selection, while CODE [51] reduces redundancy in
super-pixel space, though both face challenges. Sparse rep-
resentations, inspired by neural activity, have proven effec-
tive for tasks like image deraining [44] and super-resolution
[29]. Unlike previous methods that limit attention to local
windows or sparse token interactions, we propose a simpler
and more efficient approach by designing sparse wavelet
self-attention and a novel wavelet feedforward network in
our Transformer architecture.

3. Proposed Method

In this section, we first outline the overall pipeline of the
proposed USWformer for the underwater image enhance-
ment task as shown in Figure 2. Next, we delve into the
Sparse Wavelet Transformer Block (SWTB), the corner-
stone of our method, comprising two primary components:
Sparse Wavelet Self-Attention (SWSA) and the Multi-scale
Wavelet Feed-Forward Network (MWFN).

3.1. Overall Pipeline
Our objective is to train a network that removes color

cast from the degraded underwater image and enhances
image details in the generated output. Our proposed
USWformer as illustrated in Figure 2, utilizes a hierarchi-
cal encoder-decoder framework. Each component of the
encoder-decoder pipeline operates at different spatial res-
olutions and channel dimensions to obtain a multi-scale
representation from the input image. For feature down-
sampling and upsampling, pixel-unshuffle and pixel-shuffle
operations are employed, respectively. Following the ap-
proach in [45,48], skip connections are incorporated to link
consecutive intermediate features, ensuring stable train-
ing. Given a degraded underwater image I∈ RH×W×3,
USWformer initially applies overlapped patch embedding
using a 3× 3 convolution to produce shallow features, de-
noted as X0 ∈ RH×W×C . After that, a group of Sparse
Wavelet Transformer Blocks (SWTB) process these shal-
low features. We stack Ni ∈ {1, 2, 3, 4} SWTBs to capture
detailed features denoted as Xd ∈ RH×W×C for spatially-
varying information within the network backbone. Each
SWTB harnesses the wavelet space characteristics to en-
hance the Transformer’s robust capabilities. Further, the
standard Transformer self-attention [10] is switched out for
Sparse Wavelet Self-Attention (SWSA) in each SWTB to
get feature sparsity, which makes the process of aggregating
relevant features more effective. Additionally, the proposed
Multi-scale Wavelet Feed-Forward Network (MWFN) in
the SWTB strives to improve the multi-scale local details
for underwater image enhancement in an efficient way. Ul-
timately, a 3× 3 convolutional layer is employed on the
resultant deep features to procure the final output. This
comprehensive procedure culminates in the generation of
an output image O.

3.2. Sparse Wavelet Transformer Block
Standard Transformers [10, 42, 48] compute self-

attention globally by considering all tokens, which can lead
to noisy interactions between irrelevant features, making
them unsuitable for image enhancement. To address this
issue, we introduce a Sparse Wavelet Transformer Block
(SWTB), as shown in Figure 2, that harnesses wavelet-
based sparsity and frequency domain processing. Our ap-
proach integrates frequency and spatial domain insights to
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Figure 2. Architectural overview of the proposed USWformer. It primarily includes a Sparse Wavelet Transformer Block (SWTB) with
a Sparse Wavelet Self-Attention (SWSA) and a Multi-scale Wavelet Feed-forward Network (MWFN). Here, DC denotes the depth-wise
convolution, and LN represents the layer normalization.

uncover intricate details and patterns in degraded underwa-
ter images. This approach reduces irrelevant interactions
and enhances feature extraction by facilitating information
interaction between high and low-frequency features, thus
boosting the overall enhancement performance. Specifi-
cally, given the input features at the (n−1)th block denoted
as, Xn−1, the encoding procedure of the proposed SWTB
is described as:

X’n = Xn−1 + SWSA(LN(Xn−1)) (1)

X”n = X’n + MWFN(LN(X’n)) (2)

where, LN is the layer normalization, X’n and X”n rep-
resents the outputs of SWSA and MWFN blocks. respec-
tively, which are detailed in the subsequent subsection.

3.2.1 Sparse Wavelet Self-Attention
Utilizing all the similarities between query and key tokens
[42,45] for self-attention is inefficient for image reconstruc-
tion, as not all query tokens are closely relevant to their cor-
responding key tokens. Thus, to address the inherent issues
in vanilla self-attention, such as the introduction of noisy
interactions due to the consideration of all query-key token
values, we proposed a sparse wavelet self-attention (SWSA)
mechanism that selectively identifies and utilises the useful
token predictions. Instead of computing the attention scores
by applying softmax to the query-key dot product, we first
apply Discrete Wavelet Transform (DWT) to decompose
the input into multiple frequency sub-bands, providing a
multi-resolution analysis of the attention map. This multi-
resolution approach aids in understanding and preserving

important features at various scales, while the inherent spar-
sity of DWT enables more efficient computations. The
decomposed high (LH,HL,HH) and the low-frequency
(LL) components from DWT are directed into two sepa-
rate branches. A ReLU activation function processes the
high-frequency bands in the lower branch to achieve spar-
sity. The ReLU activation function helps achieve sparsity
by setting all negative values in the high-frequency (HF )
bands to zero. This highlights important features and ig-
nores less significant details or noise in the incoming fea-
tures. To circumvent any sort of potential oversparsity in-
duced by the ReLU and wavelet-based self-attention, we in-
put the low-frequency (LF ) band into the upper branch and
follow it with a softmax operation. Since, this band con-
tains the crucial information, employing it in combination
with the Softmax guarantees the preservation of essential
features.
Here, given a normalized tensor Xn−1 ∈ RH×W×C , the
proposed SWSA, first outputs queries Q’, keys K’ and val-
ues V’ matrices:

Q’ = ϕ3(ψ1(X));K’ = ϕ3(ψ1(X));V’ = ϕ3(ψ1(X)) (3)

where, ϕ3(.), and ψ1(.) denotes the 3 × 3 depth-wise and
1 × 1 pointwise convolution, respectively. Motivated by
[48], the self-attention is implemented across channels in-
stead of the spatial dimension to reduce memory complex-
ity and further deployment of DWT helps in identifying the
useful tokens. The overall computation can be defined as:

(LL,LH,HL,HH) = DWT

(
Q’ · K’T

α

)
(4)

3375



This approach enhances the attention process by removing
lower values from the query-key dot product, thereby fo-
cusing on more significant interactions and reducing noise.
To highlight upon focusing the most informative compo-
nent from the decomposed high-frequency sub-bands, the
concatenated sub-bands are passed via a ReLU layer that
removes the similarity scores with negative values, thus en-
suring sparsity in the high-frequency domain:

SWSAHF = ReLU([HH,LH,HL]) (5)

where [.] denotes the concatenation operation. How-
ever, since both DWT and ReLU may trigger information
loss owing to over-sparsity, hence the decomposed low-
frequency component, carrying the important information
is passed through a softmax layer. It considers all query-
key pairs for attaining attention scores:

SWSALF = Softmax(LL) (6)

However, the primary difficulty in the dual branch scheme
lies in effectively leveraging the benefits of both paradigms.
Therefore, inspired by [52], SWSA addresses this by adap-
tively fusing the output of the two branches, selectively in-
corporating features and thus contributing in controlling the
sparsity of the tokens:

S0 = (w1 × SWSAHF + w2 × SWSALF )V’ (7)

here, w1, w2 are the normalising weights defined as : wn =
eβn∑N
i=1 eβi

, n ∈ {1, 2} and βn represent the learnable pa-
rameter. The final output is obtained as:

X’
n = Xn−1 + ψ1(S0) (8)

3.2.2 Multi-scale Wavelet Feed-Forward Network
Earlier works [45, 48] typically deploy single-scale depth-
wise convolution in the feedforward network to learn local
features. However, the limited receptive field of this ap-
proach hinders its ability to achieve high-quality image re-
construction, as it needs to capture both local and global
representation. To address this limitation, here we design a
multi-scale wavelet feedforward network (MWFN) to gen-
erate multi-resolution features that effectively capture lo-
cal details and global context without relying on depth-wise
convolution. Thus, by providing additional insights from
both the frequency and spatial domains, MWFN enhances
the model’s capacity to identify patterns and textures that
the spatial domain alone may not readily detect. This ap-
proach not only enhances both the local and global feature
representations but also reduces computational complexity,
minimizes redundancy, and better captures edge informa-
tion by analyzing the data at multiple resolutions. Given an
input tensor X’n ∈ RH′×W ′×C′

, we first apply layer nor-
malization. Next, we use a 1× 1 convolution to expand the

channel dimension by a factor of r = 2.66.
Following this, we apply the Discrete Wavelet Transform
(DWT) to decompose the feature map into high-frequency
(LH,HL,HH) and low-frequency LL bands at multiple
scales. At every scale, we then take the LL band and re-
cursively apply DWT to it until we reach a resolution of
H/16 ×W/16. After obtaining the decomposed features,
we concatenate the information from all the bands at differ-
ent resolutions, using bilinear interpolation for upsampling
to ensure consistent feature alignment. This interpolation
not only helps maintain the spatial coherence of the fea-
tures but also reduces artifacts and preserves the smooth-
ness of the image, leading to more accurate reconstruction.
The concatenated features L0 are passed through the GeLU
activation function, as the combination of layer normaliza-
tion and GeLU improves performance by 0.1-0.2% [14].
Finally, we apply another 1 × 1 convolution to restore the
original input dimension. In this way, the overall process of
MWFN is formulated as below:

X”
n = X’

n + ψ1(GeLU(L0)) (9)

L0 = [L1, L2, L3, L4], L1 = DWT(ψ1(LN(X’
n))) (10)

where, [.] denotes the concatenation, L2, L3, and L4

are obtained by applying DWT on the LL subbands of L1,
L2, and L3, respectively, L1 → H

′

2 × W
′

2 × C
′
; L2 →

H
′

4 ×W
′

4 ×C ′
; L3 → H

′

8 ×W
′

8 ×C ′
; L4 → H

′

16 ×W
′

16 ×C ′
.

These multi-resolution feature analyses make the model
more robust to variations in scale and resolution, enabling
it to handle complex underwater images more efficiently
and improving its generalization capability across diverse
datasets.

3.3. Training Losses
In training our proposed architecture, we employed a

total loss function LT , which integrates multiple individ-
ual loss components. These components include perceptual
loss (L1) [17], Charbonnier loss (L2) [6], multi-scale struc-
tural similarity index (MS-SSIM) loss (L3) [46], and gradi-
ent loss (L4) [36]. The total loss function is formulated as
follows:

LT = λ1L1 + λ2L2 + λ3L3 + λ4L4 (11)
where, λ1,2,3,4 ∈ {2, 3, 1, 2.5} are empirically deter-

mined weighting factors. This combination of loss func-
tions is crucial for optimizing our model, enabling it to cap-
ture various aspects of intrinsic image attributes and pro-
duce visually appealing, high-quality output images. De-
tailed explanations of these loss functions are provided in
the supplementary material.

4. Experimental Discussion
4.1. Datasets

For our comparative analysis, we used the synthetic
Underwater Image Enhancement Benchmark (UIEB) [20]
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Figure 3. Qualitative analysis on full-reference UIEB dataset [20] of our proposed USWformer and the existing SoTA methods.
USWformer (Ours) generates sharper and visually-faithful results without any artifacts (Noticeable differences in quality are highlighted
with boxes).

Table 1. Results on the Same and Cross Dataset evaluation,
(Train-UIEB ) [20] (↑: higher is better, ↓: lower is better, blue
and purple indicate best and second best values respectively).

Method
Test- UIEB Test-LSUI

Params↓GFLOPs↓
PSNR↑/SSIM↑PSNR↑/SSIM↑

Semi-UIR [15] 24.59/0.90 24.67/0.86 1.67 36.43
WaterNet [20] 19.81/0.86 17.73/0.82 24.81 193.70
U-shape [31] 22.91/0.91 22.87/0.85 65.60 66.20
TWIN [27] 23.72/0.83 23.54/0.83 11.37 56.80
CLUIE-Net [24] 20.37/0.89 20.71/0.81 13.39 31.00
Spectroformer [18] 24.96/0.917 25.08/0.87 2.40 15.75

Ours 25.68/0.946 25.34/0.912 1.19 9.14

along with three real-world underwater datasets: U45 [22],
UCCS [26], and SQUID [4]. The training set includes 800
randomly selected image pairs, while 90 images are set
aside for testing. The U45 dataset [22] contains 45 real-
world images with features like color casts, low contrast,
and haze-like degradation commonly found in underwater
scenes. The UCCS dataset [26] consists of 300 authentic
underwater images showcasing a variety of marine life and
environments. The SQUID dataset [4] includes 57 stereo
image pairs taken at different locations in Israel.

4.2. Training Details
To address the limited number of images in the UIEB

dataset for training purposes, we employed data augmenta-
tion techniques to expand the dataset. These techniques in-
cluded horizontal and vertical flipping, noise injection, and
contrast variation. By applying these methods, we effec-
tively increased the variability and robustness of the training
data, thereby enhancing the model’s performance. Specifi-
cally, 4800 image pairs from the UIEB dataset were utilized
for training purposes. The testing phase involved 90 images
from the UIEB dataset. To ensure consistency, all input im-
ages were resized to 256× 256 pixels. During training, we
employed the ADAM optimizer with an initial learning rate
of 3× 10−4, which was modulated using the cosine anneal-
ing strategy. The network was implemented using PyTorch
and trained on an NVIDIA GeForce RTX 2080 GPU.

4.3. Comparison Methods
We perform a comparative analysis between USWformer

and state-of-the-art (SOTA) UIE methods: Semi-UIR [15],
WaterNet [20], U-shape [31], TWIN [27], CLUIE-Net [24],
and Spectroformer [18].

4.4. Analysis on Synthetic Dataset
The proposed method is quantitatively evaluated against

existing SoTA techniques using key metrics such as PSNR,
and SSIM. The quantitative results for the same dataset
evaluation (Train-UIEB, Test-UIEB) are presented in Table
1. Additionally, we have provided an analysis of parame-
ters (in Millions) and GFLOPs, demonstrating the compu-
tational efficiency of our model. To further showcase the
generalization capability of our model, we also conducted
a cross-dataset evaluation (Train-UIEB, Test-LSUI [31]).
This approach allowed us to verify that the model could
generalize well beyond the training data, underscoring its
ability to perform effectively across different datasets. The
qualitative results are illustrated in Figure 3. These re-
sults clearly illustrate that USWformer surpasses existing
approaches in enhancing the underwater images. These vi-
sual comparisons with significantly enhanced portions of
the images highlighted in boxes showcase the superior per-
formance of the proposed USWformer in enhancing under-
water image quality, particularly in terms of color correc-
tion, contrast enhancement, and detail preservation.

4.5. Analysis on Real-world Dataset
To assess the robustness of our proposed approach in

real-world applications, we present results derived from the
U45, UCCS, and SQUID datasets. Our quantitative anal-
ysis includes key metrics such as UIQM (Underwater Im-
age Quality Measure), UISM (Underwater Image Sharp-
ness Measure), NIQE (Natural Image Quality Evaluator),
and BRISQUE (Blind/Referenceless Image Spatial Qual-
ity Evaluator). Table 2 provides a summary of these re-
sults, showing that our method either outperforms or is on
par with state-of-the-art techniques. Additionally, we of-
fer qualitative insights into the U45, UCCS, and SQUID
datasets, as shown in Figure 4, highlighting notable im-
provements in color balance, and enhanced visibility in the
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Table 2. Quantitative comparison of different UIE methods on the real-world U45, UCCS, and SQUID datasets (↑: higher is better, ↓:
lower is better, blue and purple indicate best and second best values, respectively).

Dataset Method Semi-UIR [15] WaterNet [20] U-shape [31] TWIN [27] CLUIE-Net [24] Spectroformer [18] Ours

U45

UIQM ↑ 4.301 3.091 2.923 3.135 2.890 3.243 4.247
UISM ↑ 7.142 6.187 5.567 6.698 5.988 7.354 7.250
NIQE ↓ 3.767 4.596 4.309 3.992 3.874 3.842 3.804
BRISQUE ↓ 23.020 21.156 21.565 20.089 20.612 19.957 17.398

UCCS

UIQM ↑ 3.773 3.134 2.874 3.119 3.066 3.209 4.279
UISM ↑ 7.119 6.187 5.391 6.732 6.715 6.563 7.033
NIQE ↓ 4.710 6.104 4.401 4.370 4.420 3.982 4.220
BRISQUE ↓ 20.852 24.275 23.549 25.755 29.524 23.258 24.703

SQUID

UIQM ↑ 2.449 3.379 2.422 3.066 1.414 3.088 2.598
UISM ↑ 7.373 7.071 7.004 7.148 7.208 7.368 7.447
NIQE ↓ 3.439 3.752 4.621 4.377 3.710 3.613 4.011
BRISQUE ↓ 20.189 23.364 29.164 13.874 25.981 21.477 22.419

Figure 4. Qualitative analysis on non-reference benchmarks U45 [22], UCCS [26], and SQUID [4]. Unlike other approaches, for all the
compared real-world datasets, USWformer (Ours) efficiently restore natural colors and preserve the fine details (Noticeable differences in
quality are highlighted with boxes).

reconstructed images. These improvements are attributed to
the novel modules introduced in our approach.

5. Ablation Study
To examine the impact of each architectural module in

our proposed network, we performed a comprehensive ab-
lation study using the UIEB dataset [20].

5.1. Influence of SWSA
The Sparse Wavelet Self-Attention (SWSA) block en-

hances the extraction and utilization of relevant features by
leveraging multi-resolution analysis and selective sparsity.
To evaluate its effectiveness, we conducted two sets of ex-
periments. In the first set, we integrated the SWSA block
into our proposed network and compared its performance
with the baseline network. The inclusion of SWSA resulted

in a performance gain of around 0.38 dB as clear from Ta-
ble 3. The visual results in Figure 5 further substantiate
the quantitative findings, demonstrate that incorporating the
SWSA block leads to superior performance for underwater
image enhancement.
In the second set of experiments, we replaced the SWSA
block with several efficient attention mechanisms: (1)
Multi-DconvHead Transposed Attention (MDTA) [48], (2)
Top-k Self-Attention (TKSA) [7], and (3) Multi-Domain
Query Cascaded Attention (MQCA) [18]. The quantitative
results on the UIEB dataset, shown in Table 4, indicate that
SWSA provides favorable gains of around 2.95 dB as com-
pared to the popular MDTA, further confirming its effec-
tiveness in removing the redundant information.
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Figure 5. Ablation visual analysis for different network settings of
the proposed architecture.

Table 3. Ablation studies conducted on various network configu-
rations using the UIEB benchmark.

Network Setting PSNR ↑ SSIM ↑
Baseline 22.51 0.862
Baseline + SWSA 22.89 0.896
Baseline + MWFN 22.73 0.911
Ours (Baseline + SWSA + MWFN) 25.68 0.946

Table 4. Ablation Study of Self-Attention Mechanisms.

Models MDTA [48] TKSA [7] MQCA [18] SWSA (Ours)
PSNR ↑ 22.73 23.28 22.45 25.68
SSIM ↑ 0.911 0.919 0.880 0.946

Table 5. Ablation study of Feed-Forward networks.

Models GDFN [48] MSFN [7] MWFN (Ours)
PSNR ↑ 22.89 24.34 25.68
SSIM ↑ 0.896 0.917 0.946

5.2. Influence of MWFN
To validate the efficacy of the proposed Multi-Scale

Wavelet Feed-Forward Network (MWFN), we conducted
the following ablations. First, we evaluated the perfor-
mance of our model with and without the MWFN block.
The results, summarized in Table 3, highlight the improve-
ment of around 0.22 dB achieved by integrating the MWFN
block into the baseline. In addition to the quantitative anal-
ysis, a qualitative evaluation, shown in Figure 5, visualizes
the enhanced performance. The images processed with the
MWFN block exhibit noticeably better color balance, con-
trast, and detail preservation, clearly indicating that the in-
clusion of the MWFN block improves the model’s ability to
capture both local and global features compared to the base-
line Furthermore, to assess the effectiveness of the MWFN
block, we compared it against three other feed-forward net-
work variants: (1) Gated-Dconv Feed-Forward Network
(GDFN) [48] and (2) Mixed-scale Feed-forward Network
(MSFN) [7]. The quantitative results of this comparison on
the UIEB dataset, presented in Table 5, demonstrate that
while GDFN, which introduces a gating mechanism in two
same-scale depth-wise convolution streams, enhances per-
formance, it overlooks the multi-scale knowledge crucial
for image restoration tasks. In contrast, the MWFN block,
with its ability to capture multi-scale features, provides su-
perior performance in both PSNR and SSIM, further solid-
ifying its efficacy for image restoration tasks.

Figure 6. Application of proposed method (Ours) and existing
methods (WaterNet [20], CLUIE-Net [24], U-shape [31], TWIN
[27], Semi-UIR [15], and Spectroformer [18]) as a pre-processing
step for depth-estimation on underwater U45 dataset [22].

6. Applicability to Downstream Computer Vi-
sion Task

In underwater scenarios, due to diminished visibility, the
effective functioning of downstream computer vision tasks
may be hindered. Hence, underwater image enhancement
can act as a preprocessing step for these downstream ap-
plications to function with more accuracy. To demonstrate
this, we conducted an experiment on underwater depth es-
timation. We first applied the depth-estimation algorithm
to the degraded image, followed by enhanced images using
our method and existing approaches. As shown in Figure 6,
our enhanced output led to the most accurate depth estima-
tion compared to other methods, highlighting its potential
for underwater saliency detection.

7. Conclusion
In this paper, we proposed an efficient sparse trans-

former model, USWformer for underwater image enhance-
ment. The network comprises several components, in-
cluding Sparse Wavelet Transformer blocks, which inte-
grate comprehensive features and intricate details effec-
tively. Recognizing that vanilla self-attention in Transform-
ers can be hindered by global interactions with irrelevant
information, we implement a novel Sparse Wavelet Self-
Attention to retain the most pertinent self-attention values
and prevent any sort of information loss. For further en-
hancing the aggregation of relevant features, we develop a
Multi-scale Wavelet Feed-Forward Network that effectively
explores multi-scale representations and aims at eradicat-
ing redundant computations. An extensive analysis incor-
porating both synthetic and real-world datasets, along with
thorough ablation studies is conducted to validate the effec-
tiveness of USWformer.
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