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Abstract

Diffusion models in image Super-Resolution (SR) treat
all image regions uniformly, which risks compromising the
overall image quality by potentially introducing artifacts
during denoising of less-complex regions. To address this,
we propose “You Only Diffuse Areas” (YODA), a dynamic
attention-guided diffusion process for image SR. YODA se-
lectively focuses on spatial regions defined by attention maps
derived from the low-resolution images and the current de-
noising time step. This time-dependent targeting enables
a more efficient conversion to high-resolution outputs by
focusing on areas that benefit the most from the iterative
refinement process, i.e., detail-rich objects. We empirically
validate YODA by extending leading diffusion-based meth-
ods SR3, DiffBIR, and SRDiff. Our experiments demonstrate
new state-of-the-art performances in face and general SR
tasks across PSNR, SSIM, and LPIPS metrics. As a side
effect, we find that YODA reduces color shift issues and
stabilizes training with small batches.

1. Introduction
The goal of image Super-Resolution (SR) is to enhance

Low-Resolution (LR) into High-Resolution (HR) images

[29]. Improvements to this field significantly impact many

applications, like medical imaging, remote sensing, and con-

sumer electronics [12,27,37]. Despite its long history, image

SR remains a fascinating yet challenging domain due to its

inherently ill-posed nature: any LR image can lead to several

valid HR images, and vice versa [2,34]. Thanks to deep learn-

ing, SR has made significant progress [10]. Initial regression-

based methods, such as early convolutional neural networks,

work great at low magnification ratios [5, 22, 38]. However,

they fail to produce high-frequency details at high magnifi-

cation ratios (≥ 4) and generate over-smoothed results [28].

Such scale ratios require models capable of hallucinating

realistic details that fit the overall image.

Recently, generative diffusion models have emerged

with better human-rated quality compared to regression-

based methods, but they also introduced new challenges

[7, 16, 32, 40]. Their indiscriminate processing of image

regions leads to computational redundancies and suboptimal

enhancements. Some recent methods address the first is-

sue and reduce computational demands by working in latent

space like LDMs [31], by exploiting the relationship between

LR and HR latents like PartDiff [43], or by starting with a

better-initialized forward diffusion instead of pure noise like

in CCDF [8]. Yet, strategies to adapt model capacity based

on spatial importance remain underexplored.

This paper takes the first step toward addressing the sec-

ond issue and challenges the common approach of SR dif-

fusion models by asking: Do we need to update the entire

image at every time step? We hypothesize that not all image

regions require the same level of detail enhancement. For

instance, a face in the foreground may need more refinement

than a simple, monochromatic background. Recognizing

this variability in the need for detail enhancement under-

scores a critical inefficiency in traditional diffusion methods.

Treating all image regions uniformly risks compromising the

overall image quality by introducing artifacts and shifts to

low-complex regions. Unlike methods that target computa-

tional efficiency, we aim to boost image quality by minimiz-

ing distortions across different low-complex regions.

In response, we introduce a diffusion mechanism focus-

ing on detail-rich areas using time-dependent and attention-

guided masking. Our method, coined ”You Only Diffuse Ar-

eas” (YODA), starts by obtaining an attention map that high-

lights regions that need more refinement. After identification,

YODA systematically replaces highlighted regions with SR

predictions during the denoising process. In particular, re-

gions with high attention values (detail-rich & salient) are

refined more often. Our approach is analogous to inpainting

methods like RePaint [25], where only a pre-defined region

is updated to generate complementing content. In YODA’s

case, however, the selected regions are time-dependent. To

that end, we design a dynamic approach that creates expand-

ing masks, starting from detail-rich regions and converging

This WACV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

451



toward the overall image.

A key advantage of YODA is its compatibility with ex-

isting diffusion models, allowing for a plug&play applica-

tion. We integrate YODA with three models: SR3 [32]

and DiffBIR [23] for face SR and SRDiff [20] for general

SR. Interestingly, YODA achieves notable image quality im-

provements and also improves the training process. When

training with smaller batch sizes, SR3 suffers from color

shifts [6, 36] while YODA produces faithful color distribu-

tions. In summary, our work:

• introduces YODA, an attention-guided diffusion ap-

proach that emphasizes image areas through masked

refinement. Thus, it refines detail-rich areas more often,

which leads to higher image quality.

• demonstrates that attention-guided diffusion results in

better training conditions, accurate color reproduction,

and competitive perceptual quality results.

• empirically shows that YODA outperforms leading dif-

fusion models in face and general SR tasks.

• reveals that YODA improves the training performance

when using smaller batch sizes, which is crucial in

limited hardware scenarios.

2. Background

Our method uses attention maps for attention-guided dif-

fusion. We leverage the self-supervised DINO framework [4]

to extract attention maps. Thus, this section introduces the

main components: DDPMs [16] and the DINO [4]. We refer

to the supplementary materials for a discussion of related

methods, such as other diffusion approaches and spatial-

selection SR methods.

2.1. DDPMs

Denoising Diffusion Probabilistic Models (DDPMs) em-

ploy two distinct Markov chains [16]: the first models the

forward diffusion process q transitioning from an input x to

a pre-defined prior distribution with intermediate states zt,
0 < t ≤ T , while the second models the backward diffusion

process p, reverting from the prior distribution back to the

intended target distribution p (z0 | zT ,x). In image SR, we

designate x as the LR image and the target z0 as the desired

HR image. The prior distribution is usually Gaussian noise.

Forward Diffusion: In forward diffusion, an HR image z0
is incrementally modified by adding Gaussian noise over

a series of time steps. This process can be mathematically

represented as:

q(zt | zt−1) = N (zt |
√
1− αt zt−1, αtI) (1)

The hyperparameters 0 < α1:T < 1 represent the noise vari-

ance injected at each time step. It is possible to sample from

any point in the noise sequence without needing to generate

all previous steps through the following simplification [33]:

q(zt | z0) = N (zt | √γt z0, (1− γt)I), (2)

where γt =
∏t

i=1(1− αi) . The intermediate step zt is

zt =
√
γt · z0 +

√
1− γt · εt, εt ∼ N (0, I) (3)

Backward Diffusion: The backward diffusion process is

where the model learns to denoise, effectively reversing the

forward diffusion to recover the HR image. In image SR, the

reverse process is conditioned on the LR image to guide the

generation of the HR image:

pθ (zt−1 | zt,x) = N (zt−1 | μθ(zt,x, γt),Σθ(zt,x, γt))
(4)

The mean μθ depends on a parameterized denoising func-

tion fθ, which can either predict the added noise εt or the

underlying HR image z0. Following the standard approach

of Ho et al. [16], we focus on predicting the noise. Hence,

the mean is:

μθ(x, zt, γt) =
1√
αt

(
zt − 1− αt√

1− γt
fθ (x, zt, γt)

)
(5)

Following Saharia et al. [32], setting the variance of

pθ(zt−1|zt,x) to (1 − αt) yields the subsequent refining

step with εt ∼ N (0, I):

zt−1 ← μθ(x, zt, γt) +
√
1− αtεt (6)

Optimization: The optimization goal for DDPMs is to

train the parameterized model to accurately predict the noise

added during the diffusion process. The loss function used

to measure the accuracy of the noise prediction is:

L (θ) = E
(x,z0)

E
t

∥∥∥∥εt − fθ (x, zt, γt)

∥∥∥∥
1

(7)

2.2. DINO

DINO is a self-supervised learning approach for feature

extractors on unlabeled data [4]. It employs a teacher and

a student network, where the student learns to imitate the

features learned by the teacher. The student gets only local

views of the image (i.e., 96 × 96), whereas the teacher re-

ceives global views (i.e., 224× 224). This setup encourages

the student to learn “local-to-global” correspondences. The

features learned through self-supervision are directly accessi-

ble in the self-attention modules. These self-attention maps

provide information on the scene layout and object bound-

aries. We leverage the generality, availability, and robustness

of these attention maps as a measure of an image’s saliency

to guide the diffusion process for significantly improved im-

age quality. In another context, a similar approach has been

applied to image compression, demonstrating its ability to

capture essential image content in the attention maps [3].
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Figure 1. Overview of YODA. First, extract an attention map A from the LR input. Next, use the values of A to produce a time-dependent

masking M(t). For t : T → 0, the area of selected pixels expands from detail-rich regions to the whole image. Our diffusion process uses

these masks for dynamic and attention-guided refinement, emphasizing regions differently. More specifically, it starts with masked areas that

need refinement (derived from zt and M(t)) and LR regions, which retain the noise level needed for the next time step. Finally, the SR and

LR areas are combined to form a whole image with no masked-out regions for the next iteration.

3. Methodology

Our proposed method, coined “You Only Diffuse Areas”

(YODA), has three major phases:

• Identifying Key Regions: Estimate the weighting of

pixel positions in a LR image x ∈ R
H×W×C with an

attention map A ∈ R
H×W .

• Time-Dependent Masking: Use A to define a time-

dependent, binary mask generator function M : N0 →
{0, 1}H×W . The generated masks identify salient areas

at time step t ∈ N0 of the diffusion process.

• Guided Backward Diffusion: Concentrate the dif-

fusion process on the regions identified by the time-

dependent masking M(t) and generate a partially en-

hanced image by combining the prediction with com-

plementing LR areas.

3.1. Identifying Key Regions

YODA starts by prioritizing areas in the input. This is

achieved by generating an attention map A with 0 ≤ Ai,j ≤
1 from the LR image x. The greater the value of Ai,j ,

the more refinements it receives. Note that extracting A
is computationally efficient as it has to be generated only

once for each image. For generating A, we evaluated several

approaches, including innate methods (i.e., not-learnable)

and learnable methods, i.e., ResNet [15] and Transformer

architectures [11]. For the latter, we leverage the DINO

framework for its robustness in self-supervised learning,

extracting refined attention maps directly from LR images

without necessitating extra annotated data [4]. This choice is

motivated by DINO’s demonstrated efficacy in highlighting

essential features within images using pre-existing models,

e.g., for image compression [3].

Note that it is challenging to define important regions in

SR because there is no clear definition. However, we ob-

serve that foreground objects are typically critical to human

perception, while background areas seem less significant.

Therefore, we choose to consider self-supervised methods

to extract attention maps, which serve as an unbiased proxy

for identifying objects and weightings in an image. This

choice is based on the observation that self-supervised meth-

ods like DINO naturally focus on regions that generally

capture human attention [4]. Our experiments with YODA

confirm that emphasizing these areas improves performance,

as later results will demonstrate. An additional overview of

how DINO and the attention maps are used is shown in the

supplementary materials. Next, we describe the process of

creating time-dependently masks for the backward diffusion

by utilizing the attention map A.

3.2. Time-Dependent Masking

Given the LR input image x and the attention map A, we

introduce a novel strategy to dynamically focus the diffu-

sion process on salient areas. Even though A is fixed, we
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will use it to refocus the diffusion model during the back-

ward diffusion process dynamically. Thus, we can leverage

it to influence the number of refinement steps for each po-

sition. Therefore, for two positions (i, j) and (i′, j′) with

Ai,j > Ai′,j′ , YODA applies more refinement steps to the

location (i, j) than to (i′, j′). Since 0 ≤ Ai,j ≤ 1, the

number of diffusion steps employed to a specific position

(i, j) is determined as a proportion of the maximum time

steps, T . For instance, Ai,j = 0.7 means (i, j) is refined

during 70% of all diffusion steps. In addition, we introduce

a lower bound hyperparameter 0 < l < 1, ensuring that

every region undergoes a minimum amount of refinements.

In other words, the hyperparameter l reliably guarantees that

every spatial position is refined at least l · T times. As the

backward diffusion process progresses from time step T to

0, we can define the time-dependent masking process for any

time step T ≥ t ≥ 0 approaching t = 0 as:

M(t)i,j =

{
1, if T · (Ai,j + l) ≥ t

0, otherwise
(8)

Equation 8 ensures that the diffusion process gets applied

a variable number of times for different regions, allowing

the salient areas to diffuse over a longer time span. It is

important to highlight that once a spatial position is marked

for refinement, it continues to undergo refinement across all

subsequent steps: M(t)i,j ≥ M(t− k)i,j ∀k > 0. Figure 1

shows an example of our time-dependent masking. For each

time step t, we can determine with M(t)i,j = 1 whether a

given spatial position (i, j) should be refined or not.

3.3. Guided Backward Diffusion

YODA’s guided diffusion process iteratively refines the

image from a noisy state zT to a HR state z0. This phase

involves selectively refining areas based on the current time

step’s mask, M(t), and blending these refined areas with

the unrefined, remaining LR regions, (1 −M(t)). YODA

ensures a seamless transition between refined and unrefined

areas, improving image quality with a focus on key regions.

More specifically, at each time step t, the areas that will

be refined when transitioning from t to (t−1)are determined

based on the current iteration zt and the current mask M(t):

z̃t ← M(t)
 zt (9)

Next, we divide the current imagezt into two components

that will later be combined as zt−1 for the next time step:

zSR
t−1, which is the refined image prediction, and zLR

t−1, the

complementary LR image. The state zLR
t−1 represents un-

changed LR areas by using x as the mean. Both components

acquire the same noise level Σθ(z̃t,x, γt), and can be de-

scribed by:

zSR
t−1 ∼ N (μθ(z̃t,x, γt),Σθ(z̃t,x, γt)) (10)

zLR
t−1 ∼ N (x,Σθ(z̃t,x, γt)) (11)

Finally, YODA combines the complementing and non-

overlapping image regions into a full image1:

zt−1 ← M(t)
 zSR
t−1 + (1−M(t))
 zLR

t−1 (12)

Consequently, the areas refined by zSR
t expand as t → 0,

whereas the areas described by zLR
t shrink in size. The

new state, zt−1, now contains both SR and LR areas and,

importantly, does not have any masked-out regions. As a

result, zt−1 can be used in the next iteration step. This

guided refinement is depicted on the right part of Figure 1.

Note that we use z̃t instead of zt in Equation 10 and

Equation 11. In our initial experiments, masking before the

noise prediction (i.e., z̃t) produced a marginal improvement

in comparison to the full intermediate state zt (around 0.1-

0.2 dB in PSNR). We theorize that it is connected to the

optimization target explained next. With z̃t, we force the

model inherently to focus locally, which, due to our selective

loss function, would otherwise have to be learned.

3.4. Optimization

To confine the backward diffusion process to specific

image regions as determined by the current time step 0 ≤
t ≤ T and the corresponding mask M(t), we adapt the

training objective from Equation 7 as follows to focus on

regions within the mask M(t). Thus, YODA optimizes only

areas described by M(t):

L (θ) = E
(x,y)

E
t

∥∥∥∥M(t)
 [εt − fθ (x, zt, γt)]

∥∥∥∥
1

(13)

4. Experiments
We start by analyzing different methods for obtaining

attention maps for YODA. Then, we evaluate YODA’s per-

formance in tandem with SR3 [32] and DiffBIR [23] for

face, as well as SRDiff [20] for general SR. We chose SR3,

DiffBIR, and SRDiff because they are the most prominent

representative diffusion models for image SR in the respec-

tive tasks, where YODA can be integrated straightforwardly.

However, YODA can be theoretically applied to any exist-

ing method. We present quantitative and qualitative results

for both tasks, demonstrating YODA’s high-quality results

compared to the baselines using standard metrics such as

PSNR, SSIM, and LPIPS [28]. All experiments were run on

a single NVIDIA A100-80GB GPU. In the supplementary

materials, we discuss the complexity of YODA and explore

its potential synergies with other diffusion models. Also,

we used a lower bound hyperparameter (see Section 3.2) of

l = 0.2 in all experiments and were inspired by the rate-

distortion trade-off presented by Ho et al. [16] that reaches

the semantic compression stage at roughly t = T − 0.2 · T .

1Equation 12 is similar to RePaint [25], a diffusion-based inpainting

method While RePaint uses a constant mask for all time steps, YODA has

time-dependent masks to dynamically control the updated image regions.
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Figure 2. (Left) Comparison of various methods to extract attention maps used for our method (blue = low attention; yellow = high attention).

Top row denotes maps derived from ResNet-50 using DINO. It shows various attention head outputs and the max aggregation of all attention

maps (MAX). Bottom row denotes non-learnable methods, namely Gaussian, Edge-based, and using SIFT’s points of interest. (Right)
Comparison of different attention maps with SR3+YODA for 16 → 128 on CelebA-HQ. Aggregating the attention maps extracted with

DINO and ResNet-50 backbone under the MAX strategy performs best. The attention maps are then used for dynamic binary masking.

4.1. Choosing Good Attention Maps

YODA relies on attention maps. Thus, we thoroughly

evaluated different choices. We considered the pre-trained

attention heads from the last layer of DINO with the respec-

tive backbone model, i.e., ResNet [15] and ViT [11]. For

ResNet-50, we used a dedicated method to extract the atten-

tion maps from its weights [14]. A qualitative comparison

of attention maps generated with DINO and ResNet-50 is

shown in Figure 2 (left), demonstrating that YODA high-

lights perceptually essential areas (more visual results are in

the appendix). Additionally, we test non-learnable methods

to extract attention maps, also shown in Figure 2 (left):

• Gaussian: Placing a simple 2D Gaussian pattern at the

center of the image provides a straightforward approach,

which relies on the assumption that the essential parts

of an image are centered.

• Edge-based: Using the Canny edge detector, the atten-

tion maps are defined by the edges of the image, where

close edges are connected and blurred.

• Scale-Invariant Feature Transform (SIFT): Through

Gaussian differences, SIFT [24] provides an attention

map characterized by scale invariance. It produces an

attention map by applying 2D Gaussian patterns around

the points of interest.

DINO masks perform best: Figure 2 (right) presents

our study on several baselines and masking variants. The

straightforward Gaussian approach performs worst as it does

not adapt to image features. The edge-based segmentation

and SIFT methods improve the performance over the re-

produced baseline using a small batch size. However, they

underperform relative to the reported SR3 results, which

used a larger batch size. In comparison, using DINO’s at-

tention maps for YODA shows significant improvements.

We tested individual attention heads (0 to 5) independently,

along with combination strategies that include averaging

(AVG) and selecting the maximum value (MAX). The MAX

combination achieved the best results compared to individual

heads or the AVG combination.

ResNet produces more sensitive masks with more pixel
updates: Figure 3 (left) investigates the ratio of diffused

pixels using our time-dependent masking. The upper bound

is 100%, where diffusion is applied across all locations in

every time step (standard diffusion). Any result under 100%

shows that not all pixels are diffused during all time steps.

As can be seen, DINO with ResNet-50 produces higher

attention values, resulting in more total pixel updates. Also,

the high variance indicates a high adaptability. It can employ

100% for some samples, a characteristic not observed with

ViT-S/8. Nevertheless, the ViT-S/8’s improved performance

compared to non-learnable methods and its low ratio make

it attractive for future work on optimized inference speed

based on sparser diffusion, e.g., LazyDiffusion [30].

ResNet progresses faster towards the whole image: Fig-

ure 3 (right) shows the ratio of diffused pixels depending

on time steps with the MAX aggregation for ResNet-50 and

ViT-S/8. As the backward diffusion progresses from T to

0, ResNet-50 initiates and incorporates the refinement of

the whole image areas more quickly than ViT-S/8. For the
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Figure 3. (Left) Ratio comparison between diffused pixels using our time-dependent masking approach and the total number of pixel updates

in standard diffusion. On average, DINO with a ResNet-50 backbone leads to more pixel updates than the VIT-S/8 backbone. The lower

bound, defined by l, is a threshold to eliminate areas that would never undergo diffusion. (Right) Refined image area in percentage across

time steps for the MAX combination. Note that the sampling process goes from T = 500 to T = 0. ResNet-50 initiates the refinement

process much earlier, advances more rapidly toward refining the entire image, and has a higher standard deviation.

first 200 time steps, the attention map derived by ViT-S/8 ad-

dresses less than 20% of the image area, whereas ResNet-50

has already developed to 100%. Therefore, we assume that

the ResNet-50 backbone’s superior performance is attributed

to its faster progression toward refining the whole image.

Intermediate diffusion results and error maps can be found

in the supplementary materials.

Summary: As DINO with ResNet-50 and MAX aggregation

performs best, we used it for all remaining main experiments.

4.2. Face Super-Resolution

We use FFHQ [18] for training and CelebA-HQ for test-

ing [17]. All SR3 models were trained for 1M iterations as in

Saharia et al. [32]. We evaluated three scenarios with bicubic

degradation: 16 → 128, 64 → 256, and 64 → 512. Due

to hardware limitations and missing quantitative results in

the original publication of SR3, our experiments required a

reduction from the originally used batch size of 256: we used

a batch size of 4 for the 64 → 512, and 8 for the 64 → 256
scenario to fit on a single A100-80GB GPU. For blind face

SR (unknown degradation between LR and HR, 64 → 256),

we follow Lin et al. and test YODA with DiffBIR [23], which

uses more complex degradation models (e.g., blurring), like

introduced by Real-ESRGAN and others [38, 41].

Results: Table 1 shows significant improvements when SR3

(face SR) or DiffBIR (blind face SR) is coupled with YODA

across all metrics. DiffBIR applies a diffusion process fol-

lowing an initial regression-based predictor and uses only

50 sampling steps. Consequently, smaller relative improve-

ments are expected, but it shows that YODA is also efficient

for more complex degradation models.

Scaling Type Model PSNR ↑ SSIM ↑ LPIPS ↓ FID ↓
4× Regression RRDB [38] 27.77 0.870 0.151 67.46

Diffusion SR3 [32] 17.98 0.607 0.138 80.72

Diffusion SR3 + YODA 26.33 0.838 0.090 59.99

8× Regression RRDB [38] 26.91 0.780 0.220 62.85

Diffusion PartDiff (K=25) [43] n.a. n.a. 0.222 n.a.

Diffusion PartDiff (K=50) [43] n.a. n.a. 0.217 n.a.

Diffusion SR3 [32] 17.44 0.631 0.147 66.20

Diffusion SR3 + YODA 25.04 0.800 0.126 53.95

8× Diffusion DiffBIR [23] 24.49 0.717 0.247 115.22

(blind) Diffusion DiffBIR + YODA 24.56 0.718 0.245 111.93

Table 1. Face SR results with 4× scaling (64 → 256) and 8×

scaling (64 → 512) on CelebA-HQ with SR3 (non-blind) and

DiffBIR (blind means unknown degradation type) standalone and

combined with YODA. Note that RRDB [38] is also reported and

that regression-based methods typically yield higher pixel-based

scores (PSNR/SSIM) than generative approaches [32]. SR3 was

trained for 1M steps and a reduced batch size of 4 and 8 instead

of 256 to fit on a single A100-80GB GPU. Note that DiffBIR uses

diffusion after an initial, regression-based predictor with only 50

sampling steps. Thus, smaller relative improvements are expected.

We explain the poor performance of SR3 with a phe-

nomenon also observed by other works [6,36]: color shifting,

which we attribute to the reduced batch size necessitated by

limited hardware access. Fitting SR3 on a single A100-80GB

GPU required reducing the batch size from 256 to 8. Exam-

ples are shown in Figure 4 and in the appendix. Color shift-

ing manifests in pronounced deviation in pixel-based metrics

(PSNR/SSIM) but only slightly decreased perceptual qual-

ity (LPIPS). Our results suggest that YODA’s role extends

beyond mere performance enhancement. It actively miti-

gates color shifting and stabilizes training, especially when

faced with hardware constraints. Due to selective refinement,
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Figure 4. SR3 and SR3+YODA reconstructions, 64 → 256 (4×).

SR3 suffers from color shifting, as also observed by [6,36]. YODA

solves this issue and produces higher-quality reconstructions.

Scaling Model PSNR ↑ SSIM ↑ LPIPS ↓ FID ↓
4× SR3 [32] 28.3 0.67 0.10 74.99

SR3 + YODA 31.6 0.87 0.05 58.34

8× SR3 [32] 29.3 0.71 0.10 55.94

SR3 + YODA 31.5 0.84 0.07 49.02

Table 2. Results without color-shifting on face SR by normalizing

the channel-wise means to those of the HR ground-truth data for

4× scaling (64 → 256) and 8× scaling (64 → 512).

YODA maintains more of the LR image in less complex

areas, reducing the risk of introducing artifacts/shifts during

denoising while enhancing details in complex regions. With

YODA, SR3 can be trained with a much smaller batch size.

Results without color-shifting: Table 2 shows the same

experiments but with the channel-wise mean normalized by

the ground-truth data, thus disentangling image quality im-

provements from color bias. While this procedure is not

feasible in practice, it highlights YODA’s significantly im-

proved performance beyond reducing color shifting.

Analysis across attention regions: In Figure 5, we analyze

the LPIPS scores across different attention value intervals

within a single attention map A (using the MAX aggrega-

tion, 0.01 interval size). These intervals represent varying

attention levels assigned by DINO to different regions of the

image. The high LPIPS scores associated with bicubic up-

sampling in high-attention areas underscore the effectiveness

of DINO in capturing perceptually significant regions. As

a result, YODA significantly improves LPIPS scores across

all attention regions, particularly in regions with higher at-

tention values (highlighted by the trend curve). Please refer

to the appendix for more details.

User study: In addition to the quantitative results on

16 → 128 (8×) provided in Figure 2 and inspired by Sa-

haria et al., we conducted a user study. We selected 50

random test images, asked 45 participants which SR predic-

tion is preferred, and plotted the preferences per image (see

appendix). As a result, YODA was preferred 55.7% of the

time over SR3 (44.3%). More details are in the appendix.

Figure 5. Regional LPIPS comparison across normalized attention

values for CelebA, 64 → 256 (4×). We use 0.01 intervals and fit a

polynomial through the means. High-attention areas are perceptu-

ally relevant and correspond to more difficult pixels (higher LPIPS).

YODA reaches better scores, especially within high-attention areas.

Note that dynamic masking stops around t ≈ 0.6 · T , see Figure 3.

4.3. General Super-Resolution

The experimental setup follows SRDiff [20], based on the

setup of SRFlow and bicubic degradation [26]. For training,

we employed 800 2K resolution images from DIV2K [1] and

2,650 from Flickr2K [35]. For testing, we used the DIV2K

validation set (100 images). Moreover, we evaluated SR3,

which was not originally tested on DIV2K.

Results: Table 3 shows the 4× general SR results on

the DIV2K val. The reported values include regression-

based methods, which typically yield higher pixel-based

scores than generative models [32]. The disparity is due to

PSNR/SSIM penalizing misaligned high-frequency details,

a known challenge in the wider SR field [28]. We observe

that results from SR3 underperform without YODA. We hy-

pothesize that SR3 strongly depends on larger batch sizes

and longer diffusion times. Combining SRDiff with YODA

improves the quality in PSNR (+0.21db) and SSIM (+0.01),

with a minor deterioration in LPIPS (+0.01). Nonetheless,

when looking qualitatively at the predictions, one can ob-

serve that SRDiff strongly benefits from YODA, as shown

in Figure 6. YODA produces much better LPIPS values for

perceptually essential areas, i.e., hair and cars, but falls short

in background areas, i.e., blurry grass or dark ground. The

appendix contains more visual results.

Discussion: Overall, YODA’s strengths are more signifi-

cant when combined with SR3 than with SRDiff. A critical

distinction between SR3 and SRDiff is the handling of condi-

tional information, i.e., the LR image, which we identify as a

potential contributor to the reduced perceptual score LPIPS.

SRDiff employs an LR encoder that generates an embedding

during the denoising phase. Meanwhile, SR3 directly uses

the LR image during the backward diffusion.
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Type Methods PSNR ↑ SSIM ↑ LPIPS ↓
Interpolation Bicubic 26.70 0.77 0.409

Regression EDSR [22] 28.98 0.83 0.270

LIIF [5] 29.24 0.84 0.239

RRDB [38] 29.44 0.84 0.253

GAN RankSRGAN [42] 26.55 0.75 0.128

ESRGAN [38] 26.22 0.75 0.124

Flow SRFlow [26] 27.09 0.76 0.120

HCFlow [21] 27.02 0.76 0.124

Flow + GAN HCFlow++ [21] 26.61 0.74 0.110

VAE + AR LAR-SR [13] 27.03 0.77 0.114

Diffusion SR3 [32] 14.14 0.15 0.753

SR3 + YODA 27.24 0.77 0.127

SRDiff [20] 27.41 0.79 0.136
SRDiff + YODA 27.62 0.80 0.146

Table 3. Quantitative results of 4× general SR on DIV2K val.

YODA improves across pixel-centric metrics such as PSNR and

SSIM, but yields a marginal decline in LPIPS.

5. Conclusion

In this work, we presented “You Only Diffuse Areas”

(YODA), an attention-guided diffusion-based image SR

approach that emphasizes essential areas through time-

dependent masking. YODA first extracts attention maps

that reflect the pixel-wise saliency of each scene using a self-

supervised, general-purpose vision encoder. The attention

maps are then used to guide the diffusion process by focus-

ing on key regions in each time step while providing a fusion

technique to ensure that masked and non-masked image re-

gions are correctly connected between two successive time

steps. This targeting allows for a more efficient transition to

high-resolution outputs, prioritizing areas that gain the most

from iterative refinements, such as detail-intensive regions.

Beyond better performance, YODA stabilizes training and

mitigates the color shift issue when a reduced batch size con-

straints the underlying diffusion model. As a result, YODA

consistently outperforms strong baselines like SR3, DiffBIR,

and SRDiff while requiring less computational resources by

using smaller batch sizes.

6. Limitations & Future Work

A notable constraint of this study is its dependence on

a good saliency estimation. Even though DINO is trained

to be a generic vision encoder, it has known limitations

that will reflect on the quality of YODA [9]. Additionally,

DINO is explicitly trained on input image resolutions such as

224× 224, which may not suffice for image SR applications

with much larger spatial sizes of the LR image. Meanwhile,

the modularity of YODA allows for the saliency model to be

switched once a better one becomes available. An ideal solu-

tion would be a scale-invariant extraction of attention maps,

e.g., a more extended version of our SIFT-adapted approach.
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0.23 0.170.24

0.16
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Figure 6. Zoom-in regions of DIV2K images (first row). LPIPS is

reported in the boxes (the lower, the better). YODA consistently

produces better texture and more high-frequency details.

Lastly, YODA can be extended for other diffusion-based

methods, e.g., latent-based methods like LDM [31] or un-

supervised methods based on singular value decomposition

like DDRM [19] or DDNM [39], which is orthogonal to our

work (see appendix for more details).

7. Societal Impact
YODA can significantly benefit fields like medical imag-

ing and remote sensing by improving visual quality. Yet,

high-quality SR can also be exploited maliciously by adding

realism to deceptive or misleading media content. Using SR

methods responsibly and promoting transparency and ethical

guidelines in deployment is crucial. Also, the reliance on

pre-trained models for attention maps, such as DINO, may

introduce biases inherent in the training data. These biases

could affect the quality and fairness of the SR results, par-

ticularly in diverse or underrepresented populations. Future

work should aim to mitigate these biases.
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diffusion transformer for interactive image editing, 2024. 5

[31] Robin Rombach, Andreas Blattmann, Dominik Lorenz,

Patrick Esser, and Björn Ommer. High-resolution image

synthesis with latent diffusion models. In CVPR, 2022. 1, 8

[32] Chitwan Saharia, Jonathan Ho, William Chan, Tim Sali-

mans, David J Fleet, and Mohammad Norouzi. Image super-

resolution via iterative refinement. In IEEE TPAMI, 2022. 1,

2, 4, 6, 7, 8

459



[33] Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan,

and Surya Ganguli. Deep unsupervised learning using

nonequilibrium thermodynamics. In ICML, 2015. 2

[34] Wanjie Sun and Zhenzhong Chen. Learned image downscal-

ing for upscaling using content adaptive resampler. In IEEE
Transactions on Image Processing, 2020. 1

[35] Radu Timofte, Shuhang Gu, Jiqing Wu, and Luc Van Gool.

Ntire 2018 challenge on single image super-resolution: Meth-

ods and results. In CVPR Workshop, 2018. 7

[36] Jianyi Wang, Zongsheng Yue, Shangchen Zhou, Kelvin CK

Chan, and Chen Change Loy. Exploiting diffusion prior for

real-world image super-resolution. arXiv:2305.07015, 2023.

2, 6, 7

[37] Xuan Wang, Jinglei Yi, Jian Guo, Yongchao Song, Jun Lyu,

Jindong Xu, Weiqing Yan, Jindong Zhao, Qing Cai, and

Haigen Min. A review of image super-resolution approaches

based on deep learning and applications in remote sensing.

Remote Sensing, 14(21):5423, 2022. 1

[38] Xintao Wang, Ke Yu, Shixiang Wu, Jinjin Gu, Yihao Liu,

Chao Dong, Yu Qiao, and Chen Change Loy. Esrgan: En-

hanced super-resolution generative adversarial networks. In

ECCV Workshop, 2018. 1, 6, 8

[39] Yinhuai Wang, Jiwen Yu, and Jian Zhang. Zero-shot image

restoration using denoising diffusion null-space model. arXiv
preprint arXiv:2212.00490, 2022. 8

[40] Jay Whang, Mauricio Delbracio, Hossein Talebi, Chitwan

Saharia, Alexandros G Dimakis, and Peyman Milanfar. De-

blurring via stochastic refinement. In CVPR, 2022. 1

[41] Jun Xiao, Rui Zhao, Shun-Cheung Lai, Wenqi Jia, and Kin-

Man Lam. Deep progressive convolutional neural network for

blind super-resolution with multiple degradations. In 2019
IEEE International Conference on Image Processing (ICIP),
pages 2856–2860. IEEE, 2019. 6

[42] Wenlong Zhang, Yihao Liu, Chao Dong, and Yu Qiao. Ranksr-

gan: Generative adversarial networks with ranker for image

super-resolution. In ICCV, 2019. 8

[43] Kai Zhao, Alex Ling Yu Hung, Kaifeng Pang, Haoxin Zheng,

and Kyunghyun Sung. Partdiff: Image super-resolution with

partial diffusion models. arXiv:2307.11926, 2023. 1, 6

460


