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Abstract

We present SpiralMLP, a novel architecture introduces
a Spiral FC layer as a replacement for the conventional To-
ken Mixing approach. Differing from several existing MLP-
based models that primarily emphasize axes, our Spiral FC
layer is designed as a deformable convolution layer with
spiral-like offsets. We further adapt Spiral FC into two vari-
ants: Self-Spiral FC and Cross-Spiral FC, enabling both
local and global feature integration seamlessly, eliminat-
ing the need for additional processing steps. To thoroughly
investigate the effectiveness of the spiral-like offsets and
validate our design, we conduct ablation studies and ex-
plore optimal configurations. In empirical tests, SpiralMLP
reaches state-of-the-art performance, similar to Transform-
ers, CNNs, and other MLPs, benchmarking on ImageNet-
1k, COCO and ADE20K. SpiralMLP still maintains linear
computational complexity O(HW ) and is compatible with
varying input image resolutions. Our study reveals that tar-
geting the full receptive field is not essential for achieving
high performance, instead, adopting a refined approach of-
fers better results.1

1. Introduction
1.1. Background

Earlier image classification systems mainly relied on
CNN-based architectures [20, 52, 56, 84], which excel with
controlled datasets but struggle with biased or uncon-
trolled conditions. Subsequently, Transformer-based archi-
tectures [2, 14, 27, 66] have emerged as alternatives, bene-
fiting from self-attention mechanism that excel with large
datasets [53] and are adaptable for various tasks [42]. How-
ever, they are often more expensive in pretraining and need
specific datasets for better performance on downstream
tasks.

MLP-based architectures [39, 59] have also shown
promise in computer vision tasks, matching Transformer

1Our code is available at https://github.com/Kookree/
SpiralMLP.

Figure 1. (a) While the Channel FC concentrates solely at the
target point, marked with a ⋆, the Spiral FC captures richer spatial
information. Spiral FC is in accordance with Eqs. (4) and (5),
the input channel dimension Cin = 14, the maximum amplitude
Amax = 6 and T = 8. The coordinate numbers are arranged
as (H,W,C). This illustrative example only contains half of the
Cin. (b) provides a complete visualization when the parameters
are: Cin = 20, Amax = 3 and T = 8.

performance with a more data-efficient and lighter design.
These systems use two main components: Channel Mix-
ing, which projects features along the channel dimension,
and Token Mixing, which captures spatial information by
projecting feature along the spatial dimension. These mix-
ing layers collectively enhance context aggregation, im-
proving robustness and reducing training resource needs.

1.2. MLP-Based Architectures.

The pioneering MLP-Mixer [59] proposes a simple yet
powerful architecture with both Token Mixing and Chan-
nel Mixing. Given a feature map X ∈ RH×W×Cin , where
H , W are the height and weight, Cin is the input channel di-
mension, let W Tmix ∈ RH·W×H·W denote the token mixing
weight matrix, the operation applied to the reshaped input
XT ∈ RCin×H·W is described as follows:

Tmix(X) = (XTW Tmix)T (1)

where, RH·W indicates the dimensions are flattened
while RH×W denotes the dimensions are separated, and
Tmix(·) ∈ RH·W×Cin is the output of token mixing. Eq. (1)
is to simulate the attention operation to integrate spatial in-
formation, it is followed by the channel mixing that operates
along the channel dimension. We define the channel mixing

This WACV paper is the Open Access version, provided by the Computer Vision Foundation.
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Figure 2. (a) displays the comprehensive architecture of SpiralMLP in PVT-style, featuring four distinct stages. Each stage is composed
of multiple Patch Embedding layers and identically-configured Spiral Blocks. (b) explores the internal layout of a Spiral Block, where
the proposed Spiral Mixing replaces the traditional Token Mixing. (c) outlines the components of Spiral Mixing, which incorporates the
meticulously designed Spiral FC to effectively capture spatial information.

weight matrix as WCmix ∈ RCin×Cout , the channel mixing
output Cmix(·) ∈ RH×W×Cout is expressed as follows:

Cmix(Tmix(X)) = (XTW Tmix)TWCmix (2)

While MLP-Mixer shows strong performance, it is lim-
ited by its quadratic computational complexity O(H2W 2)
(Eq. (1)) and requires fixed image sizes due to its
fully-connected token mixing layer. Alternatives like
gMLP [39] introduces a spatial gating unit for better inte-
gration, FNet [32] uses Fourier transforms for token mix-
ing, and HireMLP [18] mimics self-attention by swap-
ping elements across regions. Other developments in-
clude ResMLP [60], which replaces LayerNorm with train-
able matrices, s2MLP [76] utilizes shifting operations,
WaveMLP [58] treats pixels as complex numbers, ViP [23]
employs a permutator for spatial data, and MorphMLP [79]
gradually expands its receptive field.

Despite advancements, the MLPs mentioned earlier
haven’t significantly cut computational complexity, leav-
ing an opening for SparseMLP [57], ASMLP [36], Cy-
cleMLP [6], and ATM [69]. SparseMLP and ASMLP use
dense token mixing along the channel dimension, while
CycleMLP introduces Cycle FC for sparser, channel-wise

mixing with fixed offsets SH and SW . ATM [69], on the
other hand, uses trainable offsets for dynamic token mix-
ing. However, these models restrict token mixing to hor-
izontal and vertical axes, limiting their ability to integrate
feature information across different spatial dimensions.

To address these challenges, we present SpiralMLP
with its core component, Spiral FC, based on Channel FC
as shown in Fig. 1(a). Spiral FC offers sufficient receptive
field coverage while maintaining linear computational com-
plexity. The paper is organized as follows:

• We introduce the SpiralMLP architecture and its foun-
dational Spiral FC layer.

• We conduct experiments to demonstrate SpiralMLP’s
superiority over other state-of-the-art models.

• We perform ablation studies to explore optimal con-
figurations, followed by conclusions and discussions
on potential future improvements.
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2. Methodology

2.1. Spiral FC

We aim to design a compact token mixing layer that cap-
tures spatial information efficiently. Our review indicates
that traditional designs with criss-cross fully-connected lay-
ers fail to optimize the offset function, resulting in inad-
equate spatial coverage. To address these challenges, we
draw inspiration from natural spiral patterns and Attention-
Viz [75], noted for its spiral patterns in transformer attention
visualizations.

As a result, we introduce the Spiral Fully-Connected
Layer (Spiral FC), intended to replace standard Token
Mixing (Eq. (1)) in the MLP-Mixer architecture. Described
in Fig. 1(b), Spiral FC leverages a spiral trajectory across
the feature map X ∈ RH×W×Cin :

Spiral FCi,j,:(X) =

Cin∑
c=0

Xi+ϕi(c),j+ϕj(c),cW
spiral
c,: + bspiral

(3)
where, W spiral ∈ RCin×Cout , bspiral ∈ RCout are the train-

able matrix and bias, Spiral FCi,j,:(·) is the output at posi-
tion (i, j, :). Both ϕi(c) and ϕj(c) serve as the offset func-
tions along H,W axes respectively within X . Furthermore,
with the central axis of the spiral trajectory aligns along the
channel dimension, the offset functions ϕi(c) and ϕj(c) are
defined in a spiral manner:

ϕi(c) = A(c) cos (
c× 2π

T
) (4)

ϕj(c) = A(c) sin (
c× 2π

T
) (5)

where, T is the constant period, A(·) is the amplitude
that controls the width of the spiral trajectory, for concise-
ness, we formulate the amplitude function A(·) with the ba-
sic pattern 2:

A(c) =

{
⌊ 2Amax

Cin
c⌋, 0 ≤ c < Cin

2

⌊2Amax − 2Amax
Cin

c⌋, Cin
2 ≤ c ≤ Cin

(6)

where, Amax is the maximum amplitude. When Amax =
0, the Spiral FC is identical to Channel FC, denoted as Self-
Spiral FC. Conversely, when Amax ̸= 0, it is termed as
Cross-Spiral FC. Additionally, we employ a sliding win-
dow with a stepsize of 1. It not only makes the Spiral FC
agonistic to the input size, but also enables the flexible fea-
ture extraction through meticulously modifying the offset
functions (Eqs. (4) and (5)), thereby ensuring the Spiral FC
operate with linear computational complexity.

2 Sec. 4.1 provides additional cases with universal offset functions.

2.2. Spiral Mixing

At a specific position (i, j, :), Self-Spiral FC captures the
local information from itself, yielding an output denoted as
Xself

i,j,:. Conversely, Cross-Spiral FC selectively incorporates
spatial information from within the receptive field which
is determined by Amax, and the output is represented as
Xcross

i,j,: . Across the whole feature map, both the Self-Spiral
FC and Cross-Spiral FC operate in parallel, and their out-
puts, Xself ∈ RH×W×Cout and Xcross ∈ RH×W×Cout , merge
together in the subsequent Merge Head3:

a = σ(Wmerge × [
1

HW

HW∑
i=0

F(Xself +Xcross)i,:]) (7)

where, the reshaping function F : RH×W×Cout →
RH·W×Cout flattens the first two dimensions of the input,
creating a new projection along the HW dimension. Then,
the newly generated projection is averaged into R1×Cout .
Subsequently, Wmerge ∈ R2,1 maps this average from
R1×Cout to R2×Cout . Finally, the SoftMax function σ(·) de-
termines the weights a ∈ R2×Cout . Then at position (i, j, :),
the Merge Head generates the output:

Xspiral
i,j,: = a1,: ⊙Xself

i,j,: + a2,: ⊙Xcross
i,j,: (8)

where, ⊙ represents the element-wise multiplication.
The weights a is to modulate the contribution of the in-
puts. Furthermore, across the entire Xspiral, the weights a is
broadcast to influence all elements in both Xself and Xcross.

Collectively, Self-Spiral FC, Cross-Spiral FC and Merge
Head together constitute the Spiral Mixing, as depicted
in Fig. 2 (c). Spiral Mixing transforms the input feature
map X ∈ RH×W×Cin to Xspiral ∈ RH×W×Cout , functioning
similarly to vanilla Token Mixing.

2.3. Spiral Block

The output Xspiral of Spiral Mixing subsequently pro-
ceeds to the Channel Mixing structured as a MLP with a
GeLU [21] activation function ζ(·):

Xchn = ζ(Xspiral ×Wmlp1)×Wmlp2 (9)

where, Wmlp1 ∈ RCout×Cmlp and Wmlp2 ∈ RCmlp×Cout are
the linear layer weight matrices. Xchn is the output of Chan-
nel Mixing.

Spiral Mixing and Channel Mixing collectively compose
the Spiral Block, as depicted in Fig. 2 (b). To summarize,
Spiral Block accepts the feature map X ∈ RH×W×Cin as
the input, and initially processes it through a LayerNorm [1]
before the Spiral Mixing. Then it produces X ′ integrated
with a residual connection. Following this, X ′ is processed

3Detailed explanation is provided in Appendix.
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Model CIFAR-10(%) CIFAR-100(%) Params(M)

Spiral-B1 (ours) 95.6 78.6 14
CaiT [62] 94.9 76.9 9

MONet-T [7] 94.8 77.2 10.3
Cycle-B1 [6] 94.5 77.3 15

PiT [22] 94.2 75.0 7
Swin [42] 94.0 77.3 7

VGG19-bn [52] 94.0 72.2 39
ResNet50 [20] 93.7 77.4 24

ViT [14] 93.6 73.8 3
Swin-v2-T [41] 89.7 70.2 28

Table 1. Top-1 accuracy achieved through training from scratch
on both CIFAR-10 and CIFAR-100.

through another LayerNorm and then Channel Mixing, cou-
pled with another residual connection, resulting in the out-
put Y :

X ′ = Spiral Mixing(LN(X)) +X (10)
Y = Channel Mixing(LN(X ′)) +X ′ (11)

2.4. Overall Architecture and Model Zoo

We firstly construct our SpiralMLP based on the
PVT [68] framework, the models are scaled from
SpiralMLP-B1 to SpiralMLP-B5 by adjusting the hyper-
parameters. In each model, 4 stages are integrated, and the
spatial resolution is reduced while the channel dimension is
increased along with the process. Thereby it facilitates ef-
fective down-sampling of spatial resolution and optimizes
computational efficiency. A depiction of the PVT-style Spi-
ralMLP architecture can be found in Fig. 2 (a).

Furthermore, we have also developed variants modeled
after the Swin architecture. The models are categorized into
three types: SpiralMLP-T (Tiny), SpiralMLP-S (Small),
and SpiralMLP-B (Base). The structural details of both
PVT-style and Swin-style will be further provided in the ap-
pendix.

3. Experiments

We initially perform experiments with SpiralMLP-B1 on
CIFAR-10 [29] and CIFAR-100 [29], comparing it against
architectures of similar scale, including MLPs, CNNs, and
Transformers. The outcomes are presented in Sec. 3, all of
the models are trained from scratch.

We extend our experimentation to include image classi-
fication on ImageNet-1k [50], as well as object detection
and instance segmentation on the COCO [38]. Further-
more, we assess its semantic segmentation capabilities on
ADE20K [82].

3.1. Image Classification on ImageNet-1k

3.1.1 Settings

Our implementation primarily draws from DeiT [61]. The
training is 4 NVIDIA A100 GPUs for a total of 300 epochs.
The overall batch size is 512 and we employ the Top-1 ac-
curacy for image classification.

3.1.2 Comparison with MLPs

As shown in Sec. 3 , SpiralMLP-B achieves a Top-1 ac-
curacy of 84.0% on the ImageNet-1k, with the input resolu-
tion of 224×224. This performance notably exceeds that of
the best-performing models of ATMNet-L [69], HireMLP-
Large [18], WaveMLP-B [58], MorphMLP-L [79] and
CycleMLP-B [6], by +0.2%, +0.2%, +0.4%, +0.6%
and +0.6%, respectively. Furthermore, compared to the
S2MLP-wide [76], which has a similar model size with
71M parameters, SpiralMLP surpasses it by +4.0% with
only 68M parameters. In addition to the advantage on the
model size, SpiralMLP also demonstrates potential balance
between computational efficiency and accuracy. It is evi-
dent that among a cohort of models with accuracy exceed-
ing 83% (including ATMNet-L [69], HireMLP-Large [18],
WaveMLP-B [58], MorphMLP-B [79], MorphMLP-L [79],
CycleMLP-B [6], CycleMLP-B5 [6], sMLP-B [57] and
ASMLP-B [36], SpiralMLP-B5 stands out due to a lower
FLOPs of 11.0G and the highest accuracy.

3.1.3 Comparison with other SOTAs

SpiralMLP remains competitive over Transformers, CNNs
and State-Space Models, particularly in significantly reduc-
ing the number of parameters and the FLOPs as referenced
in Sec. 3 , , . For instance, when comparing SpiralMLP-
B5 to CNNs , it outperforms VanillaNet-13-1.5 [4] by
+1.5% and has the same performance to DeepMAD-
89M [51]. When comparing between State-Space Models

and SpiralMLP-B4 as well as SpiralMLP-S, SpiralMLP
demonstrates a notable performance improvement of ap-
proximate +4.0%. Furthermore, when comparing with the
Transformers , SpiralMLP-B5 has nearly 20M fewer pa-
rameters than Swin-B [42] while achieving +0.5% higher
in accuracy. Particularly the vision transformers continue
struggling with quadratic complexity. And in order to better
demonstrate, we visualize the heatmaps in Fig. 3 in compar-
ison with the performance of ASMLP [36] and Swin [42].

3.2. Object Detection and Instance Segmentation
on COCO

3.2.1 Settings

We conduct object detection and instance segmentation ex-
periments on COCO [38], wherein we demonstrate Spi-
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Model Top-1 Params FLOPs Model Top-1 Params FLOPs
Acc (%) (M) (G) Acc (%) (M) (G)

SpiralMLP-B5 (ours) 84.0 68 11.0 Swin-B [42] 83.5 88 15.4
SpiralMLP-B4 (ours) 83.8 46 8.2 gSwin-S [17] 83.0 19 4.2
SpiralMLP-B (ours) 83.6 67 11.0 SimA-XCiT-S12/16 [28] 82.1 26 4.8
SpiraMLP-S (ours) 83.3 56 9.1 SimA-CvT-13 [28] 81.4 20 4.5

ATMNet-L [69] 83.8 76 12.3 SimA-DeiT-S [28] 79.8 22 4.6
HireMLP-Large [18] 83.8 96 13.4 NOAH [33] 77.3 26 -

WaveMLP-B [58] 83.6 63 10.2 CRATE-L [77] 71.3 78 -
MorphMLP-L [79] 83.4 76 12.5 CRATE-B [77] 70.8 23 -
MorphMLP-B [79] 83.2 58 10.2 DeepMAD-89M [51] 84.0 89 15.4
CycleMLP-B [6] 83.4 88 15.2 DeepMAD-50M [51] 83.9 50 8.7
CycleMLP-B5 [6] 83.1 76 12.3 EfficientNet-B4 [56] 82.6 19 4.2

sMLP-B [57] 83.4 66 14.0 VanillaNet-13-1.5 [4] 82.5 128 26.5
ASMLP-B [36] 83.3 88 15.2 VanillaNet-13 [4] 82.1 59 11.9

gMLP [39] 81.6 45 31.6 HGRN-DeiT-Small [47] 80.1 24 -
ConvMixer-1536/20 [65] 81.4 52 - HGRN-DeiT-Tiny [47] 74.4 6 -
ConvMixer-1536/20 [65] 80.4 49 - ResNet-50 [20] 75.3 25 3.8

MONet-S [7] 81.3 33 6.8 Vim-S [83] 80.5 26 -
MONet-T [7] 77.0 10 2.8 Vim-Ti [83] 78.3 7 -

ResMLP-B24 [60] 81.0 116 23.0 M2-ViT-b [15] 79.5 45 -
S2MLP-deep [76] 80.7 51 10.5 ViT-b-Monarch [15] 78.9 33 -
S2MLP-wide [76] 80.0 71 14.0 HyenaViT-b [46] 78.5 88 -
ConvMLP-L [34] 80.2 43 9.9 RepMLP-Res50-g8/8 [13] 76.4 59 12.7
ConvMLP-M [34] 79.0 17 4.0 MLPMixer-B/16 [59] 76.4 59 12.7

RepMLP-Res50-g4/8 [13] 80.1 87 8.2 AFFNet [25] 79.8 6 1.5

Table 2. Top-1 accuracy on ImageNet-1k, with 224× 224 as the input resolution. In terms of background colors, , , , denote MLPs,
Transformers, CNNs and State-Space Models, respectively.

Figure 3. In contrast to ASMLP [36] and Swin [42], our SpiralMLP demonstrates superior object-focused attention. SpiralMLP exhibits
enhanced sensitivity, especially for elongated or curved objects. The backbones employed for heatmaps generation are SpiralMLP-B5,
ASMLP-B and Swin-B. The images are sourced from the ImageNet-1k [50] validation dataset, with corresponding labels.
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BackBone
RetinaNet 1×

Params (M) FLOPs (G) AP AP50 AP75 APS APM APL

ResNet101 [20] 56.7 492.2 38.5 57.8 41.2 21.4 42.6 51.1
ConvMLP-L [34] 52.9 - 40.2 59.3 43.3 23.5 43.8 53.3

ResNeXt101-64x4d [71] 95.5 - 41.0 60.9 44.0 23.9 45.2 54.0
CycleMLP-B5 [6] 85.9 360.3 42.7 63.3 45.3 24.1 46.3 57.4
ATMNet-L [69] 86.0 405.0 46.1 67.4 49.4 29.9 50.1 61.0
PVTv2-B5 [68] 91.7 - 46.2 67.1 49.5 28.5 50.0 62.5

SpiralMLP-B5 (ours) 79.8 325.0 46.5 67.7 49.8 30.3 50.8 62.8

BackBone
Mask R-CNN 1×

Params (M) FLOPs (G) AP AP50 AP75 APS APM APL

ResNet101 [20] 63.2 - 40.4 61.1 44.2 36.4 57.7 38.8
ConvMLP-L [34] 62.2 - 41.7 62.8 45.5 38.2 59.9 41.1

Swin-T [42] 47.8 267.0 42.7 65.2 46.8 39.3 62.2 42.2
ResNeXt101-64x4d [71] 101.9 - 42.8 63.8 47.3 38.4 60.6 41.3

VanillaNet-13 [4] 76.3 421.0 42.9 65.5 46.9 39.6 62.5 42.2
CycleMLP-B5 [6] 95.3 - 44.1 65.5 48.4 40.1 62.8 43.0

HireMLP-Large (1x) [18] 155.2 443.5 45.9 67.2 50.4 41.7 64.7 45.3
PVTv2-B5 [68] 101.6 334.5 47.4 68.6 51.9 42.5 65.7 46.0
ATMNet-L [69] 96.0 424.0 47.4 69.9 52.0 43.2 67.3 46.5

SpiralMLP-B (ours) 89.1 342.0 47.8 71.6 53.2 43.6 69.3 47.2

Table 3. Object detection performance with RetinaNet 1× and MASK R-CNN 1× on the COCO validation dataset, all of the backbones
are pretrained on the ImageNet-1k. The FLOPs are evaluated at a resolution of 1280×800. The entries are sorted in ascending order based
on AP performance.

Figure 4. Several examples of the object detection and instance
segmentation from COCO [38] test dataset.

ralMLP with PVT and Swin architectures, adopting two
distinct configurations. We leverage SpiralMLP-B5 and
Spiral-B with the pretrained weights on ImageNet-1k [50]
as the backbones, together with Xavier initialization [16]
applied to the newly added layers.

3.2.2 Results

Comparative results are detailed in Sec. 3.1.2, where we
employ either RetinaNet [37] or Mask R-CNN [19] as the
detection framework. When comparing under the Reti-
naNet 1×, SpiralMLP-B5 stands out in terms of the highest
AP. In particular, it achieves +0.3% higher than PVTv2-B5,
with -11.9M fewer parameters. In the context of Mask R-
CNN 1×, SpiralMLP-B outperforms ATMNet-L by +0.4%
in AP, alongside a reduction of 6.9M in model parameters.
Visual representations of the object detection and instance
segmentation are presented in Fig. 4.

Figure 5. Several examples of the semantic segmentation from
ADE20K [82] validation dataset.

3.3. Semantic Segmentation on ADE20K

3.3.1 Settings

We perform semantic segmentation on the ADE20K dataset
using UperNet [70] and Semantic FPN [26] as the frame-
works. For the backbones, we employ SpiralMLP-B5 and
SpiralMLP-B, with the weights pretrained on ImageNet-
1k. Additionally, the newly add layers are initialized with
Xavier [16].

3.3.2 Results

As depicted in Sec. 3.2.2, SpiralMLP still exhibits compa-
rable performance when integrated with Semantic FPN and
UperNet for semantic segmentation tasks. In the Seman-
tic FPN evaluations, SpiralMLP-B5 surpasses its closest
competitor, PVTv2-B5, by +0.2%, and exceeds the second-
best model, ATMNet-L, by +0.6%. When integrated with
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Model Semantic FPN Model UperNet
Params FLOPs mIoU Params FLOPs mIoU

ResNet101 [20] 47.5 10.1 38.8 DeepMAD-29M* [51] 27 56 46.9
ConvMLP-L [34] 46.3 - 40.0 HireMLP-Large [18] 127 1125 48.8

ResNeXt101-64x4d [71] 86.4 103.9 40.2 Focal-B [73] 126 - 49.0
CycleMLP-B5 [6] 79.4 86.0 45.5 ConvNeXt-T [43] 82 - 48.7
MorphMLP-B [79] 59.3 76.8 45.9 ConvNeXt-B [43] 122 - 49.1

Swin-B [42] 91.2 107.0 46.0 AS-MLP-B [36] 121 1166 49.5
Twins-L [8] 103.7 102.0 46.7 Swin-B [42] 121 1188 49.7

ConvNeXt-T [43] 27.8 93.2 46.7 CycleMLP-B [6] 121 1166 49.7
ATMNet-L [69] 79.8 86.6 48.1 ATMNet-L [69] 108 1106 50.1
PVTv2-B5 [68] 85.7 91.1 48.7 FocalNet-B(LRF) [72] 126 - 50.5

SpiralMLP-B5 (ours) 73.2 75.5 48.9 SpiralMLP-B (ours) 100 1061 50.7

Table 4. Semantic segmentation performance on ADE20K validation dataset with Semantic FPN as well as UperNet. When evaluated
with Semantic FPN, the FLOPs are measured at a resolution of 512 × 512. When evaluated with UperNet, the FLOPs are measured at a
resolution of 2048× 512. The entries are sorted in ascending order based on mIOU performance.

Figure 6. Visualization of varying k on spiral trajectory as
described by Eqs. (14) and (15), while maintaining a constant
Amax = 3.

Case 1 k
Amax = 3 1 2 3 4 5
Acc(%) 83.9 84.0 83.8 83.6 83.3
Case 2 Amax

k = 2 2 3 4 5 6
Acc(%) 83.8 84.0 83.7 83.4 82.9

Table 5. Experiments on k and Amax. After reaching their respec-
tive peaks, both trends show a rapid decline.

UperNet, SpiralMLP-B still emerges as the top-performing
model, outperforming FocalNet-B(LRF) [72] by +0.2% and
ATMNet-L [69] by +0.6%. Visual representations of the se-
mantic segmentation are presented in Fig. 5.

4. Ablation
4.1. Update the Offset Functions

The offset functions ϕi(·) and ϕj(·) (Eqs. (4) and (5)) are
originally designed into a two-partition pattern, and we fur-
ther expand them to a more generic multi-partition pattern.

To incorporate this update, we introduce k as the number of
partitions along the channel dimension. The partitions can
be defined as follows:

P =

{
0,

Cin

k
,
2 ∗ Cin

k
, . . . , Cin

}
(12)

By introducing k and considering individual partition,
we can create multiple spiral structures that capture the
characteristics of each partition along the channel dimen-
sion. Furthermore, we define the length of the partition as
Cw = Cin

k , which is the distance between two adjacent end-
points, then the amplitude function Eq. (6) is updated to:

A∗(c) =


⌊
2Amax
Cw

(c− iCw)
⌋
, 0 ≤ c < iCw

2⌊
(2Amax − 2Amax

Cw
)(c− iCw)

⌋
, iCw

2 ≤ c ≤ iCw

(13)

where, i ∈ [0, 1 . . . , k − 1] represents the ith partition
in partitions P (Eq. (12)), and c in Eq. (6) is replaced by
z within the ith partition. Accordingly, Eqs. (4) and (5) are
updated as:

ϕ∗
i (c) = A∗(c) cos(

c ∗ 2π
T

) (14)

ϕ∗
j (c) = A∗(c) sin(

c ∗ 2π
T

) (15)

We also provide the visualizations of Eqs. (14) and (15),
as depicted in Fig. 6, showcasing variations with different
numbers of partitions k.

4.2. Ablation Study on k

We updated the offset functions ϕ∗
i (·) and ϕ∗

j (·)
(Eqs. (14) and (15)) to analyze how varying the number of
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SpiralFC PATM ATMLayer CycleFC RandomFC(ours)
Acc (%) 95.6 95.3 95.2 94.7 94.5

Params (M) 14 17 15 15 14

Table 6. The accuracy on CIFAR-10, each Fully-Connected Layer is configured into the SpiralMLP-B1 architecture and is trained from
scratch.

partitions k affects Top-1 Accuracy on ImageNet-1k. Re-
sults, shown in Tab. 5 with a constant maximum amplitude
Amax of 3, indicate that accuracy initially rises, peaks at
k = 2, then decreases.

This trend suggests that different k values alter the focus
on the peripheral regions of the receptive field, where k = 2
results in denser clustering of feature points along the edges
compared to k = 4, as seen in Fig. 6. Lower k values cause
a dense, narrow concentration of features, while higher val-
ues disperse them too widely, potentially reducing model
effectiveness.

4.3. Ablation Study on Amax

We investigate several cases when the maximum ampli-
tude Amax takes various values. From the results shown
in Tab. 5, we observe an initial improvement in the Top-
1 Accuracy on ImageNet-1k. However, a decline becomes
evident once the Amax exceeds 3.

Similarly, the underlying reason is that, as Amax in-
creases, the receptive field’s extent expands. However, due
to the characteristics of Spiral FC, the number of selected
feature points remains constant at Cin. Consequently, a
larger Amax results in a more sparse distribution of feature
points. If Amax is too small, the Spiral FC may fail to en-
compass a sufficient number of neighboring features. On
the other hand, if Amax is excessively large, the Spiral FC
might not effectively capture detailed information within
the receptive field.

Although the discrete experimental design does not guar-
antee the discovery of optimal hyperparameters, it indeed
facilitates the insight of underlying trends and tendencies.

4.4. Ablation Study on Fully-Connected Layers

To illustrate the effectiveness of Spiral FC, we perform
experiments on the CIFAR-10 [29] using SpiralMLP-B14 as
the base architecture. In these experiments, the Spiral FC is
substituted with various alternatives, including PATM from
WaveMLP [58], ATMLayer from ATM [69], CycleFC
from CycleMLP [6] and a RandomFC. The Random FC is
architecturally identical to Spiral FC, except that the offset
function is generated randomly.

4The configuration of SpiralMLP-B1 is demonstrated in Appendix.

Model Params(M) Latency(ms)

SpiralMLP-B4 46 47.00
SpiralMLP-B5 68 39.22

CycleMLP-B4 [6] 52 57.94
CycleMLP-B5 76 48.38

ATM-B [69] 52 64.77
ATM-L 76 54.09

PVTv2-B4 [68] 63 43.96
PVTv2-B5 82 55.71

Table 7. Inference latency measured in milliseconds on one A100.
SpiralMLP outperforms other models of similar size in terms of
speed. A single image of with 2242 resolution serves as the input.

4.5. Latency Analysis

To highlight the speed efficiency of Spiral FC, we as-
sess its performance across various input resolutions com-
pared to other proposed architectures. We adopt the format
from EfficientFormer [35] and detail the latency analysis
in Sec. 4.5. We present SpiralMLP-B4 and SpiralMLP-B5
with several other architectures closely related to our study
and specifically at the 2242 resolution. For a comprehensive
latency comparison across different scenarios, please refer
to the Appendix.

5. Conclusion and Future Work

In this paper, we present Spiral FC, part of Spiral Mixing
designed to replace traditional Token Mixing. We introduce
SpiralMLP, a new computer vision framework compatible
with PVT-style and Swin-style architectures. SpiralMLP
performs comparably to leading models while using fewer
parameters and less computational power.

We believe we are the first to use carefully designed
offset functions to capture comprehensive feature infor-
mation, setting us apart from models like CyelcMLP [6],
ASMLP [36] and ATM [69], which focus on optimizing
cross-like layers. Given its strong performance, further re-
search into optimizing SpiralMLP’s hyperparameters could
lead to even more efficient information capture.
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