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Abstract

The Bird-Eye-View (BEV) is one of the most widely-used
scene representations for visual perception in Autonomous
Vehicles (AVs) due to its well suited compatibility to down-
stream tasks. For the enhanced safety of AVs, modeling
perception uncertainty in BEV is crucial. Recent diffusion-
based methods offer a promising approach to uncertainty
modeling for visual perception but fail to effectively de-
tect small objects in the large coverage of the BEV. Such
degradation of performance can be attributed primarily to
the specific network architectures and the matching strategy
used when training. Here, we address this problem by com-
bining the diffusion paradigm with current state-of-the-art
3D object detectors in BEV. We analyze the unique chal-
lenges of this approach, which do not exist with determinis-
tic detectors, and present a simple technique based on ob-
ject query interpolation that allows the model to learn po-
sitional dependencies even in the presence of the diffusion
noise. Based on this, we present a diffusion-based DETR
model for object detection that bears similarities to parti-
cle methods. Abundant experimentation on the NuScenes
dataset shows equal or better performance for our gener-
ative approach, compared to deterministic state-of-the-art
methods. The source code is at https://github.com/
insait-institute/ParticleDETR.

1. Introduction
3D Object detection - the task of localizing and classify-

ing objects in a real-world 3D coordinate frame - is one of
the most important tasks in the pipeline of an autonomous
vehicle. It is critical to safe self-driving since it informs
the subsequent prediction, planning, and actuation modules
and, evidently, one needs to recognize an obstacle in order
to avoid it. Estimating the object locations directly from
the camera views [2, 3, 43] faces difficulties related to per-
spective warping and size-distance ambiguities. Instead, the
bird-eye-view (BEV) has established itself as a useful repre-
sentation to facilitate perception because it is ego-centered,
metrically-accurate, orthographic - thus avoiding perspec-
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Figure 1. Performance improvement. Our method outperforms
the baseline stochastic model DiffusionDet [9] and is compara-
ble in performance to deterministic models like BEVFormer [34].
Here, the results of stochastic models are shown as circles and
those of deterministic models as triangles. The size of the circles
is proportional to the number of search tokens used.

tive distortion of shapes, and suffers less from occlusions
and object deformations.

Recently, it has been shown that diffusion models can be
successfully used for 2D object detection [9] - a completely
different setup than the generative tasks like text-to-image
where they have been dominating [11, 25, 53, 54, 56]. In
principle, one should then be able to apply diffusion-based
object detection also in the 2D BEV and predict 3D loca-
tions, reaping all the diffusion benefits like incremental re-
finement and the ability to trade-off compute and accuracy?

We find that naively applying diffusion in BEV yields an
algorithm with insufficient performance. We attribute this
to the challenging problem setting and the fact that the net-
work architecture is not tuned for the particular geometric
aspects of the BEV:

1. Setting: Recent works [33, 34, 48, 52] represent the
BEV as a set of spatially-correlated latent features cor-
responding to a (50 × 50) or even (100 × 100) me-
ter grid around the ego-vehicle. The detectable objects
such as cars and pedestrians are naturally very small
in relation to the size of the whole BEV map, mak-
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ing detection more challenging compared to on com-
mon datasets used to benchmark 2D detection algo-
rithms [16, 17, 37].

2. Architecture: DiffusionDet [9], the representative al-
gorithm, uses an ROI-based architecture [21], aggre-
gating BEV features only within the proposed boxes.
This makes object features local, preventing extensive
search on the BEV. Local features work well in settings
where the target boxes are larger and more dense, but
we believe in the BEV one needs a more specialized
architecture to better handle object sparsity.

Problem statement and approach. Since object detec-
tion is ultimately a search problem and smaller objects are
harder to locate, some of the inherent challenges when using
diffusion to detect objects can be exacerbated in the BEV.
Thus, the research question we try to answer is: How should
the diffusion approach and network architecture be adjusted
so as to ease the search process in the BEV? To that end, our
insights are that first, to search more effectively, one should
pool information across the search tokens used (boxes, an-
chors, queries), and second, one should take measures to
prevent the diffusion noise from overwhelming any posi-
tional dependencies that exist in the data.

To pool information across the search tokens we need
to have them communicate with each other. This can be
achieved using self-attention which in turn points to a trans-
former method like DETR [5,14,32,40,69,73]. These mod-
els utilize fixed object queries, which they learn to regress
into the predicted boxes, as well as cross-attention, used
to look up relevant features from the image independently
across individual queries. The combined architecture can
utilize global features, which becomes increasingly more
useful as the objects’ sizes decrease.

Regarding positional dependencies, we show how the
diffusion noise affects the matchings between predicted and
target boxes. In essence, most approaches like Deformable-
DETR [73] start with fixed (x, y) reference points, look up
the image features in those locations, and output corrections
which are subsequently applied to them. But when diffu-
sion is applied on the initial reference points, they become
no longer associated with the object queries, preventing the
model from using positional information. To address this
challenge we introduce object query interpolation as a sim-
ple way to learn positional relations for DETR-like models
even in the presence of noise over the references.

The resulting generative model can refine its predictions,
trade-off accuracy and compute, operate with a different
number of search tokens at train and test time, and yields
results comparable or better than those of battle-tested de-
terministic models. Furthermore, it has similarities to par-
ticle methods from which ideas like particle pruning and
refinement can be borrowed.

DenoiseDiffuse
Figure 2. Diffusion in BEV. Our approach diffuses the ground-
truth object centers in BEV and learns to denoise them. At test
time, we start from random references corresponding to the box
centers and progressively refine them to their true locations.

Contributions. Our contributions are the following:
1. In Section 3.3 we provide a novel view on the assign-

ment instability problem that is present in most DETR-
like models [5, 73] by showcasing how the stochastic-
ity of the diffusion process affects the assignments.

2. In Section 3.4 we showcase our module called query
interpolation which allows the model to learn posi-
tional information in the presence of diffusion noise.

3. We integrate the proposed module into a deformable-
DETR [73] variant, called Particle-DETR, which uses
diffusion to denoise box centers to their true positions.
We further provide a detailed analysis of the perfor-
mance of the model on the realistic and large-scale
NuScenes dataset [4].

2. Related Work
Diffusion-based object detection. Utilizing a diffusion

model for detection started with DiffusionDet [8], where
the model learns to denoise axis-aligned 2D boxes in the
images. First, a backbone network [24, 41], extracts multi-
scale image features. At train time, random noise is added
to the ground-truth (GT) boxes according to a diffusion
schedule, while at test time random boxes are sampled from
a Gaussian distribution. Subsequently, a decoder with a
region-of-interest-based (ROI) architecture [21, 23] aggre-
gates the features inside each box and produces corrections
to the box parameters. The output boxes are then matched
to the GT boxes for training.

Other applications. Inspired by DiffusionDet, the usage
of diffusion models for other prediction tasks has increased.
It has been applied to the denoising of BEV features [75],
to prediction of future discrete BEV tokens [70], to action
segmentation in videos [38], to weakly supervised object
localisation (WSOL) [72], to human motion prediction [1]
and pose estimation [18], to domain adaptive semantic seg-
mentation [46], to video anomaly detection [57], to camou-
flaged object detection [9], to text-video retrieval [30], and
to open-world object detection [64].

The DETR family of models. Current object detection
in BEV is dominated by DETR-variants [5, 7, 14, 32, 40, 68,

2726



Many-to-one
set prediction loss

BEV
encoder

BEV features

Query interpolation

SA

Detector

as 

Object queries

as 

Random reference points 

GT boxes

Predicted boxes

Ground truth boxes and centers

to object
centers only

Predicted boxes in BEV

Fixed object queries

CA

Figure 3. Diffusion in BEV. A feature extractor processes the images from the camera feed at the current timestamp. An encoder learns
to project these features from the perspective of the car to the top-down orthographic bird-eye-view. At training time we add noise to
the ground-truth object centers according to a diffusion schedule, while at test time we directly sample the references. Using our query
interpolation module each reference position is associated with a spatial feature. Using these features, the decoder learns to denoise the
reference points to their true locations. A set prediction loss is adopted for training.

69]. They utilize a transformer sequence where a fixed num-
ber of object queries look up the relevant image features
using cross-attention and are transformed into the output
boxes. A set-matching step is used to assign predictions to
targets. This matching has been described as unstable, due
to how one prediction can be matched to different targets
across the training iterations on the same image. Various
approaches mitigate this issue by introducing query denois-
ing [32], where some queries are matched to their target by
index, and contrastive denoising [69] where both positive
and negative examples are used in each query group.

BEV perception. Transforming the camera features to
BEV is an active area of research. It has been done us-
ing both traditional approaches where 3D voxels are pro-
jected onto the image plane and the image features within
the projection are average-pooled [52], or where a categor-
ical depth distribution is estimated for each image pixel,
after which the features are ”lifted” in 3D according to
their depths [48, 50]. Implicit projection, where depth is
not estimated explicitly, can be achieved by utilizing self-
attention to look up the past BEV and cross-attention to
look up the current image features [28, 29, 34, 49, 67, 71].
This is the approach we rely on in this work. Once in BEV,
models may perform joint detection and trajectory predic-
tion [15, 26, 27, 42, 65, 71], BEV segmentation [47], track-
ing [22], or agent interaction analysis [6, 12].

3. Approach
In this section we motivate our method by considering

the unique challenge arising when combining diffusion with

perception in BEV, cf. Subsection 3.2, and how our method
alleviates this challenge, cf. Subsection 3.4.

3.1. Preliminaries

Diffusion models. The goal of diffusion models is to
learn to sample from the distribution over a sample space.
To that end, as part of the training procedure, a stochas-
tic process adds noise to each input sample according to a
predefined schedule. At training time, the model learns to
predict the added noise, while at test time one generates ini-
tial noise which the model iteratively denoises until a data
point from the training distribution is formed.

The forward process, which adds noise to the sample at
training time, is defined as

q(ztd |z0) = N
(
ztd |

√
ᾱtdz0, (1− ᾱtd)I

)
, (1)

where td is the time-index of the diffusion process (differ-
ent from the temporal frame index tf in the context of the
BEV sequences), ztd is the noisy sample at that time, z0 is
the noise-less ground-truth sample, and ᾱtd =

∏td
s=0 αs =∏td

s=0(1 − βs) is the corresponding parameter from the
schedule controlling the variance of the noise.

The network output fθ(ztd , td) is conditioned on the
noisy sample ztd , the diffusion time td and its parameters
θ are optimized to minimize the loss

L =
1

2
∥fθ(ztd , td)− z0∥2. (2)

Since this corresponds to a denoising process, at test time
we sample random noise zT and progressively refine it by
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feeding the previous output as the subsequent input to the
network, i.e. z0 = fθ(fθ(...(fθ(fθ(zT , T ), T − 1))...), 0).
Various improvements exist to speed-up this process at in-
ference time [10, 44, 45, 56].

Since the noise added to each data sample is independent
across all sample elements, we can use this process to gen-
erate different objects like images [53], bounding boxes [8],
camera poses [59]. Here, the diffusion is applied over box
centers (cx, cy) in BEV, to which we refer as particles.

DETR models. DETR models for object detection [5]
rely on a transformer-based architecture. A feature extrac-
tor, usually convolutional, extracts image features which are
then passed to a transformer encoder where each feature
patch can attend to other feature patches. Subsequently, a
transformer decoder, relying on a fixed number N of la-
tent vectors {q1, ...,qN} called object queries, looks up the
features from the encoder and outputs bounding boxes. A
one-to-one matching step using the Hungarian algorithm is
required to assign predictions to box targets.

The object queries are learned using gradient descent and
are fixed at test time. Since positional encodings for the ob-
ject queries are also used, the model can learn information
related to the order of the object queries.

An important modification to the this setup is given by
DeformableDETR [73] where {q1, ...,qN} are not only or-
dered between them, but each object query qi is tied to a
particular 2D position ri, called a reference point within the
image coordinate frame. Since both the object queries and
reference points are learned, the model can focus not only
on the content of the pixels, but also on the query positions.

Fixing the reference points {r1, ..., rN} makes training
easier because query qi will always have the same relative
location compared to query qj , j ̸= i. In that case, the
cross-attentions in the decoder learn only how to attend to
the surrounding features which makes learning more stable.
This fixed nature is crucial in relation to the stochasticity we
will introduce by the diffusion process.

3.2. Adding diffusion to BEV

Our setup is shown in Figure 3. A feature extractor [24]
along with a feature neck [35] processes all camera images
from the current timestep tf , outputting multi-scale feature
maps for each camera view. A BEV encoder, in practice
BEVFormer [34], projects these features around the ego-
vehicle. In BEV, we add noise to the ground-truth object
centers and concatenate with additional random locations.
These are passed as reference points to the decoder which,
similar to DeformableDETR [73], refines some of them into
the GT positions.

At test time, we sample initial random box centers and
run them through the decoder. Since the model is trained
to work with variable reference points, it can plug in the
predicted box centers as input reference points in the next

BEV Features

Target 1

Noisy reference
point 2

Prediction 1

Scenario 1

Target 2

BEV Features

Target 1

Noisy
reference

point 2

Scenario 2

Noisy
reference

point 1

Prediction 1

Target 2Prediction 2

Noisy reference
point 1

Figure 4. Label ambiguity. A case where the random reference
points may produce different targets, depending on the matching.
The top row shows ambiguity when we match predictions to GTs
by total distance (linear sum assignment). The columns show how
different samplings of the blue points may push the same feature
location in BEV to different targets, thus confusing the model. In
all cases the matching is done between the predictions and the tar-
gets. The bottom row shows how the training loss depends on the
number of references for a simple toy task (cf. suppl. materials).

denoising step. This allows iterative refinement of our
predictions - something that deterministic models like De-
formableDETR [73] cannot do because they rely on object
queries which are fixed to particular positions.

We follow DETR [5] in applying auxiliary losses to each
decoder layer, instead of just the final one. We refer to each
decoder layer as a stage and to each pass through all decoder
layers as a single DDIM [56] step. By having multiple such
steps we can trade-off accuracy and compute. Each DDIM
step requires evaluating only the decoder.

3.3. Matching

The matching cost used in object detectors from the
DETR [5] family typically considers both the predicted box
dimensions and the predicted class logits. As a result, one
cannot say that predictions spatially closer to the GT box
will always be matched and those farther away will not.
Yet, deterministic detectors do converge because even if the
matching changes across iterations, the static nature of the
inputs – object queries starting from fixed positions – allows
one to learn the spatial relationships in the image.

Label ambiguity. In the diffusion case there exist specific
situations where learning is, in fact, impossible due to the
same BEV feature having different targets, depending on
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Figure 5. Query interpolation. Our method learns a number of
regularly-placed object queries, shown in green, which are fixed at
test time. This allows the content of each object query to depend
on its position in BEV. To accommodate the stochasticity required
by the diffusion process we interpolate the object queries at the
noisy locations, shown in red. This ensures that if we sample the
same reference point many times, we will always obtain the same
object query at that location.

the noisy sampling of the reference points. Figure 4 illus-
trates these conceptually.

Suppose we use the Hungarian algorithm for matching
and we sample the initial reference points as the blue points
on the top-left plot in Figure 4. Then the matching will be
as shown by the arrows. However, if one of the points is
sampled differently, as in the top-right plot, we may end
up matching them differently. In reality, the BEV features
corresponding to the (x, y) position where noisy reference
point 1 is, will be pushed by the optimization in the first
case toward target 1 and in the second case toward target 2.
This creates label ambiguity arising specifically due to the
random sampling of the starting locations.

Using more object queries than GT boxes reduces the
possibility of this ambiguity to hinder the training. This is
because having more predictions and matching them with
any strategy that takes the distance into account (unlike e.g.
matching by index) will make the model produce smaller
refinements to the starting reference points. Thus, a high
amount of object queries is needed both to detect many ob-
jects, but also to help detect them accurately. Explanations
on a toy example can be found in the suppl. materials.

3.4. Object query interpolation

Our diffusion is applied on the reference points ri. As
a first approach, we consider a DeformableDETR [73] ar-
chitecture with N learnable object query vectors which are
assigned to their references by index. Thus, object query
qi may be placed in different (x, y) locations depending on
the sampling. While this approach works fairly well in prac-
tice, it clearly prohibits the model from learning positional
information for query qi simply because its position keeps
changing during each training iteration.

Instead, we propose to interpolate the learned queries at

the random sampled reference locations, as shown in Fig-
ure 5. We learn a grid of regularly-placed object queries,
which we bilinearly interpolate at the reference points. This
ensures that sampling the same location r = (x, y) will al-
ways yield the same object query q(x,y). This also decou-
ples the number of object queries at training and test time,
since at training time one needs to learn N queries, but at
test time they can be interpolated at Ntest different locations.

In principle, one can also directly interpolate the BEV at
the sampled locations, avoiding the use of learned object
queries altogether. Our preliminary experiments showed
that learning becomes prohibitively difficult in this case,
owing to the diversity and nature of the BEV features.
Training is considerably easier if the model looks up the
BEV features using cross-attention instead of starting from
the BEV features as object queries.

3.5. Additional method components

Loss function. The stochastic nature of the algorithm
makes training very slow and difficult if we match predic-
tions and ground truths in a one-to-one manner. To alleviate
this, we employ many-to-one matching where many predic-
tions are matched to each GT box. This speeds up training
tremendously at the cost of having to post-process the pre-
dictions using non-maximum suppression (NMS).

Our loss function is given by

L = λclsLcls + λregLreg, (3)

where Lcls is the focal loss between predicted and target
class probabilities [36] and Lreg is the ℓ1 loss between the
predicted and GT box parameters. We do not employ a gen-
eralized IoU loss [51]. The matching cost is the same as the
loss function. For detection, the box parameters include the
box center and dimensions, orientation, and velocity in the
bird-eye-view plane:

b = (cx, cy, cz, w, h, l, sin θ, cos θ, vx, vy). (4)

Particle nature. The many-to-one matching is crucial
for our approach because it allows the model to learn gra-
dient fields, or basins of attraction around each GT box.
This aspect, combined with the random reference points,
allows us to look at this architecture as a particle DETR
model where multiple particles, the references r1, ..., rN ,
can move freely and are attracted around the GT boxes.
Through the self-attention layers, they can communicate
similar to how the best location is globally shared in a par-
ticle swarm optimization [31]. The DDIM denoising [56]
steps then provide opportunities to refine, renew, or prune
the particles, based on their confidence. Additionally, the
number of particles which end up on top of a target object
can provide a rudimentary measure about the uncertainty of
our perceptions at that BEV location. We cannot refer to the
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Setting mAP ↑ NDS ↑ mATE ↓ mASE ↓ mAOE ↓ mAVE ↓ mAAE ↓

1. DiffusionDet [8] - ROI arch., box tokens 0.3846 0.4580 0.7420 0.3382 0.4475 0.5935 0.2222
2. 1 + positional encodings 0.3852 0.4717 0.7357 0.2777 0.5040 0.5008 0.1911
3. DETR arch., random references 0.3929 0.4975 0.7172 0.2707 0.3835 0.4224 0.1963
4. 3 + simple n-to-1 matching & NMS 0.4001 0.5203 0.6913 0.2710 0.3415 0.3540 0.1938
5. 3 + simOTA matching & NMS 0.3817 0.5138 0.6444 0.2641 0.3208 0.3422 0.1989
6. 4 + radial suppression 0.4082 0.5203 0.6456 0.2704 0.3528 0.3739 0.1956
7. 4 + training with added fixed queries 0.4077 0.5215 0.6453 0.2696 0.3405 0.3747 0.1935
8. 7 + radial suppression 0.4088 0.5222 0.6437 0.2696 0.3395 0.3768 0.1922
FCOS3D [62] 0.3430 0.4150 0.7250 0.2630 0.4220 1.292 0.153
PGD [61] 0.3690 0.4280 0.6830 0.2600 0.4390 1.2680 0.1850
DETR3D [63] 0.3460 0.4250 0.7730 0.2680 0.3830 0.8420 0.2160
BEVFormer [34], permuted queries 0.3976 0.5073 0.6809 0.2744 0.3722 0.3908 0.1962
BEVFormer, random reference points 0.2997 0.4474 0.735 0.2765 0.3974 0.4179 0.1975
BEVFormer, deterministic 0.4154 0.5168 0.6715 0.2738 0.3691 0.3967 0.1981
BEVFormer-Enh (ours) 0.4189 0.5298 0.6319 0.2684 0.3283 0.3737 0.1945

Table 1. Model progression and results on the NuScenes val set. We showcase how the model components and different architectures
affect performance. Models numbered 1-8 are all evaluated with 3 DDIM steps and 900 queries.

search tokens of DETR models [5, 73] as dynamic because
they are fixed and do not allow for sequential refinement.

4. Experiments
NuScenes dataset. We evaluate our approach on the
large-scale NuScenes dataset [4], comprising almost 1.4
million annotated 3D bounding boxes, across 1000 scenes.
There are 10 semantic classes for evaluation. The main met-
rics of interest are the Mean Average Precision (mAP) and,
more importantly, the NuScenes Detection Score (NDS).

For the mAP, detections are calculated by greedily as-
signing predictions to targets only based on the distance be-
tween the predicted and GT centers. There are four distance
thresholds - 0.5, 1, 2, and 4 meters. The mAP is calcu-
lated as the average precision over 100 recall percentiles
and is further averaged over all 10 detectable classes and
over these 4 distance thresholds.

Once the predicted boxes are assigned to the targets, one
can calculate various true positive metrics – translation error
(mATE), scale error (mASE), box orientation (mAOE), ve-
locity (mAVE), attribute error (mAAE) – over the matched
pairs. These are weighted together with the mAP to form
the NDS metric, which is more realistic in terms of real-life
driving performance than the mAP [55].

4.1. Comparison with baselines

We compare against the following relevant models:
1. DiffusionDet [8], which we modify minimally and uti-

lize directly in BEV as our main baseline,
2. DeformableDETR [73], as used in BEVFormer [34], a

strong deterministic detector used in BEV.

Baseline. Table 1 shows our main results. We rely on
BEVFormer’s encoder to project the images into the top-

down view. Since the original DiffusionDet works only on
axis-aligned boxes, we modify it by adopting rotated ROI
pooling similar to [66]. The architecture follows a six stage
RCNN [21] decoder where each stage takes the BEV fea-
tures and a number of rotated boxes in BEV, parameterized
as (cx, cy, w, h, θ). The BEV features falling into the ro-
tated box are aggregated and deformable convolutions [13]
are applied to model instance interactions between differ-
ent boxes. Each stage outputs corrections which are applied
to the current boxes to produce the subsequent-stage boxes.
Overall, applying DiffusionDet directly in BEV yields good
performance compared to reference models [61–63] but in-
ferior compared to the deterministic BEVFormer.

Positional encodings. It is common to encounter cer-
tain classes more often in some positions relative to the ego-
vehicle, e.g. pedestrians appear in front of the car less often
than at the side of the car. To force the ROI-based architec-
ture to consider the absolute locations of the boxes in BEV,
we use sinusoidal positional encodings [58], which we con-
catenate to the aggregated BEV features for each box token.

Global features to address sparsity. ROI-based archi-
tectures emphasize the local features inside each box. Such
a prior may be sufficient on some datasets [37], but for
smaller objects more global features are needed. This mo-
tivates us to consider a DETR-based architecture where in-
stead of boxes and ROI-pooling we have object queries and
attention. Now, each stage first applies self-attention over
the object queries, thereby considering their relative posi-
tion and content, and then applies cross-attention over the
BEV, which has potentially unlimited view and can aggre-
gate more global BEV features for each token.

Many-to-one matching. With random reference points
r1, ..., rN , the supervisory signal when matching in a one-
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Figure 6. Sparsification plot. Compared to BEVFormer, our
Particle-DETR makes more confident predictions early on which
yields higher precision when detecting.

to-one fashion is fairly weak. Thus, we experimented with
two many-to-one matching strategies. The first we call sim-
ple N -to-1 because it simply repeats the GT boxes a number
of times, stacking them on top of each other, and then ap-
plies the linear sum assignment solver for matching. For
the second strategy we use the SimOTA [20] approximation
to optimal transport assignment [19], which matches a vari-
able number of predictions to each target.

Detection accuracy. The results show that our diffusion-
based Particle-DETR achieves good performance and no-
ticeably outperforms the baseline DiffusionDet [9] on both
mAP and NDS. Even more, its performance is compara-
ble to that of deterministic approaches like BEVFormer
[34]. Our generative approach achieves higher NDS, show-
ing that once a detection is established, the predicted box
dimensions, orientation, and velocity are more accurate.
Additionally, our Particle-DETR is better calibrated com-
pared to BEVFormer since more confident predictions have
a higher cumulative detection rate, as shown in Figure 6.

Enhancement with static references. The random ref-
erences allow the model to learn basins of attraction around
each GT center. However, nothing prevents us from utiliz-
ing fixed references as well, which yield higher precision.
Thus, we further experiment with a setup in which we train
with two sets of references - one random, coming from the
diffusion process, and one static. In turn, the two reference
sets result in two sets of queries - one where the queries
are interpolated at the random locations (cf. Subsection
3.4), and one where the queries are learned and fixed, as
in [34, 73]. The joint training captures any synergies be-
tween the random and fixed queries, improving the perfor-
mance of both. At test time, to keep the number of queries
comparable to previous models, we can use only one query
set. Using the diffusion queries we obtain our final Particle-
DETR model. Using the static ones we obtain an enhanced
BEVFormer which we call BEVFormer-Enh.

4.2. Implementation details

The implementation of our Particle-DETR is straightfor-
ward following BEVFormer [34]. We train the model for
the same number of iterations as BEVFormer and the num-
ber of parameters is similar. The training details with pseu-
docodes for the train-test behaviour can be found in the sup-
plementary materials.

Gradient detachment. To further facilitate training, we
equip each decoder layer with look forward twice updates
[69], where the reference points for each decoder layer are
not detached from the computation graph when computing
the next-layer reference points during the forward pass.

Filtering of predictions. At training time, the many-to-
one matching helps to learn the basins of attraction around
each GT center. However, at test time this induces be-
haviour where multiple predictions stack on top of each
other. Thus, to avoid additional false positives, we employ
NMS and also utilize a small score threshold which filters
any predictions with confidence below it.

Radial suppression. We found that very small objects
like traffic cones do not overlap and are missed by NMS.
For that reason, we introduced radial suppression to further
filter out the boxes. In essence, we first order the predictions
by decreasing confidence. Then we replace the most con-
fident ones with weighted averages of their close-by boxes
which, in turn, are filtered:

bi =

∑
k bkπk∑
k πk

,∀k :
√

(cx,i − cx,k)2 + (cy,i − cy,k)2 < r.

(5)
Here cx,k is the x-coordinate of the center of the k-th

box, and πk is the confidence for that box. We implement
radial suppression independently for each semantic class.

4.3. Additional properties

Flexibility. The architecture of our Particle-DETR al-
lows us to train it with one number of queries but evaluate
with a different number. Additionally, the number of DDIM
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Figure 7. Effect of number of references on NDS. Holding the
number of DDIM steps fixed, NDS increases as the number of
random references increases.
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steps [56] allows us to further trade-off accuracy and com-
pute. Figure 7 shows that both increasing the number of
DDIM steps and the number of particles used improves per-
formance. With 900 references it only takes a single DDIM
step to outperform BEVFormer on NDS.

Stochastic nature of results. Since we rely on randomly
sampled initial reference points, the outputs of our method
are stochastic. Table 2 shows statistics over 10 test runs.
Performance is very consistent across them.

4.4. Qualitative study

Here we perform a qualitative comparison between our
predictions and those of BEVFormer [34]. In general, the
higher NDS which results from the diffusion process makes
our detections more precise in terms of location, size, and
orientation, which can be particularly beneficial for very
small objects (e.g. traffic cones) near the car. On some
scenes our method recognizes even partially-occluded ob-
jects earlier and more confidently, as shown in Figure 8.

It is common for models to struggle with accurate es-
timation of the dimensions of large objects like buses and
trucks. This is because they obscure the camera’s field of
view considerably, making it hard to estimate where the ob-
ject ends. We notice that in some scenes our method im-
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Figure 8. Sample predictions in BEV. Green boxes are ground-
truths, red are predicted by our Particle-DETR, and blue is pre-
dicted by BEVFormer, compared to which we detect earlier in the
frames and more confidently, even for less-common objects.

Metric BEVFormer Ours (stoc.) Ours

NDS ↑ 0.5168 0.5271 (0.0002) 0.5287
mAP ↑ 0.4154 0.4163 (0.0003) 0.4184
mATE ↓ 0.6715 0.6415 (0.0008) 0.6386
mASE ↓ 0.2738 0.2689 (0.0002) 0.2686
mAOE ↓ 0.3691 0.3390 (0.0009) 0.3362
mAVE ↓ 0.4179 0.3688 (0.0010) 0.3688
mAAE ↓ 0.1981 0.1920 (0.0006) 0.1931

Table 2. Performance statistics on the NuScenes val set. We
compare our stochastic Particle-DETR (col. 3), evaluated with
1500 queries and 1 DDIM step, and the deterministic BEVFormer-
Enh (col. 4) to the original BEVFormer. The standard deviations
for the random methods are shown in parentheses.

proves noticeably in this regard. Further visualizations and
analysis can be found in the supplementary materials.

5. Discussion
Precision in generative models. Compared to text-to-

image tasks which tolerate a large amount of variation in
the generated samples, object detection requires precision
in the outputs. Hence, adjusting for the number of queries,
we find a small performance gap in mAP with respect to
deterministic approaches natural, as the random reference
inputs will always induce a distribution on the outputs.

Uncertainty. One benefit of learning a distribution over
the boxes is that this provides a rudimentary way to un-
derstand their uncertainty. Unfortunately, it is likely that
it mixes epistemic uncertainty resulting from the estimated
model parameters and aleatoric uncertainty related to the
randomness of the boxes themselves. We show heatmaps
for the box distributions in the suppl. materials.

Temporal modeling. We acknowledge that methods like
StreamPETR [60], SparseBEV [39], or HoP [74] outper-
form BEVFormer by means of more sophisticated designs.
They emphasize the importance of extended temporal mod-
eling of the objects, while the focus in this work is different
- to investigate how noisy 2D reference points can be used
together with dense BEV features. We expect our method
to be complementary to other such alternatives which use
dense BEV features, like HoP [74].

6. Conclusion
We have shown that naively using previous generative

approaches for BEV detection yields a performance gap.
To close it, we adopt a transformer-based architecture and
a specific query interpolation module to facilitate the model
in learning positional information even in the presence of
diffusion. Applying diffusion over particles yields a unique
interpretation to our approach based on particle methods.
We greatly improve on previous generative methods and
achieves comparable results to strong deterministic ones.
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