
EmoVOCA: Speech-Driven Emotional 3D Talking Heads

Federico Nocentini
University of Florence, Italy
federico.nocentini@unifi.it

Claudio Ferrari
University of Parma, Italy
claudio.ferrari@unipr.it

Stefano Berretti
University of Florence, Italy
stefano.berretti@unifi.it

Figure 1. We introduce EmoVOCA, a novel approach for generating a synthetic 3D Emotional Talking Heads dataset which leverages
speech tracks, intensity labels, emotion labels, and actor specifications. The proposed dataset can be used to surpass the lack of 3D datasets
of expressive speech, and train more accurate emotional 3D talking head generators as compared to methods relying on 2D data as proxy.

Abstract

A notable challenge in 3D talking head generation con-
sists in blending speech-related motions with expression dy-
namics. This is primarily caused by the lack of comprehen-
sive 3D datasets that combine diversity in spoken sentences
with a variety of facial expressions. Some literature works
attempted to overcome such lack of data by fitting paramet-
ric 3D models (3DMMs) to 2D videos, and using the re-
constructed 3D faces as replacement. However, their un-
derlying parametric space limits the precision required to
accurately reproduce convincing lip motions and synching,
which is crucial for the application at hand. In this work, we
look at the problem from a different perspective, and devel-
oped a data-driven technique to combine inexpressive 3D
talking heads with a set of 3D expressive sequences, which
we used for creating a synthetic dataset, called EmoVOCA.
We then designed and trained an emotional 3D talking head
generator that accepts a 3D face, an audio file, an emo-
tion label, and an intensity value as inputs, and learns to
animate the audio-synchronized lip movements with expres-
sive traits of the face. Comprehensive experiments, both
quantitative and qualitative, using our data and generator
evidence superior ability in synthesizing convincing anima-
tions, when compared with the best performing methods in
the literature. Our code and pre-trained models are avail-
able at https://github.com/miccunifi/EmoVOCA.

1. Introduction

Generating 3D talking heads from speech aims at ani-
mating a 3D facial model with dynamic lip movements that
correspond to a spoken sentence. While current state-of-

the-art methodologies such as [6, 9, 15–17, 19–21, 25, 28]
effectively replicate lip-syncing and facial deformations,
achieving natural emotional expression in animated faces
lacks full conviction. The primary constraint inhibiting re-
search progress in emotional 3D talking heads resides in
the absence of suitable 3D datasets that allow learning the
complex interaction between geometrical mouth deforma-
tions induced by speech and expressions. In fact, directly
collecting such data is a rather unpractical solution due to
costly devices and a time-consuming capturing process. A
workaround that was explored recently consists in leverag-
ing 2D video datasets as a proxy. For example, Peng et
al. [21] and Daněček et al. [6] extracted per-frame 3D faces
from video datasets of emotional speech thanks to para-
metric 3D models (3DMMs). In doing so, they gathered
sequences of plausible 3D faces paired with the speech
extracted from the videos. A shortcoming of these ap-
proaches, though, is that the precision and variety of the
3D estimated facial deformations are bounded by the un-
derlying parametric model, with a consequent loss of subtle
lip movements. In fact, while 3DMMs are good for model-
ing facial shapes and expressions, they are not sufficiently
expressive for reproducing speech-related lip motions.

In the attempt of solving the above, we explore a dif-
ferent approach and propose to combine an existing 3D
talking head dataset, where captured subjects only show
a neutral emotional state (VOCAset [4]), with 3D emo-
tional faces from a dataset of 3D expressive sequences (Flo-
rence4D [22]). We chose these specific datasets as the
meshes they include share the same topology. The major
challenge here consists in realistically combining speech-
related mouth motions with expression-induced facial de-
formations. To simplify the problem, some methods [23]
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consider an additional constraint, and assume that facial de-
formations resulting from expressions are isolated in the up-
per half of the face, forcing a spatial disentanglement of
such motions. While this solution can work for natural fa-
cial movements, the above assumption only partially holds
true when emotions are involved. Suffice it to say, anger or
happiness induce changes in the mouth shape, which in turn
influence its motion during speech. We here tackle the chal-
lenge of combining speech and expression induced facial
deformations from 3D face datasets and surpass the need
for parametric 3D models, in order to build training data for
emotion-conditioned 3D talking head generators. To this
aim, we propose a framework composed of two encoders
and a single, shared decoder. The idea is that each encoder
learns speech or expression specific features, while the de-
coder learns both. Once trained, we can combine speech
and expression related motions by simple feature combi-
nation, and let the decoder generate the entangled defor-
mations. To showcase the applicability of our synthesized
data, we used them to train a network that generates emo-
tional 3D talking heads from a speech track, an intensity
label, an emotion label, and an actor to animate, as illus-
trated in Fig. 1. To this end, we developed on two state-of-
the-art solutions [9, 17] that generate unexpressive talking
heads based on the sole audio features, and adjusted them
to be conditioned with an emotion and an intensity label. In
summary the main contributions of our work are:

• We introduce a new data-driven approach to realisti-
cally entangle speech and expression specific facial de-
formations, providing more accurate training data for
building expressive talking head generators;

• With the above, we synthesize EmoVOCA, a new 3D
dataset combining speech with emotional nuances;

• On such data, drawing from state-of-the-art tech-
niques, we designed and trained two deep architectures
that generate accurate expressive 3D talking heads us-
ing an audio, an emotion, and intensity labels;

• In an extensive set of experiments, we unveil limita-
tions of previous methods, and the advantages of our
scheme with respect to prior works.

2. Related Work
First efforts primarily concentrated on the synthesis of

facial animation through the manipulation of pre-defined
facial rigs using procedural mechanisms. Subsequent to
this, facial animations were constructed through viseme-
dependent co-articulation models or via the blending of fa-
cial templates [7, 8, 10]. These methods showcased a syn-
thesis framework that combines language and facial expres-
sions at a fundamental level. Karras et al. [11] harnessed

a dataset-driven approach, learning a 3D facial animation
model from a limited but high-quality 3D dataset of a spe-
cific actor. This strategy stands in contrast to VOCA [4],
which leveraged a more expansive dataset featuring di-
verse subjects, capable of animating an array of corre-
sponding identities from audio cues. MeshTalk [23] pro-
posed a complementary solution to those discussed above
by learning a categorical representation for facial expres-
sions. Sampling in an auto-regressive way from this cat-
egorical space, this approach can animate a given 3D fa-
cial template mesh of a subject from audio inputs. Face-
Former [9] proposed a Transformer-based autoregressive
model, which encodes the long-term audio context and
autoregressively predicts a sequence of animated 3D face
meshes. Nocentini et al. [17], aimed to address the chal-
lenges encountered by FaceFormer and VOCA, like the
long training time, and increased the lip-movements accu-
racy, introducing S2L+S2D. This framework enhances the
lip-sync abilities of talking heads by guiding them through
a landmark-based motion paradigm. In the most recent ef-
fort to develop speech-driven 3D talking heads, Stan et al.
proposed FaceDiffuser [25], an approach centered around
a Gated Recurrent Unit model. This model was trained to
operate like a diffusion model, predicting the 3D face from
a set of Gaussian noise inputs. We also mention the work
by Thambiraja et al. [27], who proposed Imitator to add
personalized traits to the talking head.

All the aforementioned methods were trained on pub-
licly available datasets. However, these datasets pose a
limitation as the recorded faces lack expressions, result-
ing in a deficiency of emotional content in the generated
faces. To address the lack of specific data, researchers have
tested various techniques. Lu et al. [14] proposed to use
EMOCAv2 [5] to reconstruct 3D talking heads from in-the-
wild videos. Chang et al. [3] proposed a fusion of 2D and
3D datasets to inject emotional information into the gener-
ated faces. Conversely, Peng et al. [21] devised a method-
ology to reconstruct 3D emotional talking head datasets
from 2D sources based on a facial blendshape capturing
method. Upon constructing the dataset, they developed
a Transformer-based model, called Emotalk, for generat-
ing 3D emotional talking heads. Differently from others,
they did not condition the generation with emotion labels,
but directly extracted emotional context from the audio.
More recently, Sung-Bin et al. [26] proposed LaughTalk, a
framework proficient in crafting speech-driven 3D laughing
talking heads. Additionally, Daněček et al. [6] presented
EMOTE, a framework capable of generating emotional 3D
talking heads predicated on audio input and emotion labels.

Again, the very core of these approaches is based upon
the efficacy of reconstructing a 3D face from 2D represen-
tations. We will show that, this strategy results in decreased
lip-sync accuracy.
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3. Proposed Approach
The lack of publicly available emotional 3D talking head

datasets motivated our efforts. We propose here a solution
to address most of the limitations faced by previous works
that attempted to exploit 2D video data as an intermediate
means to gather 3D expressive talking heads. To this aim,
we leverage two publicly available 3D face datasets: one
includes 3D sequences of talking faces in neutral expres-
sion; the other, instead, comprises sequences of 3D faces
portraying emotion related facial expressions, yet without
speech-related lip movements. No additional assumptions
are imposed on the data; for instance, sequences are not re-
quired to have uniform lengths, nor is synchronization nec-
essary between instances in the two datasets.

Our idea is to generate emotional 3D talking heads by
learning to explicitly entangle speech and emotion face
deformations by mixing latent codes that are separately
learned from the two datasets. The framework, illustrated
in Fig. 2, is composed of two encoders, which separately
learn to embed speech or emotion related facial deforma-
tions, and a shared decoder. The model is trained to re-
construct the input deformations. Being the decoder shared
across the two datasets, at inference time the embeddings
can be combined so to generate the entangled deformations.
Ultimately, this allowed us to create a new dataset, called
EmoVOCA, that can be employed for training emotional
3D talking heads generation approaches.

3.1. Data Preparation

We utilized two 3D face datasets, referred to as DT and
DE : DT contains inexpressive 3D talking heads, while DE

consists of emotional 3D sequences without speech-driven
lip activation. Both DT and DE are in FLAME [12] topol-
ogy. This choice simplified the framework design by allow-
ing us to use the same encoder architecture, but does not
represent a strict constraint. The two encoders do not share
weights and are trained separately (Sec. 3.2), so they can be
adapted to process 3D faces of different topologies. In order
to learn speaker-independent speech or expression deforma-
tions, we first pre-process the data to remove the identity
component from each face. This is obtained by subtracting,
for each subject, the face in neutral expression, i.e., with
no expression or lip movement, from each instance of the
corresponding subject in both datasets. Based on this, the
datasets DT and DE are represented as:

DT =
{
(M t

i ,M
n
i )

}P

i=0
, DE =

{
(Me

j ,M
n
j )

}H

j=0
, (1)

where, M t
i and Me

j represent, respectively, the i-th talking
head and the j-th emotional head, while Mn

i , Mn
j denote

the corresponding neutral configurations. P and H are the
number of samples in the DT and DE datasets, respectively.

For each face M t
i ∈ DT and Me

j ∈ DE , the dense de-
formation offset is computed as the difference between the
animated face and its neutral configuration:

St
i = M t

i −Mn
i , Se

j = Me
j −Mn

j . (2)

This processing step generates a displacement-based repre-
sentation encoding speech and expression motions from the
two source datasets ST = {St

i}
P
i=0, and SE =

{
Se
j

}H

j=0
.

Though both datasets contain sequences, the frames are
treated individually. Thus, there is no need for the length
of the sequences to match.

3.2. Double Encoder/Shared Decoder Architecture

Our proposed architecture is made up of a Double-
Encoder and a Shared-Decoder (DE-SD), and is summa-
rized in Fig. 2. The building block for both encoders and
decoder is the SpiralNet proposed by Bouritsas et al. [2].
The two distinct encoders independently process speech or
expression related data: ET uses samples in ST to learn
capturing speech-related movements, while EE processes
samples in SE to learn deformations due to expressions.
Both encoders embed the samples into separate latent vec-
tors: f t

i = ET (S
t
i ) and fe

j = EE(S
e
j ). However, these

feature vectors eventually need to be combined so that the
decoder can learn both motions and generate mixed defor-
mations. Given that no ground-truth exists for the com-
bined motions, how the features are concatenated depends
on whether we are training or testing the model.

3.2.1 Training Phase

Ground-truth samples are available only for each dataset
separately, thus each encoder is trained alternatively. How-
ever, we need to maintain a consistent embedding size at
both training and inference. Hence, the embedded fea-
ture vectors are duplicated and concatenated during train-
ing. These are then fed to the decoder to reconstruct the
input: Ŝt

i = D(f t
i

⊕
f t
i ) for ET , and Ŝe

j = D(fe
j

⊕
fe
j )

for EE . This strategy allows us to later combine features
from both encoders. The training objective is to reconstruct
the input displacements. We used a weighted L2 loss:

L =
1

N

N∑
i=1

wi

∥∥∥Si − Ŝi

∥∥∥
2
. (3)

where N represents the number of vertices in the meshes,
while Si and Ŝi are respectively, the ground-truth and pre-
dicted displacements at vertex i. Here, wi represents the
per-vertex weight as introduced by Otberdout et al. [18] that
measures the contribution of each vertex in the mesh ac-
cording to the inverse of its distance from the closest land-
mark. This factor penalizes points far from movable face
areas, i.e., mouth, eyes, as they remain mostly stationary
and so do not contribute to modeling facial deformations.
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(a) Training phase of our model: In this stage, ET is utilized when the
input is sourced from the ST dataset, and EE is employed when the input is
derived from the SE dataset.

(b) Inference phase of our model: During this phase, the features extracted
from both encoders are combined through concatenation and subsequently
forwarded to the decoder.

Figure 2. Overview of our framework. (a) Two distinct encoders, namely ET and EE process the talking and expressive 3D head
displacements, separately, while a common decoder D is trained to reconstruct them. (b) At inference, talking and emotional heads are
combined by concatenating the encoded latent vectors, and the decoder outputs a combination of their displacements.

3.2.2 Inference Phase

Given talking displacements St
i , and emotional displace-

ments Se
j , we use the encoders to embed them, deriving

f t
i = ET (S

t
i ) and fe

j = EE(S
e
j ). These feature vectors

are then concatenated and fed to the decoder to generate the
mixed motion: Ste = D(µtf

t
i

⊕
µef

e
j ). Here, µt and µe

are coefficients that allow us to adjust the contribution of
the two sets of features. By modifying these coefficients,
we can control the interplay between the talking and emo-
tional displacements, significantly augmenting the span of
the generation variety. Once we obtain Ste, we can add
these displacements to a neutral face and obtain the 3D
emotional talking head as M te

i = Mn
i + Ste

i .

3.2.3 On the Architectural Design

Features in the two datasets are disentangled as speech and
expression deformations involve different face regions, so
their spatial distribution overlaps only to some extent. Thus,
to correctly reconstruct the displacements (either St or Se)
during training, the decoder needs to output spatially dif-
ferent, almost complementary, displacement fields. Our in-
tuition to duplicate the features is that the decoder is made
up of spiral convolution layers, which operate locally, and
are based on the knowledge of the mesh graph [2]. Thus
each “neuron” in each layer corresponds to a vertex in the
(sub-sampled) mesh. Since the two deformations are spa-
tially disentangled, speech embeddings f t activate differ-
ent decoder features with respect to emotion embeddings
fe so that there is no need to explicitly factorize the latent
space. Even if features are duplicated during training, the
prior spatial disentanglement forces the decoder to activate
the same set of neurons. When features are combined, it
instead induces the activation of all neurons, leading to re-
alistic entanglement of the deformation (see Fig. 3c).

4. Experimental Results
In the following, we first introduce the datasets and the

metrics (Sec. 4.1), then we summarize the methods for emo-
tional talking heads generation that we trained on the data
synthesized with our DE-SD architecture (Sec. 4.2). We
report quantitative and qualitative results plus a test involv-
ing the proposed methods in Sec. 4.3, and Sec. 4.4, respec-
tively. Finally, in Sec. 4.6, we conducted two user studies to
compare our approach with current SOTA methods for emo-
tional talking heads, i.e., Emotalk [21] and EMOTE [6].

4.1. Datasets and Metrics

We utilized two datasets, VOCAset and Florence 4D, to
train our DE-SD network, which was subsequently used to
generate the EmoVOCA dataset.
VOCAset [4] contains 3D talking head sequences from 12
actors, evenly split between 6 males and 6 females. Each
actor recorded 40 sentences, with durations ranging from 3
to 5 seconds. The dataset provides per-frame 3D facial re-
constructions captured at 60 frames per second (fps) along
with corresponding audio recordings. However, VOCAset
lacks head movements and upper facial expressions.
Florence 4D [22] offers 3D dynamic sequences represent-
ing 70 different emotions and facial expressions. Each se-
quence consists of 60 meshes, with the peak facial expres-
sion typically occurring between frames 25 and 35.
EmoVOCAv1 is a collection of expressive 3D talking head
sequences generated using our DE-SD architecture. It com-
bines features from VOCAset and Florence 4D to generate
sequences for five emotions: afraid, angry, disgust, happy,
and sad, each with three intensity levels by varying the µe

factor. This produced a total of 7,200 3D sequences.
EmoVOCAv2 expands upon EmoVOCAv1, adding moody,
drunk, ill, suspicious, pleased, and upset, for a total of 11
emotions, with three intensity levels, resulting in 15,840 se-
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quences. All datasets were divided into training (8 actors),
validation, and test sets (2 actors each).

Following previous works [9, 21, 25], we used the fol-
lowing metrics, measured in millimeters:

• MVE (Max Vertex Error): The maximum L2 error be-
tween the predicted and ground truth mesh vertices,
providing a global measure of reconstruction accuracy.

• UVE (Upper Vertex Error): The maximum L2 error
computed on the vertices in the eyes and forehead re-
gions, focusing on emotion-related movements.

• LVE (Lip Vertex Error): The maximum L2 error com-
puted on the vertices around the mouth region, captur-
ing both speech-/emotion-related movements.

MVE was used as a global metric to evaluate the overall
reconstruction quality of DE-SD, as shown in Tab. 1. For
talking head evaluation, UVE and LVE were chosen as local
descriptors to assess the quality of expression-related and
speech-related movements, respectively, as shown in Tab. 3.

4.2. Emotional 3D Talking Head Generators

We used both EmoVOCAv1 and EmoVOCAv2 to train
two properly customized state-of-the-art solutions for 3D
talking heads generation, namely Faceformer [9], and
S2L+S2D [17]. These methods are constrained to gener-
ate neutral talking heads, so we adapted them for training
and testing on our data. The primary goal is to show that by
training on EmoVOCAv1/v2 we can both (i) surpass the ac-
curacy of SOTA methods trained on the original VOCAset,
and (ii) perform better than state-of-the-art emotional talk-
ing head generators that exploit 2D video data and paramet-
ric head models. Both the models were conditioned using
audio features extracted from the wav2vec 2.0 [1] encoder,
which was shown to be highly effective [6,9,17,21,27]. To
add the emotion information and condition the generation,
we represented each emotion label L, and intensity label I ,
as a one-hot vector, and embedded them as 64-dimensional
vectors using a linear layer.
Emo(E)-Faceformer is inspired by Faceformer [9]. The
architecture proposed by Fan et al. involves a transformer
decoder, trained autoregressively, conditioned with audio
features. We modified the original architecture by concate-
nating the two embeddings L, I resulting from the emotion
and intensity labels. Similar to Faceformer, we trained the
model autoregressively with the same masking and the same
periodic positional encoding. This method learns to animate
a 3D face given an audio input, an emotion label and an in-
tensity label. The L2 loss between the prediction and the
ground truth was used for training.
Emo(E)-S2L+S2D develops upon the S2L+S2D method
in [17]. This method works by decoupling the generation

in two steps: first, a bi-directional LSTM model (S2L) gen-
erates the motion of 68 landmarks of the face from the audio
signal. Then, a mesh decoder (S2D) expands the landmarks
motion to all the vertices of the face mesh. We trained the
E-S2L with the landmarks extracted from the meshes, then
we separately trained the S2D decoder to densify the move-
ment of landmarks into the face mesh vertices. Similar to
E-FaceFormer, we concatenated the two embeddings L, I to
the audio features. The E-S2L learns to predict landmarks
movement based on an audio input, an emotion label, and an
intensity label. To train the E-S2L model, we used the av-
erage L2 loss between the prediction and the ground truth.
To train the S2D, we used the weighted L2 defined in (3).

4.3. EmoVOCA Evaluation

Quantitative results. We first assess the accuracy of our
DE-SD model to reconstruct the test sets of VOCAset and
Florence 4D. In Tab. 1, we report the results of an ablation
study aimed at evaluating the effect of the weighted L2 loss
applied during training and a different design for DE-SD
trained with a single, shared encoder.

Table 1. Ablation study. Contributions of: weighted loss in [18]
(left); double or single encoder (right). Errors are in mm.

VOCAset Florence 4D

Loss MVE ↓ MVE ↓
Standard L2 0.931 0.844
Weighted L2 0.722 0.657

VOCAset Florence 4D

Encoder MVE ↓ MVE ↓
Single 0.745 0.676
Double 0.722 0.657

We first investigate the effect of the weighted loss [18].
Predictably, the latter leads to significantly improved out-
comes as the model better focuses on movable facial areas.
Another significant result is the improvement achieved by
employing a double-encoder. This outcome aligns with our
expectations, considering that each encoder specializes in
extracting facial features that are either speech or emotion-
related, further pushing a disentangled feature representa-
tion. This specialization arises from the datasets difference:
in VOCAset, the upper face remains stable, whereas in Flo-
rence 4D it plays a more pivotal role (Sect. 3.2.3).

To further assess the feature concatenation strategy of
DE-SD, we trained a simple expression classifier (Spi-
ral Convolution Encoder with an MLP Head) using the
Florence4D mesh sequences (expression-only). We then
tested it on five different versions of our EmoVOCA dataset
(expression+speech) generated using five different feature
combination strategies in DE-SD. This was done to eval-
uate how well expressions are preserved when combined
with speech. We trained DE-SD using different strategies:
(i) summing (Sum) or multiplying (Mult) the embeddings
f t and fe; (ii) concatenating neutral (zero) vectors instead
of duplicating the embeddings; and (iii) testing the origi-
nal DE-SD by reversing the positions of f t and fe to verify
the intuitions discussed in Sec. 3.2.3. The results for each
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(a) DE-SD Qualitative Results. Meshes with speech combined with expressions are shown.

(b) Interpolation vs. DE-SD

(c) Decoder features in layers Li. Red/blue=high/low.

Figure 3. (a) The blue box (top row) shows some meshes from VOCAset, while the red box (left column) showcases various expressive
heads from Florence 4D. In the green box, the face at row i and column j is the result of the combination of the i-th expressive and
j-th talking heads, i.e., Ste = D(ET (S

t
j)

⊕
EE(S

e
i )). So, each column includes the talking head on the top conditioned with different

expressions. (b) Comparison of DE-SD (top row) with displacement interpolation (bottom row). Simple interpolation in 3D space leads
to unrealistic deformations and loss of speech accuracy. (c) Comparison of several strategies of feature combination. The decoder features
are shown for each layer Li. Even if features are duplicated during training, the prior spatial disentanglement forces the decoder to activate
different neurons. When combined, the features induce a combined action of all neurons, leading to realistic entanglement.

intensity level are shown in Tab. 2. We also compared the
geometric similarity of the generated meshes against those
in the original datasets to determine which method best pre-
serves facial features. Specifically, we utilized the LVE for
VOCAset and the UVE for Florence 4D. Both complemen-
tary measures prove that duplicating features during DE-SD
training leads to more recognizable expressions, even when
the embeddings were reversed at inference, outperforming
the other strategies.

Table 2. Classification accuracy for different expr. intensities. Er-
ror on both training datasets.

Model I1 Acc I2 Acc I3 Acc LVE VOCAset ↓ UVE Florence 4D ↓
DE-SD Sum 0.40 0.64 0.72 6.181 1.073
DE-SD Mult 0.33 0.55 0.66 6.897 1.248
DE-SD Zero-cat 0.37 0.58 0.69 6.324 1.137
DE-SD Reversed 0.45 0.68 0.76 5.872 0.940
DE-SD 0.46 0.71 0.82 5.861 0.981

Qualitative Results. Fig. 3a shows various expressive
meshes combined with talking heads with DE-SD. The de-
formation of the upper face is particularly influenced by the
expressive mesh, although the mouth shape is influenced by
the expression as well, even if to a lesser extent. This un-
balanced influence is valuable as it infuses expressiveness to
the talking heads, at the same time preserving the lip move-
ments that correspond to the spoken sentence. Using two

separate encoders led to an effective disentangled learning
of the motion priors, leading to a strong compositional abil-
ity [24]. This is instead compromised in previous methods
such as EmoTalk or EMOTE (see Sec. 4.6).

It could be argued that the same goal could be achieved
by simply linearly combining the speech and expression off-
sets (St

i and Se
i ) or by morphing the faces using some Mor-

phable Model parameters. As depicted in Fig. 3b, this is not
the case. Displacement interpolation introduces severe arti-
facts, and leads to the loss of speech-related movements, re-
sulting in lower realism in the generated faces. By directly
summing the expressive offsets Se

i to inexpressive talking
heads generated by FaceFormer or S2L-S2D, we also quan-
titatively show that this is not a viable solution either (see
results in Tab. 3a). Finally, examples in Fig. 3c qualitatively
support the technical choice expounded in Sect. 3.2.3 and
the results in Tab. 2. The average activation of decoder fea-
tures are shown for each layer Li. Duplicating either f t or
fe activate distinct decoder features and, when combined,
all features activate, contributing to a realistic entanglement.
Reversing their arrangement does not have a significant in-
fluence, meaning that the two encoders effectively captured
the disentangled deformations. Forcing an explicit latent
arrangement by concatenating a zero vector would lose this
ability, also resulting in samples of poorer quality.
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4.4. Generating Emotional 3D Talking Heads

Both E-Faceformer and E-S2L-S2D models were trained
using separately both EmoVOCAv1 and EmoVOCAv2. We
report average generation results across the test set of both
versions in Tab. 3a. Based on the results presented in Tab. 3,
it is evident that training a model using EmoVOCAv2 yields
improved performance compared to training with EmoVO-
CAv1. This enhancement is a result of the increased num-
ber of samples in EmoVOCAv2. The E-S2L-S2D method
clearly performs favorably with respect to E-FaceFormer
(consistently with the result reported in [17]).

To conduct a more comprehensive evaluation of our gen-
erators E-Faceformer and E-S2L+S2D, we performed ad-
ditional tests using the (inexpressive) VOCA-Test as sug-
gested by [21]. We set the one-hot encoding of both emo-
tion and intensity to zero, for both E-Faceformer and E-
S2L+S2D. Results in Tab. 3b show that our emotional talk-
ing head generators exhibit good generalization ability to
speech-related movements, surpassing the performance of
the same architectures trained on the original VOCAset.
Moreover, E-S2L+S2D yields superior performance com-
pared to both EmoTalk and EMOTE. These outcomes fur-
ther highlight the good quality of the samples synthesized
with our DE-SD, suggesting our solution as a viable way to
create complex yet effective 3D datasets.

Table 3. Quantitative comparison with previous works: (a) test on
EmoVOCAv1 and EmoVOCAv2; (b) tests on VOCA-Test. (v1)
and (v2) indicate training on EmoVOCAv1 and EmoVOCAv2, re-
spectively; (Voca) indicates training on VOCAset; (2D) indicates
training on 3D datasets reconstructed from videos.

Baseline LVE (mm) ↓ UVE (mm) ↓
Faceformer + Se 5.971 1.923
S2L+S2D + Se 4.872 1.467
E-Faceformer(v1) 3.425 0.927
E-S2L+S2D(v1) 2.165 0.552
E-Faceformer(v2) 3.134 0.904
E-S2L+S2D(v2) 1.845 0.501

(a) Results from the baselines. The first two
rows are tested on EmoVOCAv1.

Method LVE (mm) ↓ UVE (mm) ↓
VOCA(Voca) 6.993 1.201
Faceformer(Voca) 6.123 1.117
SelfTalk(Voca) 5.618 0.989
S2L+S2D(Voca) 4.789 0.934
FaceDiffuser(Voca) 4.350 0.925
CodeTalker(Voca) 3.651 0.912
EmoTalk(2D) 4.134* -
EMOTE(2D) 4.561 0.897
E-Faceformer(v1) 4.371 0.964
E-S2L+S2D(v1) 3.697 0.867
E-Faceformer(v2) 3.789 0.912
E-S2L+S2D(v2) 3.181 0.791

(b) Results on VOCA-Test dataset. For the
EmoTalk (*) model, we report the results as
presented in the original paper.

For a more detailed analysis, in Fig. 4 we report results
for all the emotions and intensity levels separately. We ob-
serve a rather stable accuracy across the different emotions
and intensities, although the UVE measure grows for those
involving stronger movements of the upper face, such as an-
gry or intensity high. In Fig. 5, we show qualitative exam-
ples also for EmoTalk and EMOTE (quantitative compari-
son was not possible, see Sec. 4.6). Note that our samples
and the EMOTE ones are generated performing a zero-shot
test using an audio from RAVDESS [13]. This was needed
because EmoTalk only infers the emotion from the audio,
and the VOCAset includes only neutral speech. Qualita-
tively, the results for E-S2L-S2D are the most realistic both

in terms of speech mimicking and perceived emotion (see
also Tab. 4 and Tab. 5). Notably, EmoTalk can convey some
emotional content, yet only by slightly moving the upper
face area, whereas the mouth region remains rather static.
This results both in smaller emotional effects, and reduced
speech realism. EMOTE, instead, can generate good and
recognizable emotional content, yet it is less accurate in
terms of lip synchronization (see Tab. 5).

(a) LVE Emotion (b) UVE Emotions (c) LVE Intensities (d) UVE Intensities

Figure 4. Generation results comparison for each emotion and
each intensity level. The blue bars refer to E-S2L-S2D, while red
bars to E-FaceFormer. Both baselines are trained and tested on
EmoVOCAv1.

4.5. E-S2L+S2D Additional Features

The E-S2L+S2D model, trained with EmoVOCA, effi-
ciently generates emotional talking heads based on one-hot
encoding of emotion and intensity labels. While training
activates only one emotion and one intensity level at a time,
the model’s high generalization enables diverse capabilities
during inference. It can produce sequences with temporal
emotion or intensity transitions, varying emotion and inten-
sity labels during generation. In Fig. 6, we can see several
examples of emotion and intensity transition by varying the
one-hot encodings in a chosen moment in time.

These capabilities emerge from both the model’s design
and the EmoVOCA dataset used for training. Consequently,
a model trained on EmoVOCA can generate sequence of
faces with emotion and intensity variation despite being
trained on separate tasks and not encountering such scenar-
ios during training. We highlight this a unique feature that
is not shown by any other method or dataset. Qualitative
examples can be found in the supplementary material.

4.6. User based Study

To our knowledge, EmoTalk [21] and EMOTE [6] are
the only approaches in recent literature for generating emo-
tional 3D talking heads.Quantitative comparison is not pos-
sible due to discrepancies in mesh topology and dataset
utilization across EmoTalk and EMOTE. EmoTalk’s mesh
topology diverges from FLAME, while EMOTE’s train-
ing dataset differs from ours, impeding direct evaluation.
Our decision to not re-implementing EmoTalk is based on
its similarity to FaceFormer, employing a transformer de-
coder, with emotion inferred from audio. Similarly, re-
training EMOTE with our dataset was not feasible due to
its reliance on 2D video-based loss computation, which we
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Figure 5. Qualitative examples generated by E-S2L+S2D trained on
EmoVOCAv1 in comparison with EmoTalk and EMOTE. Colors represent
specific moments in time.

Intensity
Low

Intensity
High

Intensity
Low

Intensity
High

Happy Angry

Afraid Sad

Disgust Happy

Figure 6. Additional feature of E-S2L+S2D: varying the
one-hot labels during inference, we are able to change the
emotion or intensity displayed by the talking head.

lack. Consequently, we conducted two user-based stud-
ies involving 22 and 20 participants, spanning expert and
non-expert, to assess our E-S2L+S2D trained on EmoVO-
CAv1 in comparison with EmoTalk and EMOTE. Follow-
ing methodologies in prior works [9, 21, 27], we designed
A/B studies for user evaluation. Thirty videos, generated
using E-S2L+S2D trained on EmoVOCAv1, EmoTalk and
EMOTE, were divided as follows: (i) Ten videos generated
from RAVDESS [13] test set audios, asking users to assess
lip synchronization fidelity and emotion portrayal (Test 1);
(ii) Ten videos generated from in-the-wild YouTube au-
dios, asking evaluations on lip synchronization (Test 2); (iii)
Ten videos from RAVDESS audios were presented to users
without audio, asking them to classify the emotion the gen-
erated videos seem to portray, so to verify if users can infer
the emotion looking at the animation (Test 3).

Results from both user studies, summarized in Tab. 4
and Tab. 5, clearly favors E-S2L+S2D trained on EmoVO-
CAv1 for its superior speech realism and emotional expres-
sion. Tables report users preference on the left, and classifi-
cation accuracy in the confusion matrices. Notably, despite
EmoTalk and EMOTE being trained on 10K+ sentences
compared to our 40, our model demonstrates enhanced gen-
eralization to in-the-wild audios (Test 2). A subset of the
videos utilized in both user studies can be accessed in the
supplementary material.

Table 4. User study comparing E-S2L-S2D and EmoTalk. Left:
Test 1 and Test 2. Right: confusion matrix of Test 3 (in %,
“Ours/EmoTalk”, for Happy, Disgust, Fear, Sad, Angry).

Test Criterion Ours vs. EmoTalk [21]

Test 1 Lip Sync 72.7% / 27.3%
Emotion 66.6% / 33.4%

Test 2 Lip Sync 76.2% / 23.8%

HA DI FE SA AN
HA 100/95.2 0.0/0.0 0.0/0.0 0.0/4.8 0.0/0.0
DI 0.0/14.3 19.0/38.1 4.8/4.8 42.9/9.5 33.3/33.3
FE 0.0/0.0 5.3/14.3 78.9/28.6 10.5/23.8 5.3/33.3
SA 0.0/61.9 9.5/14.3 23.8/4.8 52.3/9.5 14.3/9.5
AN 0.0/0.0 23.8/19.0 4.8/4.8 0.0/14.3 71.4/61.9

Table 5. User study comparing E-S2L-S2D and EMOTE. Left:
Test 1 and Test 2. Right: confusion matrix of Test 3 (in %,
“Ours/EMOTE”, for Happy, Disgust, Fear, Sad, Angry).

Test Criterion Ours vs EMOTE [6]

Test 1 Lip Sync 82.4% / 17.6%
Emotion 55.5% / 45.5%

Test 2 Lip Sync 83.2% / 16.8%

HA DI FE SA AN
HA 100/100 0.0/0.0 0.0/0.0 0.0/4.8 0.0/0.0
DI 0.0/0.0 59.1/40.4 0.0/0.0 40.9/0.0 0.0/59.6
FE 0.0/11.0 0.0/0.0 89.8/78.5 0.0/10.5 10.2/0.0
SA 0.0/0.0 0.0/0.0 9.4/9.5 78.4/90.5 12.2/0.0
AN 0.0/0.0 24.3/0.0 0.0/0.0 0.0/0.0 75.7/100

5. Conclusions and Limitations

In this paper, we introduced an innovative approach for
creating 3D emotional talking heads leveraging only 3D
data. Our approach demonstrated strong performance in
generating expressive talking heads with high fidelity. Ini-
tially, we addressed the scarcity of available datasets by de-
vising a method to combine talking and expressive unpaired
3D faces to generate a new dataset, named EmoVOCA. We
defined two versions of this dataset with different sets of
emotions. However, our DE-SD framework enables the
generation of numerous additional versions by varying the
selection of emotional faces used to condition the inex-
pressive faces in the talking head dataset. Subsequently,
we properly customized two state-of-the-art methods, E-
Faceformer and E-S2L+S2D. We effectively accomplish
the goal by producing more realistic emotional 3D talking
heads, if compared to methods that utilize 2D videos as re-
placement for the lack of 3D data. Our results demonstrate
convincing lip syncing and perceivable emotional content.

The proposed approach still faces some potential limita-
tions that can be addressed as future work. First, as shown
in the confusion matrices of Tab. 4 and Tab. 5, some emo-
tions resulted more difficult to inject with our solution. In
addition, the proposed framework still lacks some realism,
like for eyes blinking, head pose, etc. How to do so also
constitutes an interesting direction to investigate.
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