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Abstract

Self-supervised image denoising implies restoring the
signal from a noisy image without access to the ground
truth. State-of-the-art solutions for this task rely on pre-
dicting masked pixels with a fully-convolutional neural net-
work. This most often requires multiple forward passes,
information about the noise model, or intricate regular-
ization functions. In this paper, we propose a Swin
Transformer-based Image Autoencoder (SwinlA), the first
fully-transformer architecture for self-supervised denois-
ing. The flexibility of the attention mechanism helps to fulfill
the blind-spot property that convolutional counterparts nor-
mally approximate. SwinlA can be trained end-to-end with
a simple mean squared error loss without masking and does
not require any prior knowledge about clean data or noise
distribution. Simple to use, SwinlA establishes the state of
the art on several common benchmarks.

1. Introduction

Image denoising methods aim to reconstruct true signal
given corrupted input. The corruption depends on the cam-
era sensor, signal processor, and other aspects of the image
acquisition procedure, and can take various forms such as
Gaussian noise, Poisson noise, salt-and-pepper noise, efc.
Noise levels also vary with illumination and exposure, and
some amount is always present in any image. This makes
denoising an integral part of image processing pipelines.

As in other fields in computer vision, deep learning solu-
tions have superseded classical methods [3,5,22] for denois-
ing. However, when approached naively, neural networks
require huge amounts of paired noisy and clean images for
supervised learning. Collecting such a dataset is usually
impracticable. Lehtinen et al. [18] proposed Noise2Noise
showing that supervision with independently corrupted data
is equivalent to supervision with clean data. However, this
approach still requires collecting multiple image copies,

*equal contribution

(a) Each token representation is
based on the rest of the sequence,
excluding the token itself.

(b) Each pixel representation is
based on all other pixels, making
its own value a blind spot.

Figure 1. Self-unaware autoencoding in text and images.

which may not be present in existing datasets.
Self-supervised denoising avoids the demand for paired
data since it learns only from noisy images. Develop-
ing Noise2Noise ideas, Noisier2Noise [24] and Recor-
rupted2Recorrupted [26] applied additional noise on train-
ing images to emulate the strongly supervised Noise2Noise
scenario. This can be accomplished by assuming a prior
knowledge of the noise model or test-time aggregation.
Self2Self [28] proposed training a network with Bernoulli
input dropout and inference by ensembling multiple out-
puts. Neighbor2Neighbor [14] sub-sampled the input image
and treated the result as independently corrupted copies.
Noise2Void [15] and Noise2Self [2] introduced a dif-
ferent approach to self-supervised denoising — a blind-
spot network (BSN). This type of network reconstructs a
pixel from its neighborhood, assuming spatially indepen-
dent zero-mean noise. It is practically difficult to dissect
the continuous receptive field of convolutional neural net-
works (CNN), so BSN is usually emulated by a masking
procedure to hide a small portion of pixels by substitu-
tion or random noise and learn solely from them. How-
ever, learning from a few data points per image slows down
convergence, and different masking approaches may pro-
duce drastically different results [37]. Laine et al. [16] pro-
posed to restrict blindness by constructing four denoising
branches with unidirectional receptive fields. In practice,
this was achieved by passing four differently rotated input
copies through the network. Later, Honzatko er al. [13]
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and Wu et al. [36] adopted dilated convolutions to create
a true BSN which does not require masking. We further
discuss these methods below. Subsequent works abandoned
the idea of strict pixel blindness and adopted multiple for-
ward passes through the network. Noise2Same [37] and its
modification Noise2Info [33] make two forward passes (one
with a random mask, one without) and regularize the train-
ing with invariance loss in masked pixel locations. DCD-
Net [43] combines Noise2Noise and Noise2Void in an iter-
ative denoise-corrupt-denoise pipeline. Blind2Unblind [35]
utilizes global masking and combines the denoising results
from passing 17 image copies' through the network. While
superior in performance, this approach is time-consuming,
requires tuning multiple hyperparameters for each dataset,
and exhibits unstable training (Tab. 2).

Most recently, vision transformers started to outperform
CNN s across a variety of benchmarks, including supervised
denoising. SwinlIR [19], based on Swin Transformer [21],
achieved state-of-the-art results in JPEG compression arti-
fact reduction. Uformer [34] and Restormer [38] concur-
rently excelled in camera noise removal. Evolution of vi-
sion transformers closely followed their path in natural lan-
guage processing [8]. Bao et al. [1] introduced BERT-style
pre-training for image datasets, and He et al. [11] showed
that transformers can confidently reconstruct up to 95% of
hidden data in a masked autoencoder fashion. These re-
sults hint that we could use transformers to design blind-
spot self-supervised denoising models.

In this paper, we propose SwinIA — Swin Transformer-
based Image Autoencoder, the first fully transformer-based
architecture for self-supervised image denoising. SwinlA
does not require any prior knowledge of noise distribution.
It also does not have access to clean images, either through
pre-training or knowledge distillation. Neither does it use
input masking, auxiliary regularization losses, or multiple
forward passes. Instead, SwinlA is trained as a plain au-
toencoder by minimizing the mean squared error (MSE)
computed over the full image. To our knowledge, it is the
first precise implementation of the original BSN idea. We
rigorously test our SwinlA method on a variety of synthetic
and real-world datasets and demonstrate its competitiveness
against state-of-the-art self-supervised denoising solutions.

2. Related work

We further describe the foundational ideas of blind-spot
networks and denoising vision transformers that our model
is related to. We introduce their properties and usual train-
ing schemes and give the context for our advances.

The blind-spot property is usually achieved by mask-
ing [15] or multiple forward passes through the net-
work [16]. These techniques overcome the continuous

UIn the official repository, authors set mask window width to 4, creating
16 masked copies in addition to the unmasked image.

receptive field issue of CNNs. It is also possible to
maintain blindness with increasingly dilating convolutions.
Honzétko et al. [13] proposed a blind-spot convolutional
layer with a virtual “hole” in the kernel center. Their work
followed the training setup of Laine et al. [16] and demon-
strated similar performance on SRGB datasets. The main
limitation of both approaches is the assumption that the
noise distribution is known and the predictions are refined
with probabilistic post-processing (posterior mean estima-
tion, or PME). Finally, Wu et al. [36] also utilized a dilated
blind-spot network (DBSN) in a multi-stage pipeline with
clean images provided via knowledge distillation.
Transformers are widely used for image restoration in
the supervised setting [19, 34, 38], but rarely for self-
supervised denoising. Zhang et al. [40] proposed a Context-
aware Denoise Transformer (CADT) based on SwinlR [19]
and masking scheme of Blind2Unblind [35]. They used
Swin Transformer [21] blocks in the global branch of the
network and trained them with patch embeddings, not pixel
embeddings. However, they argued that a transformer alone
is not suitable for the task and thus complemented it with
convolutional local feature extraction. CADT used sixteen
masked forward passes from Blind2Unblind in both train-
ing and inference. Liu ef al. [20] built a single-image de-
noising transformer (DnT) from self-attention blocks inter-
leaved with convolutional layers. This architecture was not
tested for self-supervised denoising on larger datasets.

3. Design

BSN was proposed many years ago [2, | 5], but to date,
there is no implementation strictly adhering to the origi-
nal idea. Existing solutions use masking [2, 15, 17,35], as-
sume known noise distributions [ 13, 16], or learn from clean
data through knowledge distillation [36]. Thus, creating an
assumption-free BSN that is trained end-to-end as an au-
toencoder with hyperparameter-free MSE loss between in-
put and output remains an open challenge. This learning
objective can be formulated as follows:

L(£10) = Eqllf (2]0) — z]*. (1)

Here x is a noisy input image and f is a model with a set
of parameters . We hypothesize that transformers could be
suitable for this task because it is possible to control pixel
interaction through the attention mechanism.

Shin et al. [31] introduced the idea of self-unaware text
autoencoding using transformers (T-TA). They modified the
transformer model so that each token representation is built
based on all the other tokens, except itself, as in Fig. la.
T-TA builds text representations in one iteration without ac-
cess to a token’s own value, as opposed to the masked lan-
guage modeling objective of BERT [7], where the tokens
are processed one at a time. We transfer this idea to the im-
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Figure 2. SwinlA model. Multiscale positional embeddings act as queries for the encoder (three parallel blocks) and are added to patch
embeddings to create constant keys and values. The decoder (two remaining blocks) fuses the extracted features into the final output image.
Encoder and decoder blocks have an identical structure and consist of four transformer blocks with cyclically shifted window attention.

age domain to create a vision transformer autoencoder with
self-unaware pixel-level tokens (Fig. 1b).

In order to efficiently exploit a transformer-based model
at the pixel level for high-dimensional image data, we need
to use local attention. Swin Transformer [21] is a pow-
erful multi-purpose vision model, which uses the window
multi-head self-attention (MSA) mechanism that restricts
self-attention to windows of fixed size. The windows are
shifted from block to block to avoid bordering artifacts and
spread the field of view. Swin Transformer was already ef-
ficiently utilized at the pixel level in SwinIR [19], where
individual pixels were embedded into tokens.

Combining the ideas above, we formulate a list of re-
quirements to design a blind-spot transformer.

Pixel level. The network should process images at
single-pixel level. The absence of pixel processing would
impede the understanding of random pixel-level noise and
the reconstruction of high-frequency details.

Self-unawareness. At any stage of the blind-spot net-
work, individual pixels should not have access to their own
state on the previous levels. This will prevent it from learn-
ing an identity function by minimizing MSE loss.

Unblinding. Blind-spot training inevitably leads to in-
formation loss from the most significant source — the ac-
tual value of the pixel. Therefore, it is important to unhide
these values during inference without disturbing the learned
modality of the model.

Long-range interactions. In our setting, downsampling
pooling operations in the encoder would disrupt input isola-
tion by mixing together feature vectors of individual pixels.
Therefore, we need a downsampling operation that enables
attention between groups of pixels and at the same time,
maintains the independence of each pixel.

4. Methods
4.1. Input embedding

In contrast with the explicit pixel-level processing in
SwinlR [19], we propose to operate on shuffled square
patches of size p x p pixels (see the left part of Fig. 2).
An example of pixel shuffle is illustrated in Fig. 3. The
queries are set to learnable absolute positional embeddings
(APE), separate for each patch size. The input image is
projected into keys and values only once for each patch size
p € {1,2,4} as follows:

K, = h;l (LayerNorm (h, (X) Wy, + APE,)), (2)
V, = h,, ' (LayerNorm (h,, (X) W, + APE,)) . (3)

Here Wy, Wy, are linear projection parameter matrices,
and h,, is an operation of shuffling into patches of size p x p.
Maintaining keys and values intact throughout the architec-
ture is essential for self-unawareness [31].

4.2. SwinIA model

SwinlA is an encoder-decoder model consisting of three
encoder and two decoder blocks, the architecture is pre-
sented in the left part of Fig. 2. Three encoder blocks
encode the inputs for each of the three patch sizes p €
{1,2,4} and are computed separately, each using a corre-
sponding set of positional embeddings (APE) as queries.
The encoded representations are fused up through the de-
coders of corresponding patch sizes with skip connections
by concatenation and linear projection:

shortcut(Xy, Xa) = (X1 || Xo2) W + b. 4)

Each encoder/decoder block consists of four transformer
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Figure 3. Pixel shuffle example of an image of size 8 x 8 with
window size 4 into patches of sizes 1 X 1 and 2 x 2.

blocks. As in Swin Transformer [21], the attention is com-
puted in square windows of fixed size. To avoid bordering
artifacts, the images have to be diagonally shifted in every
second block. The shift size along one dimension is equal
to half of a window size.

4.3. Transformer block

Transformer blocks in SwinlA are comprised of multi-
head self-attention (MSA) and multi-layer perceptron
(MLP) submodules with pre-normalization and additive
shortcuts, as in Fig. 4. Since we compute patch-level atten-
tion, the inputs are first shuffled into patches as 2D matrices
RP’ *d where p is patch size along one dimension and d is
the embedding dimensionality in the model.

SwinlA transformer block utilizes a window multi-head
self-attention (MSA) mechanism with a masked main di-
agonal of the attention matrix. The masking is performed
by subtracting a large constant from the main diagonal of
the dot-product, therefore the SoftMax values there become
infinitesimal:

T 9
MSA (Q, K, V) = SoftMax <M> V. 5)
Vdp - p
Here dj, is embedding dimensionality per attention head, p
is the current patch size, and I, is an identity matrix where
n is the attention sequence length.

The MSA is followed by a layer normalization and pixel
unshuffle operation. The unshuffled outputs are fed into a
two-layer MLP with 4 times increased hidden dimensional-
ity and GELU activations [12].

4.4. Architecture justification

In this part, we will analyze how the proposed architec-
ture addresses the design requirements formulated in Sec. 3.

SwinlA operates on a pixel level, because its smallest
patch size is 1 x 1. Therefore, our model can capture valu-
able pixel-to-pixel interactions.

Self-unawareness in SwinlA is ensured by a combina-
tion of the diagonal attention mask and input isolation. The
diagonal mask restricts the attention so that none of the pix-
els have access to their value from the previous layer. How-
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Figure 4. SwinlA transformer block architecture. MSA and MLP
are preceded by layer normalization and complemented with a
shortcut by addition. Only queries are normalized before the MSA
because keys and values are normalized upon creation. The atten-
tion is performed between shuffled patches. The attention matrix
is diagonally masked to maintain pixel self-unawareness.

ever, this restriction could be bypassed by a simple permu-
tation learning within two consequent transformer blocks.
Input isolation makes it impossible: in every dot-product
of the attention, only one of the components is aware of
its surroundings, as keys and values are projected with a
single-patch field of view and frozen from the beginning.

Additionally, unlike in standard encoder-decoder archi-
tectures, encoder blocks in SwinlA run in parallel. Since
the patch size increases in the encoder flow, bigger patches
would consist of context-aware smaller patches from the
previous level. As a result, the noise would leak, and the
model would learn a simple identity function (see Tab. 5).

Unblinding is achieved during inference by removing
the diagonal mask and thus applying the complete set of
attention weights to values:

MSA a1 (Q, K, V) = SoftM (QKT>V 6)
eval s 13 =00 ax \/ﬂp .

Intuitively, this allows to propagate pixel’s own signal by
iteratively re-weighting it with the most similar neigh-
bors throughout the network. Since attention matrix
does not contain learnable components and simply reflects
(self-)similarity of pixel embeddings, unmasking the main
diagonal maintains the learned modality and does not dis-
rupt the forward pass.
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train
test

Gaussian o = 15

Gaussian o = 25 Gaussian o = 50

Method BSD68 Set12 BSD68 Setl2 BSD68 Setl2
Supervised Noise2Clean 1 31.58/0.889  32.60/0.899  29.02/0.822  30.07/0.852  26.08/0.715  26.88/0.777
“p SwinlR 1 31.97/ — 33.36/ — 29.50/ — 31.01/ — 26.58/ — 2791/ —
R2R 1 50 31.54/0.885 32.54/0.897 28.99/0.818 30.06/0.851 26.02/0.705 26.86/0.771
Self-su Noise2SelfT 1 1 30.63/0.843 29.88/0.840 28.88/0.789  28.37/0.799  26.19/0.664  25.56/0.692
P Noise2Same' 2 1 30.85/0.850 30.02/0.849  29.13/0.800 28.54/0.814  26.75/0.714  26.13/0.744
Blind2Unblind 17 1  31.44/0.884 32.46/0.897 28.99/0.820 30.09/0.854 26.09/0.715 26.91/0.776
Self-sup. Lainel9 4 4 — 28.84/0.814 — 25.78/0.698 —
(true BSN)  SwinlA (ours) 1 1 31.84/0.885 31.04/0.882 30.01/0.837 29.61/0.848  27.23/0.743  26.88/0.772

Table 1. Grayscale image denoising results for BSD68 and Set12 with synthetic noise along with the method description (supervision type
and number of train and test passes). The highest PSNR(dB)/SSIM among self-supervised denoising methods is highlighted in bold, the
second-best is underlined. T denotes the models that we implemented and trained ourselves.

5. Experimental results

For our experiments, we chose a model configuration
with embeddings of dimensionality 144 throughout the net-
work, 16 attention heads in each block, and windows of size
8 x 8. We extensively test SwinlA against state-of-the-art
self-supervised denoising methods on synthetic and real-
world data. Since SwinlA is a BSN and inevitably loses
information because of hiding pixels from themselves, we
separately focus on comparison with methods with similar
properties [16]. We use peak signal-to-noise ratio (PSNR)
and structural similarity index (SSIM) for evaluation. Train-
ing process is described in detail in Appendix C.

5.1. Synthetic noise (grayscale)

Following Wang et al. [35], we use BSD400 [41] for
training and test on Setl12 and BSD68 [30].We apply Gaus-
sian noise with o = {15, 25,50} to the images. For evalu-
ation, we repeat BSD68 4 times, and Set12 20 times. This
results in 512 (272 and 240) testing images in total.

The results are summarized in Tab. 1. On BSDG6S,
SwinlA ranked first for all noise levels. Apart from self-
supervised methods, SwinlA beats SwinlR — a super-
vised denoising transformer. Interestingly, we obtained
lower scores on Setl2 but still consistently outperformed
Noise2Self and Noise2Same and tailed the scores of R2R
and Blind2Unblind. We also improved over the other
BSN [16] by +1.31dB PSNR on BSD68 on average.

5.2. Mixture synthetic noise

We experiment with the sSRGB natural images dataset
(ImageNet) and grayscale Chinese characters dataset
(HanZi) with a mixture of multiple noise modalities, fol-
lowing Xie et al. [37]. ImageNet dataset was generated by
randomly cropping 60 000 patches of size 128 x 128 from
the first 20000 images in ILSVRC2012 [6] validation set
that consists of 50000 instances. We use 978 images for

Method train test  ImageNet HanZi
NLM - - 18.04/ — 8.41/ —
BM3D - - 18.74/ — 10.90/ —
Noise2Clean 1 1 23.39/ — 15.66/ —
Noise2Noise 1 1 23.271 — 14.30/ —
Noise2 Void 1 1 21.36/ — 13.72/ —
Noise2Self? 1 1 21.33/0.574  14.16/0.512
Noise2Same 2 1 22.85/0.625 14.85/0.542
Blind2Unblind* 17 1 23.74/0.649  13.87/0.509
Noise2Info 2 1 22.60/ — 1443/ —
Lainel9 4 4 20.89/ — 10.70/ —
SwinlA (ours)' 1 1 23.91/0.668 14.92/0.574

Table 2. Denoising results on datasets with mixed synthetic
noise along with the method description (number of train and test
passes). The highest PSNR(dB)/SSIM among self-supervised de-
noising methods is in bold, while the second-best is underlined.
T denotes the models that we implemented and trained ourselves.
*Blind2Unblind diverged on HanZi with different learning rates,
so we provide average metrics of three runs after the 20th epoch.

testing. Poisson noise (A = 30), additive Gaussian noise
(o = 60), and Bernoulli noise (p = 0.2) were applied to the
clean images before the training.

HanZi dataset consists of 78 174 noisy images with
13029 different Chinese characters of size 64 x 64. Each
noisy image is generated by applying Gaussian noise (o =
0.7) and Bernoulli noise (p = 0.5) to a clean image. We se-
lect 10% of images for testing and use the rest for training.

We present the results in Tab. 2. SwinlA showed state-
of-the-art performance on both datasets, outperforming not
only Noise2Same and its recent modification Noise2Info
but also Blind2Unblind. It also outperformed another BSN
by Laine et al. [16] by 4+3.62dB PSNR on average.
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train
test

Gaussian o = 25

Gaussian o € [5, 50]

Method KODAK BSD300 SET14 KODAK BSD300 SET14
Traditional ~ CBM3D - - 31.87/0.868 30.48/0.861 30.88/0.854 32.02/0.860 30.56/0.847  30.94/0.849
Cumerviseq  Noise2Clean 11 3243/0.884 31.05/0.879 31.40/0.869 32.51/0.875 31.07/0.866 31.41/0.863
upervised Noise2Noise 11 3241/0.884 31.040.878 31.37/0.868 32.50/0.875 31.07/0.866 31.39/0.863
Selfsup.  Lainelo-pme 44 324000.883  30.99/0.877 31.36/0.866 3240/0.870 30.95/0.861 31.21/0.855
(Gaussian. j Honzakopme 1 1 3245 — 3100 — 3125/ — 3246/ —  3LI§ — 3125 —
Noisier2Noise 1 1 30.70/0.845 29.32/0.833  29.64/0.832 — — —
Self2Self 150 31.28/0.864 29.86/0.849 30.08/0.839 31.37/0.860 29.87/0.841  29.97/0.849
Noise2 Void 11 303200821 2934/0.824 28.84/0.802 30.44/0.806 29.31/0.801  29.01/0.792
Self-su Noise2Same! 2 1 30.77/0.841 29.50/0.834 29.53/0.827 30.78/0.835 29.49/0.823  29.34/0.817
P DBSN 2 1 31640856 29.80/0.839 30.63/0.846 30.38/0.826 28.34/0.788  29.49/0.814
R2R 150 32.25/0.880 30.91/0.872 31.32/0.865 31.50/0.850 30.56/0.855  30.84/0.850
NBR2NBR 2 1 3208/0.879 30.79/0.873 31.09/0.864 32.10/0.870 30.73/0.861 31.05/0.858
B2UB 17 1 32.27/0.880 30.87/0.872 31.27/0.864 32.34/0.872 30.86/0.861 31.14/0.857
DCD-Net 31 3227/0.881 31.01/0.876 31.29/0.862 32.35/0.872 31.09/0.866 31.09/0.855
Self-sup.  Lainel9 4 4 306200840 28.62/0.803 29.93/0.830 30.52/0.833 28.43/0.794 29.71/0.822
(true BSN)  SwinlA (ours)! 1 1 31.43/0.863 29.94/0.853 30.56/0.856 31.54/0.859  30.00/0.847  30.55/0.849
£ 7 Poisson A = 30 Poisson A € [5,50]
Method 5 2 KODAK BSD300 SET14 KODAK BSD300 SET14
Traditional ~ Anscombe - - 30.53/0.856 29.18/0.842 29.44/0.837 29.40/0.836 28.22/0.815 28.51/0.817
Superviseqg  Noise2Clean 31.78/0.876  30.36/0.868 30.57/0.858 31.19/0.861 29.79/0.848  30.02/0.842
up Noise2Noise 31.77/0.876  30.35/0.868 30.56/0.857 31.18/0.861 29.78/0.848  30.02/0.842
Self-sup.  Lainel9-pme 4 4 31.67/0874 30.250.866 30.47/0.855 30.88/0.850 29.57/0.841  28.65/0.785
(Poisson)*  Honzatko-pme 1 1 3167 — 30.25/ — 30.14/ — — — —
Self2Self 150 30.31/0.857 28.93/0.840 28.84/0.839 29.06/0.834 28.15/0.817 28.83/0.841
Noise2 Void I 1 2890/0.788 28.46/0.798 27.73/0.774 28.78/0.758  27.92/0.766  27.43/0.745
Selfsu Noise2Same! 2 1 27.73/0.747 26.69/0.714 26.78/0.735 27.44/0.738  26.36/0.700  26.37/0.721
ISUP- pDBSN 2 1 30.07/0.827 28.19/0.790 29.16/0.814 29.60/0.811 27.81/0.771  28.72/0.800
R2R 150 30.50/0.801 29.47/0.811 29.53/0.801 29.14/0.732 28.68/0.771 28.77/0.765
NBR2NBR 2 1 31.44/0.870 30.10/0.863 30.29/0.853 30.86/0.855 29.54/0.843  29.79/0.838
B2UB 17 1 31.64/0.871 30.25/0.862 30.46/0.852 31.07/0.857 29.92/0.852  30.10/0.844
DCD-Net 31 32350.872 31.09/0.866 31.09/0.855 31.00/0.857 29.99/0.855 29.99/0.843
Self-sup.  Lainel9 4 4 30.19/0.833 28.25/0.794 29.35/0.820 29.76/0.820 27.89/0.778  28.94/0.808
(true BSN)  SwinlA (ours)| 1 1  31.01/0.857 29.61/0.847 29.98/0.847 30.29/0.835 28.84/0.818  29.35/0.827

Table 3. Denoising results on synthetic SRGB datasets along with the method description (supervision type and number of train and test
passes). The highest PSNR(dB)/SSIM among self-supervised denoising methods is highlighted in bold, the second-best is underlined.
* denotes assuming known noise model. T denotes the models that we implemented and trained ourselves.

5.3. Synthetic noise (SRGB)

We follow Huang et al. [14] to create training and
test SRGB datasets. For training, we select 44328 im-
ages between 256 x 256 and 512 x 512 pixels from the
ILSVRC2012 [6] validation set. For testing, we use Ko-
dak [9], BSD300 [23], and Setl4 [39], repeated by 10, 3,
and 20 times, respectively. This adds up to 780 (240, 300,
and 240) test images. We apply four types of noise in SRGB:
Gaussian noise with (1) o = 25 and (2) o € [5, 50], Poisson
noise with (3) A = 30 and (4) A € [5, 50].

We present the results in Tab. 3. SwinlA consistently
supersedes the other BSN method by Laine et al. [16] and
most of the mask-based methods, especially with Poisson
noise, where we beat R2R by 0.5dB PSNR on average.
However, it did not compete with the state-of-the-art meth-
ods employing multiple passes in training and inference.

5.4. Natural noise in fluorescent microscopy

We use Confocal Fish, Confocal Mice, and Two-Photon
Mice datasets from the Fluorescent Microscopy Denoising
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Noisy input Noise2Self Noise2Same

PSNR: 32.19

PSNR: 34.79

PSNR: 35.39

Blind2Unblind SwinlA Ground truth

PSNR: 35.17

Figure 5. Kodak [9] (top), ImageNet [37] (middle), and FMD Two-Photon Mice [42] (bottom) denoising examples. Every predicted image
is cropped to a square for visualization presented with the corresponding PSNR score (in dB).

Dataset [42]. Each dataset consists of 20 views, each com-
prising 50 grayscale images of size 512x512. Each im-
age contains a natural mixture of Poisson and Gaussian
noise. Ground truth is obtained by averaging all images in
the view. We follow Wang er al. [35] and select the 19th
view for testing and the rest for training.

The results are presented in Tab. 4. SwinlA performed
competitively across all datasets, yielding either best or
second-best scores. Another BSN by Laine et al. [16] re-
quired knowledge about the noise model and performed
worse for the real-world data with noise mixture: SwinlA
was better by +0.91dB PSNR and +0.025 SSIM on aver-
age for both Gaussian and Poisson assumed distributions.

5.5. Ablation study

We ran ablation experiments on synthetic noise grayscale
datasets to validate our key architecture design elements.
The results are summarized in Tab. 5. In particular, we
experimented with alternative architectures without pixel
shuffle: dilated attention [10] and flat architecture without
encoder-decoder separation [19]. Both not only harmed the
performance but also considerably increased training time.
Removing the mask on inference led to a valuable perfor-
mance increase, which proves the necessity of unblinding.

We separately tested attention masking and input isola-
tion as unavoidable restrictions for self-unawareness, and
the full encoder flow — a configuration where the input is

Methods Confocal Confocal Two-Photon
Fish Mice Mice
BM3D 32.16/0.886  37.93/0.963  33.83/0.924
Noise2Clean 32.79/0.905 38.40/0.966  34.02/0.925
Noise2Noise 32.75/0.903  38.37/0.965  33.80/0.923
Laine19-pme (G) 23.30/0.527 31.64/0.881 25.87/0.418
Lainel9-pme (P)  25.16/0.597 37.82/0.959  31.80/0.820
Noise2Void 32.08/0.886  37.49/0.960  33.38/0.916
NBR2NBR 32.11/0.890  37.07/0.960  33.40/0.921
Noise2Self* 31.96/0.877 36.45/0.960 31.61/0.910
Noise2Same 32.36/0.893  37.64/0.960  33.55/0.917
Blind2Unblind 32.74/0.897 38.44/0.964  34.03/0.916
CADT 32.52/0.895 38.21/0.962  33.64/0.914
Lainel9 (G) 31.62/0.849  37.54/0.959  32.91/0.903
Lainel9 (P) 31.59/0.854  37.30/0.956  33.09/0.907
SwinlA (ours)* 32.65/0.904 38.21/0.966  33.90/0.920

Table 4. Denoising results on Fluorescent Microscopy datasets.
The highest PSNR(dB)/SSIM among self-supervised denois-
ing methods is highlighted in bold, while the second-best is
underlined. For Laine et al. [16], G — Gaussian, P — Poisson.
T denotes the models that we implemented and trained ourselves.

sequentially propagated down the encoder blocks allowing
context awareness inside of patches. All three experiments
resulted in learning the identity function and poor scores.
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1 epoch

Experiment . BSD68 Setl2
(min)

Our best 11.5 30.01/0.837 29.61/0.848
Dilated attention 14.5 29.90/0.830  29.63/0.842
Flat architecture 14.5 29.87/0.826  29.62/0.840
Masked inference 11.5 29.35/0.816  28.92/0.832
No attention mask ™ 11.5 20.45/0.380  20.33/0.394
No input isolation™ 12 20.51/0.379  20.39/0.383
Full encoder™ 11.5 21.22/0.396  21.01/0.402
Larger window (12) 47 30.09/0.840  29.69/0.850
Smaller window (6) 7 29.79/0.830  29.37/0.842

Table 5. Ablation results on grayscale data with synthetic Gaus-
sian noise (0 = 25). The experiments marked with * ended up
learning the identity function.

We also experimented with the attention window size.
Larger window size w requires larger training crops p be-
cause of downsampling and is computationally expensive
since the attention computation complexity is ©(w?). For
w = 12, p = 96, the training was four times longer. The in-
creased context provided a marginal gain of +0.08/+0.003
PSNR/SSIM on average, while decreasing it to w = 6,p =
48 reduced the scores by -0.23/-0.006 (see Tab. 5).

6. Discussion

The flexibility of transformer architecture allowed us
to build an assumption-free SwinlA model that has many
strengths. First, it is robust across various noise types and
image modalities. Most notably, it achieves state-of-the-art
performance for the most complex synthetic mixed noise
datasets and several others. Second, our model is optimized
by minimizing a simple loss function without tunable hy-
perparameters. The main competitors, Blind2Unblind [35]
and DCD-Net [43], have multiple empirically set loss con-
stants changing according to the selected training schedule.
Finally, SwinlA uses a single forward pass in both train-
ing and inference allowing to decrease time and compute,
which is especially important for a transformer-based model
(most competitor models use multiple passes, as we report
in our tables with results). In our experiments, SwinlA
trains twice faster than Blind2Unblind on the same hard-
ware (see Appendix C for the details).

The versatility of a true blind-spot model comes with
limitations. The pixel itself contains the most useful in-
formation about its true signal, which is inevitably lost in
the training process. However, we are able to remove the
attention mask during inference and allow pixels to attend
to their initial values. This is not possible in a convolu-
tional BSN where hiding is done through zeroing trainable
weights [13,36] or excluding the central pixel from the field
of view [16]. We further discuss and visualize our unmask-

Original image

Original (Otsu)

SwinlA (2 clusters)
S v e

Figure 6. Binary thresholding on FMD Confocal Mice. We apply
Otsu thresholding [25] to the original image (middle column) and
k-means with & = 2 to the final feature map of SwinlA (right
column). A part of each image is zoomed (bottom row), and the
blurry and half-light cells are highlighted with red circles.

ing in Appendix A. Also, a BSN assumes spatially uncor-
related noise, which is not the case for many digital pho-
tography datasets because of hardware pixel interpolation.
This problem can be mitigated with increased patch size or
dilated attention resembling the approach by Lee et al. [17].
Transformers are known for their ability to extract rich
representations from large datasets, and we expect our
method to improve with increasing training set size. Be-
sides, being conceptually similar to the language modeling
objective [3 1], our solution could be used in self-supervised
pre-training to produce pixel embeddings for downstream
image tasks. Fig. 6 shows an example of SwinlA embed-
dings clustering into segmentation masks. Fig. 6 also fea-
tures Otsu thresholding [25] to ensure that quality masks are
not simply obtainable straight from the noisy input. In Ap-
pendix B, we show more examples of feature clustering,
also comparing to other models. We leave further inves-
tigation of the feature extraction abilities for future work.

7. Conclusion

We propose SwinlA, the first convolution-free trans-
former architecture for blind-spot self-supervised denois-
ing. Unlike its counterparts, it does not require access to
clean data or assume any noise distribution. SwinlA also
does not use input masking and can be trained in an au-
toencoder fashion with a single forward pass and an MSE
loss. Finally, it does not require multivariate hyperparame-
ter tuning and achieves competitive results, outperforming
state-of-the-art methods on several common benchmarks
and showing robustness to different kinds of synthetic and
natural noise in images of various modalities.
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