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Figure 1. a) Interactive coarse-to-fine attribute exploration. We propose a principal approach to generate and explore diverse attribute

edits. A user can first select from a large set of coarse attribute edit variations and then explore more fine attribute variations hierarchically.

b) Diverse attribute editing. The proposed method generates diverse attribute edits by learning a space of plausible attribute variations.

Abstract

Image attribute editing is a widely researched area fu-

eled by the recent advancements in deep generative models.

Existing methods treat semantic attributes as binary and do

not allow the user to generate multiple variations of the at-

tribute edits. This limits the applications of editing methods

in the real world, e.g., exploring multiple eyeglass varia-

tions on an e-commerce platform. In this work, we present

a technique to generate a collection of diverse attribute ed-

its and a principled way to explore them. Generation and

controlled exploration of attribute variations is challenging

as it requires fine control over the attribute styles while pre-

serving other attributes and the identity of the subject. Cap-

italizing on the attribute disentanglement property of the la-

tent spaces of pretrained GANs, we represent the attribute

edits in this space. Next, we train a diffusion model to model

these latent directions of edits. We propose a coarse-to-fine

sampling strategy to explore these variations in a controlled

manner. Extensive experiments on various datasets estab-

lish the effectiveness and generalization of the proposed ap-

proach for the generation and controlled exploration of di-

verse attribute edits. Code is available at - project page.

1. Introduction

Recent advancements in deep generative models [8, 24,

45, 47] have unlocked multiple image editing and synthe-

sis applications. Of particular interest is fine-grained at-

tribute editing, where a given attribute (e.g., eyeglasses

or hairstyles) needs to be edited without altering other at-

tributes or the subject’s identity. Existing editing methods

either consider attributes as binary [3, 40] and generate a

single edit or perform text-based edit to generate a few plau-

sible edits [16, 39, 40]. However, attributes have many ap-

pearance, shape, and style variations in the real world. For

example, multiple variations across eyeglasses, smiles, and

hairstyles exist.

The ability to generate and select from multiple attribute

edit variations significantly enriches the user experience.

For e.g., a user wants to try out various eyeglasses in a vir-

tual try-on interface before selecting a preferred one. Fur-

ther, a principled way of exploration is desired where a

user can first select among coarse variations such as cooling

glasses or reading glasses, then explore more fine variations

This WACV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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of the selected coarse style (ref. Fig. 1a)). We termed such a

hierarchical exploration of edits a coarse-to-fine exploration

and believe this is a natural way of exploring multiple op-

tions. In this work, we raise the following questions - i)

How do we generate multiple variations of a given attribute

edit? ii) How do we explore the generated variations in a

coarse-to-fine manner?

One plausible solution is to use text-based editing us-

ing a pretrained generative model [16, 38, 40]. However,

text represents concepts at a semantic level and limits the

description of finer aspects of attributes (such as eyeglass

shapes). Instead, we propose to train a generative model to

learn the distribution over all attribute variations to sample

new edits. Specifically, we model the attribute distribution

with a Diffusion Model (DM). Further, to enable a finer ex-

ploration, we design a hierarchical sampling of DM that en-

ables coarse-to-fine sampling of attribute edits. Gathering

a real dataset with multiple attribute edits per input image

is extremely challenging. Motivated by the success of re-

cent methods leveraging synthetic paired datasets for train-

ing models [6, 25, 28, 59], we gathered a synthetic dataset

of paired images before and after edit. This dataset can be

cheaply obtained using existing editing methods that are de-

signed to perform single edits.

To model this distribution effectively, we need a dis-

entangled and semantically meaningful feature space of

attributes. We note that the latent spaces of style-based

GANs [23, 24] are semantically rich and provide fine-

grained control for attribute editing [3, 15, 40, 48] which

makes them suitable for modeling and exploring fine at-

tribute variations. We first establish the existence of sub-

regions in the latent space that control variations of a single

attribute and model them with a DM for guided exploration

of diverse variations.

We apply DM in the latent space of pretrained style-

based GANs to model the distribution over diverse attribute

variations. DMs applied in the latent space: i) enable a con-

trolled exploration of attribute variations by controlling the

denoising trajectory for coarse-to-fine sampling; ii) covers

diverse attribute variations due to excellent mode coverage.

Notably, as we apply DM in compressed latent space, it en-

ables efficient training and inference. To the best of our

knowledge, we are the first to use the DM to model the la-

tent space of pretrained GANs.

A major challenge is the evaluation of the quality of the

diverse attribute edits. Specifically, we want to evaluate the

localized diversity in attribute variations along with disen-

tanglement from other attributes. Existing metrics such as

FID [17] compute the overall quality of edits globally. Sec-

ondly, popular disentanglement metrics such as attribute

scores rely on attribute classifiers, which can be biased

[33]. To this end, we propose a novel metric Attribute Di-

versity Score (ADS), that measures both localized diversity

in the attribute variations and disentanglement with other

attributes. ADS uses the semantic mask of the attribute and

quantifies the variations in the desired attribute region vs

other attribute regions.

We extensively evaluated our method for diverse at-

tribute editing on multiple datasets. The proposed method

can achieve highly diverse attribute edits while preserving

the subject’s identity. Additionally, the proposed coarse-

to-fine sampling enables guided exploration of diverse at-

tribute variations. Further, we present detailed ablations and

results for the edits on out-of-distribution painting images

from Metfaces [22]. Our method generalizes to 3D aware

GAN model [8] and performs diverse face attribute editing

with 3D consistency. Our main contributions are as follows:

1. A method to generate diverse attribute editing and en-

abling coarse-to-fine exploration of attributes.

2. Diffusion model in the latent space of pretrained style-

based GANs and a novel hierarchical sampling method

during the reverse diffusion process.

3. Extensive experiments and results for diverse attribute

editing on multiple datasets, generalization results on

3D-aware GANs, and out-of-domain images.

4. A novel metric ADS to evaluate both diversity and dis-

entanglement in the generated attribute variations

2. Related work

Image editing with latent manipulation Various image

and video editing works have been proposed that leverage

semantics in the latent space of GANs [3, 15, 36, 40, 51, 53]

and diffusion models [12, 14, 27, 35, 37, 43] to edit images.

One direction of works obtains a global edit direction in the

latent space for each attribute [12, 15, 43, 48, 50]. Traver-

sal along these global directions edits the corresponding at-

tribute in the generated image. Another cohort of methods

obtains a local direction for each latent code. Essentially,

a non-linear mapping is learned between the input latent

code and the desired edit code, using transformer networks

[19, 54], a mapper network [40]. To obtain the edit direc-

tion for a given attribute, these works use - attribute clas-

sifiers [3, 29], segmentation masks [30], clip-supervision

[2,40,60] or perform unsupervised decomposition of the la-

tent space [15, 49, 57]. StyleFlow [3] learns a conditional

normalizing flow network to learn a deterministic mapping

from a source latent to a single edited latent code for each

attribute. To enable editing on real images, encoder-decoder

frameworks have been proposed that map the real image

into the W+ space and use StyleGAN’s generator as the

frozen decoder after latent editing [1, 5, 44, 52].

Non-binary attribute editing. Some editing works try to

model the continuous attribute variations instead of treating

attributes as binary. Works like [40, 56] obtain directions

for non-binary attributes such as image style or expression
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Figure 2. The methodology we present for diverse attribute editing comprises three major stages: a) Dataset Generation. We create a

dataset of edit directions by embedding negative and positive image pairs into the latent space and computing the difference between these

directions. b) Training. We train a DDPM model over the dataset of edit directions for the given attribute employing a denoising objective.

c) Inference. For editing, we add a sampled latent edit direction to the encoded latent of a source image.

change, but they also use a single edit direction for the given

attribute/style. Unsupervised methods [15, 57] can learn

a finite set of disentangled directions controlling each at-

tribute. StyleSpace [53] learns a set of disentangled vectors

in style space controlling each attribute. However, these

methods learn only a finite set of edit directions and can-

not cover all the possible variations for any given attribute.

FLAME [36] proposed a task of attribute style manipula-

tion, where they generate edit variations by navigating in the

attribute manifold. Furthermore, StyleFusion [20] showed

that a pre-trained StyleGAN could be used to decompose

spatial semantic regions. In contrast to these approaches,

we learn a distribution over edit directions for a given at-

tribute and sample multiple variations of an edit.

Diffusion Models (DMs) are likelihood-based models that

have achieved state-of-the-art performance in sample gener-

ation [45] and density estimation [10]. In contrast to GANs,

DMs, being likelihood-based models, prevent mode col-

lapse and learn rich multi-modal distributions. DMs mod-

eled as hierarchical denoising autoencoders [18] are trained

to iteratively denoise images starting from pure noise. Due

to the sequential nature of DMs, applying them in the pixel

space for high-resolution images leads to high training costs

and slow inference speeds [10]. To this end, latent diffusion

models (LDMs) [45] have been proposed to first encode the

images into much lower dimensional spatial latent codes

and apply DM in the latent space. A range of works have

been proposed that leverage the rich text-to-image diffusion

models to perform semantic text-based editing [6, 16, 39],

however they are unable to generate fine-grained attribute

variations. Subsequently, multiple works are proposed that

perform latent space diffusion for motion synthesis [9], lan-

guage generation [32], point clouds generation [58], gener-

ating brain imaging [42]. We apply the diffusion model on

the highly compressed W+ to model attribute variations.

3. Method

We formulate the task of diverse attribute editing as a

distribution learning problem over the attribute variations.

Specifically, we train a generative model GA for attribute A,

representing all of its variations and enabling a controlled

way of exploring them. Instead of learning GA in the im-

age space where multiple attributes can be entangled, we

propose to learn GA over a lower dimensional disentangled

latent representation F(x). Such a formulation does not

only help in exploring attribute variations in a disentangled

manner but is also extremely computationally efficient due

to lower dimensional representation. We use W/W+ la-

tent space of pretrained style-based GAN models [8, 24] as

F , due to their exceptional attribute disentanglement prop-

erties. Specifically, semantic edit directions exist in the la-

tent space responsible for disentangled editing of a single

attribute [15, 48]. We train a DM to implement GA over a

dataset of attribute editing directions DA in the W latent

space. We choose DM to model GA, as it enables fine-

grained control in the sampling process due to the hierar-

chical nature of denoising [34]. Additionally, it has excel-

lent mode-covering abilities, which is crucial to model all

attribute variations.

Our overall method is shown in Fig. 2. In the follow-

ing, we first explain dataset creation (Sec. 3.1), followed by

model training (Sec. 3.2) and inference (Sec. 3.3). Finally,

we present coarse-to-fine sampling of DM for a guided ex-

ploration of various attribute variations (Sec. 3.4).

3.1. Data Generation

Gathering a real-world dataset of disentangled attribute ed-

its is extremely challenging. Several recent works [6,25,28,

41,59] have shown the efficacy of generating paired datasets

from existing models for training specialized models. Mo-

tivated by this, to learn the distribution of diverse edits, we

gather a synthetic dataset of image pairs with and without
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the attribute edits. This synthetic dataset can be easily ob-

tained using popular existing editing methods [4,16,38,40].

Note that these approaches can not be directly used for di-

verse editing as they only provide a single edit output per

input image. The gathered dataset consists of image pairs of

a positive image Ip
A

(which has the attribute A) and a neg-

ative image In
A

(which does not have A). Next, we embed

these pairs in the latent space using a GAN encoder model

E [44] and obtain an edit direction dA, where dA = E(Ip

A
)

- E(In

A
). This yields a dataset DA of diverse edit directions

for attribute A. We show the distribution of cosine similar-

ity of the edit directions with the mean attribute edit direc-

tion in Fig. 3-Right. Observe that the obtained directions

have high diversity and do not align with the mean direc-

tion. We have provided dataset samples and details about

methods used for creation in the supplementary. We note

that the inaccuracies in the editing methods could translate

into the training dataset. However, our goal is to propose a

generalized framework for diverse attribute editing, which

will automatically benefit from the advancements in image

editing methods designed for generating single edit output.
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a) Latent region for eyeglasses variations b)  Distribution of similarity with mean edit direction

Figure 3. (Left) Latent region capturing diverse attribute styles in

the W/W+ latent space of style-based GANs. (Right) Histogram

of the Cosine Similarity of all edit directions with the mean direc-

tion. The spread of values suggests that the editing directions,

although for the same attribute, showcase a large variety.

3.2. Training

We train a DDPM model GA over the dataset of edit di-

rections DA to model the variations of attribute A. Dif-

fusion models enable modeling the rich multimodal dis-

tribution of attribute variations present in the W/W+ la-

tent spaces. Additionally, it enables a hierarchical control

over sampling attribute variations in a coarse-to-fine man-

ner (Sec. 3.4). During training, we randomly sample a edit

direction d0 ∈ DA, and corrupt it with a Gaussian noise ϵ

∼ N (0, I) (shown in Fig. 2).

dt =
√
³̄td0 +

√
1− ³̄tϵ (1)

with ³̄ =
∏T

i=1 ³i, and 0 = ³T < ³T−1 < ..... < ³0 = 1,

being hyperparameter of diffusion schedule. We implement

the denoiser network ϵθ(dt, t) as a time-conditioned Multi-

Layer Perceptron (MLP) network. To train the denoising

network, we use the simple loss [18], between added noise

ϵ and ϵθ(dt, t):

Lsimple = Ed0,t,ϵ[∥ϵ− ϵθ(dt, t)∥22] (2)

As a normalization step, we subtract the mean direction mA

from the edit directions and normalize them to unit length

before training GA. The mean mA is computed by averag-

ing over all directions di ∈ DA. Intuitively, it disentangles

the attribute’s presence (controlled by the mean) from its

variations and enables explicit modeling of only attribute

variations. We empirically observe that having this prepro-

cessing improves the models’ performance.

3.3. Diverse attribute editing

Given a source image Is to be edited, we first embed Is to

its corresponding latent code ws, where ws = E(Is). Next

we sample a new edit direction d0 from GA by iterative

denoising of a noisy sample dT ∼ N (0, I). Similar to

the truncation trick for sampling latent code (w′ = w̄ +
µ(w − w̄)) in W space, we obtain edit direction d

′ with

mean subtracted sampled direction d0. Finally, we multiply

with a scale factor ¼ before adding it to the source latent.

we = ws + ¼d′ where d
′ = mA + µd0 (3)

The edited latent code we is then passed through the pre-

trained style-based generator model GI to obtain the edited

image Ie, where Ie = GI(we) (Fig. 2). We define µ as

the diversity parameter and ¼ as the scale parameter as they

control the diversity and strength of the edits, respectively.

Intuition. The hyperparameter µ controls the diversity in

the edits; higher µ will generate edit directions that deviate

from the mean edit direction and result in diverse edits. ¼
controls the strength of the edit, smaller ¼ values result in

very subtle changes in the output, and large ¼ values gener-

ate substantial edits.

3.4. Coarsetofine sampling

Directly using Eq. 3 to sample can already provide us with

multiple plausible attribute edits; however, it lacks con-

trolled exploration over attribute variations. To this end, we

propose a modified sampling from GA by ‘hijacking’ the re-

verse diffusion process based on a coarse edit. Specifically,

we aim to explore the variations hierarchically by first gen-

erating a set of coarse attribute variations from which to

select. Next, we explore fine-grained variations of the se-

lected coarse variation as shown in Fig. 1. Such a coarse-

to-fine exploration process is highly intuitive to the user

and is common in selecting accessories in the real world.

We leverage the hierarchical nature of the image generation

process during reverse diffusion, similar to [34], to enable

coarse-to-fine exploration of attribute styles. The proposed

sampling process is shown in Fig. 4, where we start with

a sample dT ∼ N (0, I). Next, we iteratively de-noise it

using the reverse process to obtain an edit direction d0. To

obtain fine-grained variations for the generated edit direc-

tion d0, we denoise the intermediate sample at t0, dt0 mul-

tiple times to obtain fine-grained variations of d0. Detailed

procedure is presented in Algorithm 1. The time split hyper-

parameter t0, controls the extent of fineness in the attribute

variations (ref. Fig. 9).
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Figure 4. Modified reverse process for hierarchical coarse-to-fine

sampling of attribute variations. Starting from two noises d0

T and

d
1

T, we generate two coarse edit directions d0

0 and d
1

0 by iterative

denoising. To obtain the fine variations of d1

0, we denoise it again

from d
1

t0
to obtain another trajectory. The denoised trajectory will

have similar coarse structure details and variations in only the fine

details as it started from intermediate time step t0. The split time

t0 controls the fine-ness of the exploration.

Algorithm 1: Coarse-to-fine sampling

Data: Diffusion model ϵθ , split timestep t0, Number of

fine variations n
Result: Coarse variation d0 and corresponding fine

variations {d10, d20, . . . , dn0 }
dT ∼ N (0, I);

for t in T → 1 do

dt−1 = dt −
√
1− ³t · ϵθ(dt, t);

end

for i in 1 → n do

dit0 = dt0 ;

for t in t0 → 1 do

dit−1 = dit −
√
1− ³t · ϵθ(dit, t);

end

end

Return: d0, {d10, d20, . . . , dn0 };

4. Experiments

We perform extensive experiments and ablations to evalu-

ate our model for diverse attribute editing. First, we discuss

the dataset, implementation details, and novel Attribute Di-

versity Score metric. Next, we present results on diverse

attribute editing for faces, out-of-domain face images from

Metfaces [22], cars, and church datasets and finally show-

case 3D-aware attribute editing on EG3D [8]. Please check

the accompanying website for more visual results.

Dataset. We synthetically create image pairs with a sin-

gle attribute change as explained in Sec. 3.1. Specifically,

we used StyleCLIP [40] method to edit 30K images from

CelebA-HQ [21] dataset for hairstyle attribute. We used the

original and edited images as the attribute pairs to obtain

edit directions. For eyeglasses and smile attributes, we syn-

thetically created the image pairs by cut-pasting the region

of interest similar to [7]. For age, we generated image pairs

using the age editing method [4]. For the car dataset, we

used StyleCLIP [40] on Stanford cars [26] dataset to obtain

the image pairs dataset. Note that our method can use any

existing editing method to generate image pairs.

Implementation Details. To learn a distribution over edit

directions for each attribute, we train a separate DDPM

model over the dataset of edit directions Da for each at-

tribute. The denoising MLP network has 10 fully connected

layers along with time-conditioning and skip connections.

Details about the architecture are provided in the SM. We

trained the model for 200 epochs with a batch size of 256.

As there is a semantic hierarchy across layers in the Style-

GAN2 generator, we select a subset of layers for editing

each attribute. In our face experiments, the following lay-

ers work best for each attribute (the layer numbers are 0-

indexed): layers 5 − 7 for eyeglasses, 4 − 6 for hairstyles,

5−6 for the smile and 4−6 for age attribute. We have used

the same set of layers for editing on EG3D latent codes as

well. For car experiments, we have used layers 4 − 7 and

layers 4− 8 for church editing.

4.1. How to evaluate attribute edit variations?
Two major aspects to effectively measure diverse attribute

editing are - diversity and disentanglement in edits.

Attribute diversity reflects the variations in the target at-

tribute edits for a given input image. Existing metrics for

diversity - Fréchet Inception Distance (FID) [17] and In-

ception Score (IS) [46], measure the global diversity and

are not suitable for attribute edit variations which are local-

ized in a small image region. E.g., for eyeglass editing, we

expect variations in eyeglass shapes and color, which are

localized in small regions near the eyes.

Attribute disentanglement measures the undesired

changes in other attributes while editing the target attribute.

Existing metrics use pretrained attribute classifiers to

quantify attribute disentanglement [48]. However, attribute

classifiers can mimic the dataset bias [33], which is

common in face datasets [31] (eyeglasses correlated with

age). We propose quantifying the attribute disentanglement

without using attribute classifiers by measuring the changes

in edit variations in spatial regions of other attributes.

Attribute Diversity Score (ADS) combines attribute diver-

sity and disentanglement in a single metric. For diverse

editing, we wish to maximize the changes in the regions

associated with target attribute A while minimizing the di-

versity in the regions for other attributes. Given a source

image Is, we edit it M times for attribute A to obtain a set

of edited images {Ie
1 , ...Ie

M}. Next, we subtract the source

image from all the edited images to obtain a set of difference

maps Hi = Ie
i −Is, which captures pixel-wise change. Fur-

ther, we compute the per-pixel standard deviation of Hi’s to

obtain attribute diversity map PA to capture the pixel-wise
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Table 1. Comparison with attributed editing methods

Attribute Method CS ↑ FID ³ ADA ↑ ADAc ³ ADS ↑

Smile

FLAME 0.946 46.60 0.380 0.377 1.007

N-Flow 0.968 49.04 0.356 0.356 1.000

LatentCLR 0.955 60.21 0.391 0.390 1.003

Ours 0.969 49.51 0.401 0.324 1.240

Eyeglass

FLAME 0.942 90.35 0.404 0.361 1.120

LatentCLR 0.975 75.42 0.351 0.335 1.047

N-Flow 0.952 65.24 0.376 0.366 1.026

Ours 0.958 66.51 0.401 0.305 1.317

Hairstyle

FLAME 0.972 46.27 0.419 0.386 1.086

N-Flow 0.967 49.55 0.383 0.366 1.046

LatentCLR 0.969 68.83 0.384 0.381 1.007

Ours 0.975 45.11 0.416 0.361 1.152

variations in the edits. We aggregate the attribute diversity

map for N source images to obtain a mean diversity map

P̄A for attribute A which signifies the diversity in regions

associated with A as shown in Fig. 5.

ADA =
∑

(x,y)

MA(x, y) · P̄A(x, y) (4)

ADAc =
∑

(x,y)

(1−MA(x, y)) · P̄A(x, y) (5)

where ADA is the attribute diversity for attribute A and

MA is the semantic mask for the regions associated with

attribute A. We normalize the ADA and ADAc , with the

number of pixels for region corresponding to A and Ac.

The ADS for attribute A is defined as ADS = ADA

ADAc

. The

obtained ADS quantifies both the attribute variations and

disentanglement in a single metric and is reported in Tab. 1.

Hairstyles Eyeglasses Smile

Figure 5. Aggregated attribute diversity map for hairstyle, eye-

glasses, and smile editing. Observe that the diversity maps signify

variation across multiple edits for each attribute.

4.2. Diverse attribute editing

We present results for hairstyle, smile, eyeglass, and age at-

tribute variations generated by our method in Fig. 6. Addi-

tional results of our method are present in SM. Our method

generates different hairstyles - bangs, mohawks, curls, and

short hairs while retaining other features. Similarly, our

method can generate diverse smile and age variations in a

disentangled manner with identity preservation. Our pro-

posed method can generate diverse eyeglasses with varia-

tions in frame shapes, sizes, and frame colors. Observe

that all the edit variations preserve the subject’s identity and

other attributes. We present diverse attribute edits on real

images in Fig. 6-Bottom. Additionally, we present diverse

attribute edits on cars and churches in SM and Fig. 8.

Quantitative comparison. We generate five edits for each

attribute for a synthetic test set of 1000 images to evaluate

the quality and diversity of the edits. We compute FID [17],
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Figure 6. Diverse attribute editing on synthetic (Top) and real

(Bottom) face images for several face attributes.

cosine similarity between face embeddings [11] (CS), at-

tribute diversity (ADA), attribute entanglement (ADAc ),

and Attribute Diversity Score with M = 200 and N = 100
as explained in Sec. 4.1. We compare our method against

- 1) N-flow [13, 55] - a normalizing flow model trained

on our dataset of edit directions to learn the distribution of

edits, 2) FLAME [36], which is a few-shot method and

performs diverse edits by generating random linear com-

binations of diverse attribute edit directions. However, This

simplistic approach provides attribute variations susceptible

to attribute entanglement and identity distortion indicated

by higher ADAc score. 3) LatentCLR [57], an unsuper-

vised method that learns a set of disentangled directions for

editing. We trained a non-linear version of LatentCLR and

manually selected the edit directions for each attribute. We

used the original codebase for LatentCLR and implemented

FLAME ourselves due to the unavailability of the official

code (details in SM). Results are shown in Tab. 1. We note

that the proposed method performed best in identity preser-

vation and visual quality measured by CS and FID. Notably,

it achieves the highest ADS by a large margin with the low-

est entanglement (ADAc ) in most cases, suggesting highly

disentangled and diverse attribute edits. It’s important to

highlight that none of these baselines can allow for coarse-

to-fine attribute edit exploration, whereas our method lever-

ages the sequential denoising of DMs to obtain hierarchical

control in sampling (Fig. 8).

Qualitative comparison. We present qualitative results of

comparison of diverse hairstyle generations in Fig. 7. We

can observe that FLAME can generate variations, but the
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Figure 7. Comparison with existing methods for hairstyle varia-

tions. Our method generates diverse attribute variations with su-

perior attribute disentanglement and identity preservation.

identity and other facial attributes of the subject are altered.

N-Flow cannot generate diverse enough variations and re-

sult in identity change (column 3). LatentCLR significantly

entangled the age, skin color, lighting, and subject’s iden-

tity during editing. The proposed method can generate di-

verse hairstyle variations like curls, texture, and bangs while

preserving the subject’s identity and other attributes. We

also compare with a text-to-image diffusion-based editing

for shape variation [39] in SM.

4.3. Hierarchical Sampling of Attributes

Due to edits being modeled via a diffusion model, our pro-

posed method enables us to explore attribute variations in

a coarse-to-fine manner (ref. Sec. 3.4). We present results

for hierarchical sampling in Fig. 8 for eyeglasses, church

styles, and classic car styles. We start with a source image

and obtain two different coarse attribute edit directions that

define the overall structure of the edit. Next, we sample 3
new edit directions for each coarse style, which follow the

same coarse structure (e.g., shapes such as curls, bangs, and

short hair) but have subtle fine variations (e.g., texture in

case of hairstyles). Fine hairstyle variations are obtained

for each of the two coarse variations. Similarly, we obtain

two coarse structures for churches and cars and then gen-

erate finer variations, such as the headlamp shape. Such a

hierarchical sampling facilitates methodical exploration of

diverse attribute editing, which is an intuitive way to first

choose from coarse styles and then finetune them as per the

user’s choice. More results are in SM.

Analysis for split timestep t0. We ablate over t0 - de-

noising timestep at which we start generating fine variations

(ref. Fig. 4), to quantify its impact on hierarchical sam-

pling. We visualize the generated diverse fine variations in

Fig. 9-a). A large value of t0 results in more broad varia-

tions such as eyeglass shapes and shades; on the contrary,

splitting at later timesteps (t0=100) generates subtle varia-
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Classic Car
editing
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Editing
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Figure 8. Hierarchical sampling of diverse attribute variations in

a coarse-to-fine manner. First, we sample two coarse variations

of edits and then generate fine variations corresponding to the se-

lected coarse variation, providing a fine-grained control.

tions in eyeglass shapes. The parameter t0 provides gran-

ular control over the fineness in the variations, and a user

can select based on preference. This is quantitatively sup-

ported in Fig. 9-b), where we plot ADS with edits generated

against split timesteps.

4.4. Ablation Study

Diversity parameter γ. We quantitatively analyze the ef-

fect of γ in Fig. 10b, where we use FID to measure diver-

sity and Cosine Similarity (CS) to measure the similarity

between the identity of the source image and the edited im-

age. As γ increases, the FID score decreases, indicating the

generation of more diverse edits at the cost of an inferior

CS score, suggesting identity distortion. Through our ex-

periments, we conclude that γ values for eyeglasses, smile,

and hairstyle are 12, 12, 14, respectively.

Strength parameter λ. We analyze the effect of λ for eye-

glass edit. We measure the presence of Eyeglass in the

edited image with Eyeglass Score (ES), obtained using eye-

glass classifier from [23] and identity preservation with CS

score in Fig. 10a. To validate the effect of strength param-

eter λ agnostic to the diversity, we kept the product λ ∗ γ

constant while ablating over λ. We can observe an increase

in λ results in more prominent eyeglasses until a threshold

beyond which the person’s identity is modified. We have

identified that λ = 0.75 to λ = 1.25 work well for most in-
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Figure 9. (Top) We present generated variations with split

timestep t0. Splitting early (t0 = 500) results in large variations

in terms of shades and shapes, whereas splitting late (t0 = 100)

results in fine-variation of similar eyeglasses. (Bottom) Quantita-

tively, we observe that early splitting results in high attribute diver-

sity (high ADS), and late splitting generates only fine variations.

(a) (b)

Figure 10. We ablate over different values of scale parameter λ

and diversity parameter γ to analyze their impact on the eyeglass

attribute. a) An increase in λ results in an increase in attribute

score for eyeglasses by the identity is distorted, indicated by lower

CS scores. b) Increase in γ results in lower FID, indicating high

diversity at the cost of lower CS.

puts on all experimented attributes. We present qualitative

results for the ablations in Fig.3 & 4 in SM.

4.5. Data and Latent Space Generalization

Data Generalization. We present results on out-of-domain

painting images from Metfaces [22] in Fig. 11(Top). For

Metfaces, we generate multiple attribute edit directions

from our diffusion models trained with real image pairs

as explained in Sec 3.2. We can observe that the gener-

ated directions generalize well to the out-of-domain paint-

ing images and generate diverse attribute edits. Notably, the

styles of the generated edits blend naturally with the paint-

ing styles despite domain shift, without looking like the real

domain on which the model was trained. Additionally, we

provide results for cars and churches attribute variations
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Figure 11. (Top) Results for diverse attribute editing on out-of-

domain painting images from Metfaces. (Bottom) Diverse eye-

glasses and hairstyle editing on 3D aware GAN-EG3D.

generated hierarchically in Fig. 8. Our method generates

high-quality attribute variations explored in a coarse-to-fine

manner. Additional results are provided in the SM.

3D GAN Generalization. Our method generalizes beyond

2D StyleGANs to EG3D [8], a 3D-aware generative model.

We train DM on edit directions from EG3D’s latent space

with 10K image pairs, and randomly sample directions for

editing following Sec. 3.3. In Fig. 11(Bottom), it can be ob-

served that our method can generate diverse attribute edits

while maintaining 3D consistency and the subject’s identity.

We can observe the shape changes associated with eyeglass

edits in the geometry of the edited outputs. Additional vi-

sualization of EG3D results is provided in the SM.

5. Conclusion

This work explores a challenging problem of diverse at-

tribute editing by using pretrained style-based GANs. Ex-

isting methods for attribute editing are limited to generating

unidirectional attribute edits. To generate multiple attribute

edits, the proposed method trains a diffusion model on edit

directions in the latent space. Further, a novel coarse-to-fine

sampling strategy is proposed to guide the exploration of

attribute variations in an intuitive hierarchical manner. The

proposed method works well for diverse editing of several

attributes and generalizes to editing in 3D-aware GANs.

The primary limitation is that the method inherits the in-

accuracies in the existing editing methods and the GAN en-

coder models used to generate the dataset. Further, as the

proposed method works in the latent space of StyleGANs,

it is limited to generating attribute variations of data distri-

butions in which StyleGAN models perform well.
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