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Abstract

Accurate 3D lane detection from monocular images
presents significant challenges due to depth ambiguity and
imperfect ground modeling. Previous attempts to model
the ground have often used a planar ground assumption
with limited degrees of freedom, making them unsuitable for
complex road environments with varying slopes. Our study
introduces HeightLane, an innovative method that predicts
a height map from monocular images by creating anchors
based on a multi-slope assumption. This approach provides
a detailed and accurate representation of the ground.

HeightLane employs the predicted heightmap along with
a deformable attention-based spatial feature transform
framework to efficiently convert 2D image features into 3D
bird’s eye view (BEV) features, enhancing spatial under-
standing and lane structure recognition. Additionally, the
heightmap is used for the positional encoding of BEV fea-
tures, further improving their spatial accuracy. This ex-
plicit view transformation bridges the gap between front-
view perceptions and spatially accurate BEV representa-
tions, significantly improving detection performance.

To address the lack of the necessary ground truth height
map in the original OpenLane dataset, we leverage the
Waymo dataset and accumulate its LiDAR data to gener-
ate a height map for the drivable area of each scene. The
GT heightmaps are used to train the heightmap extraction
module from monocular images. Extensive experiments on
the OpenLane validation set show that HeightLane achieves
state-of-the-art performance in terms of F-score, highlight-
ing its potential in real-world applications.

1. Introduction
Monocular 3D lane detection, which involves estimat-

ing the 3D coordinates of lane markings from a single
image, is a fundamental task in autonomous driving sys-
tems. While LiDAR-based methods have achieved signifi-
cant progress in many 3D perception tasks, monocular cam-
eras are increasingly favored for 3D lane detection due to
several key advantages. These advantages include lower

Figure 1. (a) Assuming the ground is a flat plane, 2D images or
features can be transformed into BEV features using IPM [2]. (b)
Modeling the ground as a plane with 2 degrees of freedom (2-
DoF), such as pitch and height, provides more generality and is
used by LATR [17] for positional encoding in the transformer. (c)
Our method predicts a dense height map to spatially transform 2D
image features onto a predefined BEV feature grid. Bold indicates
how each method represents the ground.

hardware costs, a superior perception range compared to Li-
DAR, and the ability to capture high-resolution images with
detailed textures, which are essential for identifying narrow
and elongated lane markings. Furthermore, the strong per-
formance of deep learning-based 2D lane detection across
various benchmarks has driven active research in this area,
highlighting the potential for similar breakthroughs in 3D
lane detection [11, 13, 19, 27, 29]. However, the lack of
depth information in 2D images makes this task particularly
challenging. Thus, accurately deriving 3D lane information
from 2D images remains a significant research and devel-
opment focus.

Recently, with the increasing focus on birds-eye view
(BEV) representation [6, 9, 10], there has been a surge in
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research on BEV lane detection and 3D lane detection. To
address the challenges posed by the lack of depth informa-
tion, several studies have attempted to model the ground on
which the lanes are located. Some approaches, such as Pers-
Former [2–4,12], have applied inverse perspective transfor-
mation (IPM) to 2D images or features extracted from 2D
images, achieving spatial transformation and creating BEV
features for 3D lane detection as shown in Fig. 1 (a).

However, in real-world scenarios, the ground has vary-
ing slopes and elevations, making these methods, which
assume a flat ground, prone to misalignment between the
2D features and the transformed BEV features. To address
this, models like LATR applying transformers to 3D lane
detection [17], as illustrated in Fig. 1 (b), have incorporated
ground information through positional encoding, aiming to
provide more accurate spatial context for the features. De-
spite this, predicting the ground using only the pitch angle
and height effectively treats it as a 2-degree-of-freedom (2-
DoF) problem, which still encounters misalignment issues,
particularly in scenarios where the ground slope is inconsis-
tent, such as transitions from flat areas to inclined ones.

To resolve the misalignment issues that arise from sim-
plistic ground modeling, we propose HeightLane, a di-
rect approach to ground modeling as shown in Fig. 1 (c).
HeightLane creates a predefined BEV grid for the ground
and generates multiple heightmap anchors on this grid, as-
suming various slopes. These anchors are projected back
onto the image to sample front-view features from the cor-
responding regions, enabling the model to efficiently pre-
dict a heightmap. To better align each BEV grid pixel with
the 2D front-view features, height information from the pre-
dicted heightmap is added to the positional encoding of the
BEV grid queries. Using the predicted heightmap along
with deformable attention mechanisms, HeightLane explic-
itly performs spatial transformations of image features onto
the BEV grid. This method significantly reduces the mis-
alignment between the image and BEV features, ensuring
more accurate representation and processing. By leveraging
the heightmap for precise ground modeling, HeightLane ef-
fectively transforms front-view features into BEV features,
thereby improving the accuracy and robustness of 3D lane
detection.

Our main contributions can be summarized as follows:

• We define a BEV grid for the ground where lanes are
detected and explicitly predict the height information
for this grid from images. Unlike previous studies that
predicted the height of objects, our approach is the first
to explicitly predict the ground height for use in 3D
lane detection.

• We propose a framework that utilizes the heightmap
to perform effective spatial transformation between 2D
image features and BEV features. The heightmap sig-

nificantly reduces the misalignment between 2D image
features and BEV features.

• We validate HeightLane’s performance on the Open-
Lane dataset [2], one of the most promising bench-
marks for 3D lane detection. HeightLane achieved the
highest F-score on OpenLane’s validation set, surpass-
ing previous state-of-the-art models by a significant
margin in multiple scenarios.

2. Related Works

2.1. 3D Lane Detection

3D lane detection has become essential for accurate lo-
calization in realistic driving scenarios. While 2D lane de-
tection has been extensively studied, fewer works address
the challenges of 3D lane modeling. Traditional methods
[2–4, 8] often utilize Inverse Perspective Mapping (IPM) to
convert 2D features into a 3D space, operating under the flat
road assumption. This assumption fails on uneven terrains,
such as inclines or declines, leading to distorted representa-
tions and reduced reliability.

SALAD [24] tackles 3D lane detection by combining
front-view image segmentation with depth estimation, but
it relies on dense depth annotations and precise depth pre-
dictions. Additionally, distant lanes appear smaller, mak-
ing each pixel cover a broader depth range. M2-3DLaneNet
[16] enhances monocular 3D detection by incorporating Li-
DAR data, lifting image features into 3D space, and fusing
multi-modal data in BEV space, which increases data col-
lection complexity and cost. Similarly, DV-3DLane [15]
uses both LiDAR and camera inputs for 3D lane detection
but generates lane queries from both sources to use as trans-
former queries, rather than lifting image features.

Meanwhile, BEVLaneDet [22] uses a View Relation
Module [18] to learn the mapping between image features
and BEV features. For this purpose, the relationship be-
tween image features and BEV features must be fixed. The
paper introduces a Virtual Coordinate to always warp the
image using a specific extrinsic matrix and intrinsic matrix.
Additionally, instead of using anchors for BEV features, it
proposes a key-point representation on the BEV to predict
lanes directly.

LATR [17] and Anchor3DLane [7] represent recent ad-
vancements in 3D lane detection by assuming the ground
as a plane with 2 degrees of freedom (2-DoF). LATR uses
ground modeling as positional encoding by predicting the
pitch and height of the ground, while Anchor3DLane uses
ground modeling with pitch and yaw for 2D feature extrac-
tion using anchors.

Building on these approaches, our method, HeightLane,
utilizes LiDAR only during the creation of the ground truth
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Figure 2. Overall Architecture of HeightLane. HeightLane takes a 2D image as input and extracts multi-scale front-view features through
a CNN backbone. Using predefined multi-slope heightmap anchors, the extrinsic matrix T, and the intrinsic matrix K, the 2D front-view
features are sampled onto a BEV grid to obtain BEV height feature. BEV height feature is then processed through a CNN layer to predict
the heightmap. The predicted heightmap is used in spatial feature transformation, where the initial BEV feature query and heightmap
determine the reference pixels that the query should refer to in the front-view features. The front-view features serve as keys and values,
while the BEV features act as queries. This process, through deformable attention, produces enhanced BEV feature queries.

heightmap to model the ground in BEV space. Unlike M2-
3DLaneNet [16], which requires both LiDAR and camera
data during inference, HeightLane simplifies the inference
process by relying solely on camera data. Instead of model-
ing the ground with 2-DoF, our method predicts the height
for every point in a predefined BEV grid, creating a dense
heightmap. By sampling spatial features focused on the
ground, we generate BEV features that allow accurate 3D
lane prediction using a keypoint-based representation, ef-
fectively bridging 2D image data and 3D lane geometry.
This method optimizes the processing of spatial features,
maintaining high accuracy while enhancing efficiency.

2.2. BEV Height Modeling

BEVHeight [25] introduced a novel method by adapt-
ing the depth binning technique used in depth estimation to
the concept of height. This approach classifies the height
bins of objects through images, proposing for the first time
a regression method to determine the height between ob-
jects and the ground in 3D object detection. However, ex-
periments were conducted using roadside camera datasets
[26, 28], limiting the scope of the study. BEVHeight’s
method aimed to provide more precise 3D positional infor-
mation by leveraging the height information of objects.

On the other hand, HeightFormer [23] experimented
with the regression of the height between objects and the
ground using the Nuscenes [1] autonomous driving dataset.
HeightFormer incorporated the predicted height informa-
tion into the transformer’s decoder, achieving improved per-
formance compared to depth-based approaches. This en-
hancement demonstrated the potential of utilizing height in-
formation for more accurate 3D object detection.

Our proposed method, HeightLane, leverages the fact

that lanes are always attached to the ground. By predicting
only the height relative to the ground, HeightLane explic-
itly spatially transforms the image features into a predefined
BEV grid corresponding to the ground. This approach sim-
plifies the task and aims to improve the accuracy of spatial
transformation in 3D object detection.

3. Methods
The overall architecture of the proposed HeightLane is

illustrated and described in Fig. 2. Given an RGB front-
view image I ∈ RH×W×3, where H and W denote the
height and width of the input image, a ResNet-50 [5] CNN
backbone is utilized to extract front-view features FFV . A
predefined BEV grid B ∈ RH′×W ′

, where H ′ and W ′

denote the longitudinal and lateral ranges relative to the
ego vehicle , representing the ground, is then used in con-
junction with a Height Extraction Module to extract height
information from the front-view features, resulting in a
heightmap.

Building upon the insights from previous research with
PersFormer [2], we propose a heightmap-guided spatial fea-
ture transform framework. This framework is based on
the observation in PersFormer [2] that 2D front-view fea-
tures can act as the key and value, while BEV features can
act as the query in deformable cross-attention [30]. The
original PersFormer [2] research assumes a flat ground and
uses IPM to transform front-view features into BEV feature
queries. In contrast, our approach uses a heightmap that pre-
dicts the height within a predefined BEV grid B, allowing
us to match each BEV feature query with the correspond-
ing front-view feature without relying on the flat ground
assumption. This enables more efficient execution of de-
formable attention. These transformed BEV features FBEV
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Figure 3. LiDAR accumulation results for the Up&Down scenario
in the OpenLane [2] validation set. The color bar on the left rep-
resents color values corresponding to the road height.

are subsequently processed through a lane detection head,
which follows the keypoint-based representation of [22], ul-
timately producing the 3D lane output.

3.1. Height Extraction Module

3.1.1 Height Prediction

The heightmap, H ∈ RH′×W ′
with a resolution of 0.5

meters per pixel, represents height information for an area
extending H′

2 meters forward and W ′

2 meters to each side
from the vehicle’s position, where the height is zero. Un-
like other research [8,17] that directly predicts road surface
from front-view features, we first define a dense BEV grid
B and then predict the heightmap H for all corresponding
heights within this grid. This approach necessitates the cre-
ation of BEV features, which are derived from 2D front-
view features, to accurately capture the height information.
For instance, a heightmap with a slope of 0, meaning all
heights are zero, is generated and used as heightmap anchor
H̃0 to obtain the 3D coordinates of the BEV grid B. This
heightmap anchor is then projected onto the image using
intrinsic and extrinsic parameters to sample the front-view
features corresponding to the BEV points. The process of
projecting the x, y grid of the heightmap anchor H̃θ with
slope θ onto the image is as follows:

uθvθ
dθ

 = KTv→c


x
y

H̃θ
x

1

 (1)

Here, K and T denote the camera intrinsic matrix and
the transformation matrix from ego vehicle coordinates to
the camera, respectively, and H̃θ

x is formulated as Eq. (2). It
should be noted that when generating the heightmap anchor,
only the longitudinal slope is considered, so the height value
is defined by θ and x values.

H̃θ
x = x tan(θ) (2)

Along with the projected uθ, vθ, the process of sampling

the height map feature FHeight from the front-view feature
FFV is as follows:

FHeight[x, y, :] = concat(FFV (u
θ, vθ))θ∈Θ (3)

where Θ denotes multiple slopes. If the actual road in
the image has a slope, using a single slope anchor does not
ensure alignment between the image features and the BEV
grid. To address this, we use multi-slope height anchors for
sampling, then concatenate these features to form the final
BEV height feature FHeight.

With FHeight, heightmap H can be predicted as:

H = ψ(FHeight) (4)

where H ∈ RH′×W ′
, FHeight ∈ RH′×W ′×C and ψ is com-

posed of several convolution layers.

3.1.2 Height Supervision

Due to the lack of point clouds or labels for the ground in the
OpenLane dataset [2], existing studies have focused solely
on the areas where lanes are present for data creation and
supervision. LATR [17] applied loss only to the regions
with lanes to estimate the ground’s pitch angle and height.
Similarly, LaneCPP [20] simulated the ground by interpo-
lating the results in the areas where lanes are present. To
provide dense heightmap ground truth, this paper utilizes
the LiDAR point cloud from Waymo [21], the base dataset
of OpenLane. By accumulating the LiDAR point clouds of
drivable areas in the Waymo data for each scene as Fig. 3,
a dense ground point cloud is obtained for each scene. This
dense ground point cloud is then sampled onto a predefined
BEV grid B ∈ RH′×W ′

, and used as supervision for the
heightmap H.

3.2. Height guided Spatial Transform Framework

In this section, we propose a spatial transform frame-
work utilizing the heightmap predicted in Sec. 3.1 as illus-
trated in Fig. 4. The BEV initial query is flattened and un-
dergoes self-attention. During self-attention, BEV queries
interact with each other, and positional encoding is added
to each BEV query to provide positional information. The
positional encoding is a learnable parameter. While stud-
ies performing attention on 2D front-view features [14, 17]
concatenate 3D ray coordinates with image feature queries,
our method uses BEV grid coordinates and height embed-
dings for each BEV query. After the self-attention module,
the output query of the self-attention module Ql

SA in the lth

layer is represented as follows:

Ql
SA = SelfAttention(Ql−1,Ql−1 +PE(x, y,Hx,y))

(5)
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Figure 4. Structure of the Height-Guided Spatial Transform
Framework using deformable attention [2, 30]. Flattened BEV
queries receive height positional encoding during self-attention,
and in cross-attention, the heightmap maps BEV queries to image
pixels. Deformable attention then learns offsets to generate multi-
ple reference points.

where l is the layer index and x, y are the grid values of the
corresponding query.

The BEV queries Ql
SA that have undergone self-

attention perform deformable cross-attention with the 2D
front-view features. Deformable attention defines a refer-
ence point u, v for each query and learns offsets to the sur-
rounding areas from this reference point. These learnable
offsets determine the final reference points, and the features
corresponding to these final reference points in the front-
view feature Fref

FV act as values in the cross-attention with
the BEV queries. Since we have the BEV heightmap H
corresponding to the BEV grid, as explained in Sec. 3.1, we
effectively know the 3D coordinates of the BEV queries.
Therefore, similar to Eq. (1), we can precisely determine
the reference point u, v in the front-view feature onto which
each BEV grid pixel will be projected as follows:

uv
d

 = KTv→c


x
y

Hx,y

1

 (6)

Furthermore, the query Ql
CA that has undergone cross-

attention in the lth layer is expressed as follows:

Ql
CA = CrossAttention(Ql

SA,F
ref
FV ) (7)

The spatial transform in HeightLane consists of multiple
layers, each containing a self-attention and a cross-attention
module. In our experiments, we set the number of layers to
N = 2. The BEV query that has passed through all N lay-
ers becomes the BEV feature used as the input for the lane

detection head. Furthermore, to capture front-view features
at various resolutions, we employed multi-scale front-view
representations. A BEV query is generated for each res-
olution, and the final BEV feature FBEV is obtained by
concatenating the queries from each scale.

3.3. Training

The FBEV generated through the spatial transform
framework passes through several convolutional layers and
predicts the confidence, offset, and embedding of the
BEV grid following the key-point representation of BEV-
LaneDet [22]. The dense heightmap H predicted by
heightmap extraction module is used as a 3D lane repre-
sentation along with confidence, offset, and embedding.

The loss corresponding to confidence p is the same as
Eq. (8). Here, BCE denotes the binary cross-entropy loss,
and IoU represents the loss for the intersection over union.

Lc =

H′∑
i=1

W ′∑
j=1

(BCE(pij , p̂ij)) + IoU(p, p̂) (8)

Additionally, the predicted offset loss in the x-direction
of the lane is as follows. σ denotes the sigmoid function.

Loffset =

H′∑
i=1

W ′∑
j=1

BCE(xij , σ(x̂ij)) (9)

In [22], the embedding of each grid cell is predicted to
distinguish the lane identity of each pixel in the confidence
branch. This paper adopts the same embedding loss, as
shown in Eq. (10), where Lvar represents the pull loss that
minimizes the variance within a cluster and Ldist represents
the push loss that maximizes the distance between different
clusters.

Le = λvar · Lvar + λdist · Ldist (10)

The loss between the predicted heightmap H and the
ground truth heightmap HGT is calculated using Smooth
L1 loss.

Lh =

{
1
2 (H

GT
ij −Hij)

2, if |HGT
ij −Hij | < β,

|HGT
ij −Hij | − 0.5, otherwise.

(11)
Finally, to ensure the 2D feature effectively captures lane

features, we added a 2D lane detection head and incorpo-
rated an auxiliary loss for 2D lane detection as follows:

L2D = IoU(lane2D, ˆlane2D) (12)

The total loss is defined as follows, where λ represents
the weight applied to each loss component:

L = λcLc +λoffsetLoffset +λeLe +λhLh +λ2DL2D (13)
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Figure 5. Qualitative evaluation on the OpenLane’s validation set. Compared with the existing best performing model, LATR [17]. First
row: input image. Second row: 3D lane detection results - Ground truth (red), HeightLane (green), LATR (blue). Third row: ground truth
and HeightLane in Y-Z plane. Fourth row: Ground truth and LATR in Y-Z plane. Zoom in to see details.

Figure 6. Visualization of the Heightmap Extraction Module.
From left to right: input image, predicted heightmap, and ground
truth heightmap.

4. Experiment

4.1. Dataset

We evaluated our method using the OpenLane dataset
[2], which encompasses a variety of road conditions,
weather conditions, and lighting scenarios. OpenLane is
built on the Waymo dataset [21], utilizing 150,000 images
for training and 40,000 images for testing. The OpenLane
dataset consists of 798 scenes for training and 202 scenes
for validation, with each scene comprising approximately
200 images. Although OpenLane does not contain the infor-
mation required to create heightmaps, it is based on Waymo,
which allows us to extract the necessary LiDAR data from
Waymo for each OpenLane scene. When extracting LiDAR

data, we found that it is densely accumulated in the mid-
dle of each segment and becomes sparse towards the end
frames. For example, Fig. 3 illustrates a scene where the
ego vehicle goes uphill, turns right, and continues on an-
other slope. At the starting point (green region), the LiDAR
data is sparse, so bilinear interpolation was used to fill gaps
in the heightmaps, ensuring consistency of the heightmap.
The evaluation covers diverse scenarios, including Up &
Down, Curve, Extreme Weather, Night, Intersection, and
Merge & Split conditions. The evaluation metrics, as pro-
posed by PersFormer [2], include the F-score, X-error, and
Z-error for both near and far regions.

4.2. Implementation Details

We adopted ResNet-50 [5] as the 2D backbone for ex-
tracting image features and set the image size to 600 x 800.
To obtain multi-scale image features, we added additional
CNN layers to produce image features at 1/16 and 1/32 of
the input image size, with each feature having 1024 chan-
nels. The BEV grid size for the heightmap and BEV feature
was set to 200 x 48, with a resolution of 0.5 meters per pixel.

For the multi-slope heightmap anchors used in the
heightmap extraction module, we set the slopes Θ to -5°,
0°, and 5°. With a slope of 5°, the heightmap can represent
heights up to approximately 8.75 meters.

In the Height-guided Spatial Feature Transform, we used
deformable attention [30] with 2 attention heads and 4 sam-
pling points. The positional encoding was derived by em-
bedding the BEV grid’s X and Y position along with the
corresponding predicted height.
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Method All Up & Down Curve Extreme Weather Night Intersection Merge & Split
3DLaneNet [3] 44.1 40.8 46.5 47.5 41.5 32.1 41.7
PersFormer [2] 50.5 42.4 55.6 48.6 46.6 40.0 50.7
Anchor3DLane [7] 53.1 45.5 56.2 51.9 47.2 44.2 50.5
Anchor3DLane+ [7] 54.3 47.2 58.0 52.7 48.7 45.8 51.7
BEV-LaneDet [22] 58.4 48.7 63.1 53.4 53.4 50.3 53.7
LaneCPP [20] 60.3 53.6 64.4 56.7 54.9 52.0 58.7
LATR [17] 61.9 55.2 68.2 57.1 55.4 52.3 61.5
HeightLane (Ours) 62.7 53.6 69.3 55.4 54.6 54.1 61.1

Table 1. Quantitative results comparison by scenario on the OpenLane validation set using F-score. The best results for each scenario
are highlighted in bold and second-best results are underlined. Anchor3DLane+ is the version of [7] that uses temporal multi-frame
information.

Method F-score(%) X-error (near) X-error (far) Z-error (near) Z-error (far)
3DLaneNet [3] 44.1 0.479 0.572 0.367 0.443
PersFormer [2] 50.5 0.485 0.553 0.364 0.431
Anchor3DLane [7] 53.1 0.300 0.311 0.103 0.139
Anchor3DLane+ [7] 54.3 0.275 0.310 0.105 0.135
BEV-LaneDet [22] 58.4 0.309 0.659 0.244 0.631
LaneCPP [20] 60.3 0.264 0.310 0.077 0.117
LATR [17] 61.9 0.219 0.259 0.075 0.104
HeightLane (Ours) 62.7 0.240 0.266 0.116 0.165

Table 2. Quantitative results comparison with other models on the OpenLane validation set. The best results are highlighted in bold and
second-best results are underlined.

4.3. Evaluation on OpenLane

4.3.1 Qualitative Result

Fig. 5 shows a qualitative evaluation on the validation set
of OpenLane. The predictions of the proposed HeightLane,
the existing SOTA model LATR [17], and the ground truth
are visualized. The ground truth is visualized in red, Height-
Lane in green, and LATR in blue. The first row of Fig. 5
shows the input images to the model. The second row visu-
alizes HeightLane, LATR, and the ground truth in 3D space.
The third and fourth rows display 3D lanes from the Y-
Z plane, where the Y-axis represents the forward direction
and the Z-axis represents height. The third row compares
HeightLane to the ground truth, while the fourth compares
LATR to the ground truth.

Notably, HeightLane accurately detects lanes even in
scenarios where the lanes are interrupted and resume, such
as at intersections or over speed bumps. This is particu-
larly evident in columns 1, 2, 4, 5, and 6 of the Fig. 5. In
column 1, despite the occlusion from a car and partial lane
markings, HeightLane continues to deliver precise lane pre-
dictions, demonstrating its robustness in handling complex
scenes with occlusions and incomplete information. Ad-
ditionally, thanks to the use of the heightmap, HeightLane
effectively models changes in slope, as seen in column 3,
where the road transitions from flat to sloped. In columns 2
and 5, which depict curved roads and partially visible lanes,
HeightLane demonstrates superior prediction accuracy and
maintains continuous lane detection even on curves.

Fig. 6 visualizes the heightmap predicted by the height
extraction module, displaying the input image, predicted
heightmap, and ground truth heightmap from left to right.
The scenarios depicted from top to bottom are uphill, flat
ground, and downhill. Additional visualizations can be
found in the supplementary materials.

4.3.2 Quantitative Result

The evaluation metrics for quantitative assessment include
the F-score, x error, and z error proposed by [2]. GT and
predictions are matched based on the Euclidean distance,
and a lane is classified as a true positive prediction depend-
ing on the proportion of matching points within the lane.
Additionally, x and z errors are categorized into close-range
(first 40 points) and far-range (remaining 60 points).

Tab. 1 presents the quantitative evaluation of Height-
Lane. HeightLane achieved an overall F-score of 62.7%
on the OpenLane validation set, outperforming all exist-
ing SOTA models. Specifically, HeightLane showed sig-
nificant improvement in Curve and Intersection scenar-
ios, achieving the best scores in these challenging condi-
tions. Additionally, HeightLane demonstrated strong per-
formance in Up&Down and Merge&Split scenarios, secur-
ing the second-best performance in these categories. Al-
though HeightLane did not achieve the highest score in the
Up&Down scenario, it excelled in scenarios with changing
slopes (column 3, Fig. 5), demonstrating its adaptability to
varying gradient conditions.
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Height Extraction Method F-score(%)
View Relation Module [22] 57.8
Single-slope Heightmap Anchor 57.1
Multi-slope Heightmap Anchor 62.7

Table 3. Comparison of F-scores based on different height extrac-
tion methods.The configuration in bold represents the final choice
in the paper.

Heightmap Anchor Design F-score(%)
0° ± 3° ± 5°
✓ 57.1
✓ ✓ 60.7
✓ ✓ 62.7
✓ ✓ ✓ 62.9

Table 4. Comparison of F-scores based on different heightmap an-
chor designs.The configuration in bold represents the final choice
in the paper.

Tab. 2 shows the F-score, X-error, and Z-error on the
Openlane validation set. Although it did not match the best-
performing and second-best performing models in Z-error,
it still demonstrated competitive results. In terms of X-error,
HeightLane achieved the second-best performance, show-
casing its robustness in estimating lane positions accurately
in the lateral direction.

4.4. Ablation Study

Different Height Extraction Methods Tab. 3 shows the
F-score corresponding to different height extraction meth-
ods. The view relation module, initially proposed in [18],
is an MLP module used for transforming BEV features in
[22]. The single-slope heightmap anchor method projects
a zero-height plane onto the image and uses the sampled
image features from this plane as the BEV features. This
approach assumes a flat plane, sampling only 2D image
features at a fixed height, which leads to incomplete fea-
ture representation and excludes features of inclined or de-
clined road. In contrast, the multi-slope heightmap anchor
proposed in this paper projects multiple planes with vari-
ous slopes onto the image, samples the image features from
each plane, and fuses them to form the BEV features. This
multi-anchor approach achieved the highest F-score.

Heightmap Anchor Design Tab. 4 shows the F-scores
for various heightmap anchor designs. Using 0° with ±
3° improved performance by 3.6%, while using 0° with
±5° resulted in a 5.8% increase. Although the configura-
tion with 0°, ±3°, and ±5° achieved the best performance,
the difference was marginal compared to using just 0° and
±5°. Increasing the number of heightmap anchors raises the
channels in the final BEV height feature and computational
cost, so we balanced performance and efficiency by select-
ing 0° and ±5° anchors for the final method.

Comparison with Multi-modal Methods Tab. 5 com-

Method M F-score X-near X-far Z-near Z-far
Ours C 62.7 0.25 0.29 0.11 0.18
M2-3D [16] C + L 55.5 0.28 0.26 0.08 0.11
DV-3D [15] C + L 66.8 0.12 0.13 0.03 0.05
Ours (GT) C 64.2 0.22 0.29 0.05 0.09

Table 5. Comparison with multi-modal models on the Open-
Lane validation set. Ours (GT) means that we use ground truth
heightmap for spatial feature transform framework. M indicates
input modalities: C for camera and L for LiDAR.

pares our method with various multi-modal 3D lane detec-
tors. In this table, Ours (GT) represents the results obtained
by using the ground truth heightmap instead of the height
extraction module. This substitution aims to observe the
performance of the spatial feature transform framework, as-
suming that the predicted heightmap from the height extrac-
tion module is highly accurate. By using the GT heightmap,
which is derived from LiDAR data, we can make a fair
comparison with detectors that utilize LiDAR input. The
results show that accurate heightmap predictions enable
HeightLane to match or surpass models using both LiDAR
and camera inputs, highlighting its robustness in leverag-
ing height information and transforming front-view to BEV
features.

5. Conclusion

In conclusion, this work resolves key challenges in 3D
lane detection from monocular images by improving depth
ambiguity and ground modeling with a novel heightmap ap-
proach. Our main contributions include establishing a BEV
grid for direct heightmap prediction with multi-slope height
anchor, introducing a heightmap-guided spatial transform
framework, and empirically demonstrating the robust per-
formance of our HeightLane model in complex scenarios.

The proposed method enhances spatial understanding
and lane recognition, significantly advancing autonomous
vehicle systems through precise 3D transformations en-
abled by the heightmap. Our extensive experiments vali-
date the model’s effectiveness, marking a significant step
forward in real-world applications.
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