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Abstract

Visual datasets are generally constructed from the sam-
ples available at the time of their collection and are not fur-
ther updated. However, these static datasets do not reflect
the distribution changes that occur in real data. We ana-
lyze how different collection times lead to a shift in class
distribution by collecting a set of Flickr images published
over 14 years. The proposed “Visual Classes through Time”
(VCT-107) dataset contains images tagged by their publica-
tion date and includes 107 classes covering various topics
(human-made objects, animals, plants, food, etc.). Images
from each class are divided into five collection periods to
study the impact of time on classification accuracy. When
training different classification models using linear probing,
we observe an accuracy loss when training on data from one
period and testing on other periods. This happens even in
the case of a strongly pre-trained model like DinoV2 ViT-
B/14. Intuitively, the performance loss is generally more
significant when the collection periods between the training
and test data are further apart. Our analysis reveals that the
temporal shift varies between classes, with the largest shifts
observed for human-made objects and the smallest for nat-
ural concepts such as animal species. Our results stress the
importance of regularly updating models to adapt to time-
induced changes in the distribution of visual classes, even
when using a strongly pre-trained model. We release the
VCT-107 dataset to facilitate research on temporal shifts.

1. Introduction
The performance of image classification models highly

depends on the quality of their training data. Many existing
datasets are composed of samples collected at a fixed point
in time and do not contain temporal information, as is the
case for popular resources such as CIFAR-100 [35], Ima-
geNet [14], or YFCC100M [81]. Other datasets are avail-

Figure 1. Evolution of the classification accuracy on VCT-
107 when training a linear classifier on one data collection pe-
riod and testing on another. Five periods between 2007-2008 and
2019-2020 are considered. Image features are computed using a
ViT-B/14 network pre-trained with DinoV2 [55].

able in different versions that extend or refine the dataset
initially proposed, e.g., Google Landmarks [53,92], Google
Open Images [36, 39], or Mapillary [50]. However, even
these datasets lack temporal metadata and are not designed
to study the robustness of models to distributional shifts
arising from the passage of time [94].

To address the challenge of temporal shift, we introduce
the dataset VCT-107. VCT-107 comprises 107 classes and
951,176 images uploaded to the Flickr platform between
2007 and 2020. A timestamp accompanies each image. The
dataset encompasses different topics, including household
objects, vehicles, buildings, plants, and animals.

We evaluate the generalization ability of various mod-
els on VCT-107 in the context of imbalanced and balanced
classification tasks and domain-incremental learning [87].
The results of our experiments highlight the existence of a
distribution shift that alters classification accuracy. Figure 1
illustrates the impact of time on classification performance.
It shows the accuracy of a linear classification layer fitted on
top of a pre-trained DinoV2 ViT-B/14 model [55] using data
from one period and tested on data from another. We ob-
serve that performance generally decreases when the inter-
val between the training and test samples increases, whether
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in the future or the past. Nonetheless, our experiments with
several continual learning algorithms [20, 43, 44] show that
this accuracy gap can be reduced. These algorithms main-
tain knowledge of past distributions while adapting to new
distributions without storing past examples. Furthermore,
we find that temporal shift impacts classes differently. The
magnitude of the shift can be quantified by analyzing the
distances between the distributions of data collected at dif-
ferent moments. This quantification enables a class-level
control of the required training dataset updates. These find-
ings suggest good practices for dealing with temporal shifts
in visual class representations. We hope this contribution
will encourage work to mitigate the obsolescence of visual
representations. We will release the image URLs and the
code to encourage research on the topic.

2. Related work
Visual classification datasets. Recent advances in vi-

sual classification learning have been fostered by the pub-
lication of visual datasets [85]. Classification models
are commonly evaluated on CIFAR-100 [35], ImageNet-
1000 [70] or on domain-specific, fine-grained datasets such
as Food-101 [6], Stanford Cars [34] or Oxford Flower-
102 [52]. However, these datasets are not designed to chal-
lenge the robustness of models against distribution shifts.

Specific visual datasets have been proposed for the
task of domain adaptation, including MNIST with di-
verse backgrounds [18], Office-Home [89], Citiscapes [11]
and DomainNet [60]. Datasets like ImageNet-R [26] or
ImageNet-D [69] are designed to benchmark the robust-
ness of ImageNet-trained models against domain shifts.
The CORE50 dataset [42] comprises 50 objects filmed in
11 settings and is built specifically for continual domain
adaptation. In addition to disparate backgrounds and im-
age styles, distribution shifts may arise from different ge-
ographies [3, 8, 68], weather conditions [30, 47], or ethnici-
ties [28,41]. Another line of work proposes to use synthetic
images. For example, Visda [61] focuses on the simulation-
to-reality shift, and SHIFT [76] uses a generative model to
control shifts in scene elements for autonomous driving.

Works on temporal shifts. One of the rare vision
datasets with a distribution shift directly caused by time is
AmsterTime [95], a collection of 2,500 images matching a
street view in Amsterdam (using Mapillary navigation plat-
form) to a historical archival image from the same scene.
AgeDB [49] is a dataset for face verification in the wild and
contains temporal information about a person’s age in each
image. The Wild-Time benchmark [94] focuses on tem-
poral shift and covers two visual tasks: gender prediction
with the Yearbook dataset [19] and prediction of land use
with satellite images from FMoW [10]. We compare our
proposed VCT-107 with these datasets in Table 1. Natural
language processing works study temporal changes in lexi-

cal semantics and propose methods to detect such changes,
e.g., [5,37]. The authors of [23] distinguish between seman-
tic shifts that are more cultural or more linguistic. We re-
fer to the survey of [38] for more details on semantic shifts
in word embeddings. In our experiments, we use models
trained on visual data only and vision-language models.

Biases and generalization. Datasets partially represent
the visual world and are inherently biased [85]. The authors
of [17] identify three main types of biases, arising from (1)
selecting a subset of items that differ from the general pop-
ulation, (2) framing the object to convey a specific message
via the image composition, or (3) assigning different labels
or wrong semantic categories. Biases lead to distributional
shifts between the data used to train a model and the data
encountered during its operational phase, challenging the
model on unseen data.

Several lines of work aim to increase a model’s ability
to generalize to new domains or tasks. Generalization is
favored by the quantity, quality, and diversity of its train-
ing data [32, 51, 55]. Pre-training with large corpora [86]
and multiple data augmentation techniques [58, 75] is now
common practice. Multimodal language vision models such
as CLIP [63] and DALL-E [65] show strong transferability
without per-sample labels. Their self-supervised training
uses up to billions of image-text pairs. Diversifying repre-
sentations using features from intermediate layers of a pre-
trained model [16] or combining multiple encoders [78] can
also improve transferability. Finally, transfer learning and
domain adaptation focus on reusing knowledge gained for
solving a source task in a different but related problem [7].
We refer to the surveys of [73, 84] for a detailed review of
transfer learning and domain adaptation algorithms.

Continual learning. Continual Learning (CL) builds
models that can adapt to their environment and incremen-
tally develop more complex skills and knowledge [4, 83].
Domain-Incremental Learning (DIL) [87] is a CL scenario
that learns a classification model sequentially, with each
step in the sequence introducing data from a new domain.
The set of target classes remains the same throughout the
process, but class distributions change. Thus, the chal-
lenge is to recognize classes in an increasing number of
domains without storing all previous data, a challenge ad-
dressed in different ways. The approach of [40] does not re-
quire task boundaries but relies on a costly clustering step.
The work of [82] leverages self-supervised learning. An
adapter method [62] is applied in [56] to adapt a pre-trained
model on the initial subset efficiently and then incremen-
tally train a classifier based on a linear discriminant anal-
ysis layer. Similarly, RanPAC [44] combines a Parameter-
Efficient Transfer Learning (PETL) procedure with a ran-
dom layer that projects samples in a higher dimensional
space to improve discrimination. FeCAM [20] also uses a
fixed feature extractor and focuses on incrementally updat-
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Dataset Yearbook [19] FMoW [10] AgeDB [49] AmsterTime [95] Core50 [42] VCT-107
Input Yearbook photos Satellite images Faces in the wild Landmarks Video frames Web images

Prediction Gender Land use Face identification,
Age, Gender

Visual place
recognition

Object
recognition

Object
recognition

Time range 1930-2013 2002-2017 ∼1890-2017 ∼1850-2020 / 2007-2020
#domains - - - 2 8 train + 3 test 5 periods
#classes 2 63 568 1,231 50 107
#samples 37,189 118,886 16,488 2,462 164,866 951,176

Table 1. Comparison of visual datasets containing temporal information.

ing a classifier based on the Mahalanobis distance.

3. Constitution of VCT-107

We describe the VCT-107 collection, processing, and la-
beling process. Then, we analyze the resulting dataset.

Data collection. We downloaded images from the Flickr
platform because its content covers diverse visual concepts
over a long interval, and its API facilitates the collection of
images using predefined temporal intervals. We collected
images for five distinct periods: 2007-2008, 2010-2011,
2013-2014, 2016-2017, and 2019-2020, denoted as 07/08,
... 19/20. Grouping images in two-year intervals ensures
enough training and test images for all classes. The one-
year gap between intervals facilitates the analysis by better
separating the data subsets. We initially collected data for
the 22/23 period but dropped it because the number of im-
ages was insufficient for most classes.

To ensure diversity in the dataset, we prompt ChatGPT-
4o to provide class names and definitions from the fol-
lowing nine topics: plants, animals, food, buildings, vehi-
cles, household objects, electronic devices, sporting equip-
ment, and apparel: Please provide a list of 50 popular
[TOPIC NAME] types using a JSON format for the out-
put. Since the LLM answers sometimes include less than
50 items, the initial class count is 439. We verify the cor-
rectness of the proposed class names and descriptions to fil-
ter out hallucinations. We then collect up to 3000 Flickr
images and associated metadata for each target year using
Flickr’s internal search engine ranking. This initial, uncu-
rated dataset includes nearly 11 million images.

Image rights and safety. Following [81], we collected
only freely redistributable images, but this approach did not
provide enough samples per period for most classes. There-
fore, we broadened the search and collected Flickr images
with all licenses. This change has practical implications
for the distribution of copyrighted content. We follow re-
cent practice in sharing visual datasets [71] and provide the
URLs rather than the image files themselves.

Concerned about image safety issues [80], we instructed
the annotators to remove any image that could be consid-
ered “not safe for work” and to flag any image that might
have been taken without the subject’s consent. We provided
them with clear textual safety guidelines and interacted with
them when in doubt. If an image from a cluster was flagged,

we removed the entire cluster.
Dataset preprocessing. We preprocess the dataset to

minimize the labeling effort. We compute the embeddings
of all the collected images using a ViT-B/14 pre-trained us-
ing DinoV2 [55]. We remove near-duplicates using a 0.9
cosine similarity threshold between each pair of images
uploaded in the same year. We cluster images using K-
means [59] with 50 clusters per year. We keep only clusters
involving at least two Flickr users to ensure a minimal so-
cial consensus on the class’s visual representation. We use
these clusters to accelerate the annotation process.

Content annotation. We implement a dedicated label-
ing interface (illustrated in the appendix). Each row of im-
ages represents the visual summary of a cluster and contains
at most ten images. These images are sampled uniformly
based on their L2 distance to the cluster centroid and shown
in increasing order of distances from left to right in the in-
terface. This sampling relies on the hypothesis that there
is a correlation between the distance to the centroid and the
representativeness of an image for a given class. We provide
annotators with textual instructions illustrated by examples.
The instructions require them to annotate the rightmost im-
age of each row, including a depiction of the visual class
according to the LLM’s definition. They state that the ob-
ject may be located in any image region and that other ob-
jects can be visible. Three participants contributed to the
annotation task, and one participant annotated each cluster.
To reduce the annotation effort, the participants first label
the image subset from 2020 because it contained the fewest
images. Then, we rank the classes according to the num-
ber of relevant images labeled for 2020 and keep the 125
most populated classes. Finally, we ask participants to la-
bel the images from the remaining nine collection years for
these 125 classes. This step provides a fast labeling of the
images, but some noise might subsist. Next, we check the
annotations of the test subset to ensure a reliable evaluation.

Candidate images for the test set are sampled uniformly
from the selected clusters and labeled by the other annota-
tors. They are included in the final test subset if the three an-
notators agree on their relevance. The specific annotation of
test images also validates the clustering-based annotation.
We find that the three participants agree on the relevance of
over 98% of the images sampled from the clustering-based
annotations. We keep a class only if it has at least 40 valid
test images and 100 training images per year.
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Figure 2. Samples representing four VCT-107 classes during
the 2007-2008 and 2019-2020 periods. The car, laptop, and
skyscraper classes illustrate the appearance changes of human-
made objects whose design changes over time, shifting the repre-
sentations learned for these classes. Lion has a stable appearance,
and the representation shift is much smaller in this case.

VCT-107 summary and illustration. The dataset in-
cludes 107 classes from 9 topics, ranging from 31 animal
classes to 2 types of electronic devices. The dataset includes
between 2881 and 21237 samples per class, with at least
483 images per period. The class names and sample distri-
bution are detailed in the appendix. The images were up-
loaded by over 248772 Flickr users, who each contributed
an average of 4.4 images. The minimum, mean, and max-
imum user counts per class are 1106, 4289, and 11593, re-
spectively. These numbers ensure that VCT-107 class rep-
resentations benefit from social consensus. Nevertheless, a
selection bias occurs, as with any visual dataset [17].

Figure 2 illustrates the impact of time on visual classes.
Due to space restrictions, we sample three images of four
classes taken during the earliest and most recent VCT-
107 periods. Changes over time in the representations of
human-made objects are mainly determined by the lifes-
pan of these objects [72], itself determined by technolog-
ical advancements, visual design trends, regulation, and
brand strategies [90]. Vehicles illustrate the complex in-
teraction between these factors with a continually evolv-
ing technological and visual design. For instance, the shift
toward electric batteries changes the appearance of cars
to match technical requirements [2] but also to highlight
their difference from fossil-fuel-based vehicles and increase
their appeal [48]. Similar considerations apply to mass-
consumption electronic devices, such as laptops and smart-
phones [1]. Their usage and representations depend on tech-
nical advancement and their functions for users of different
ages, incomes, and world regions. Interestingly, the visual
representations of human-made objects mix the old and the
new, highlighting users’ fascination for the past [67]. Fig-
ure 2 shows that users upload vintage cars during both pe-

riods. Visual representation changes are also observed in
architecture, with increasing stylistic diversity and the avail-
ability of new building materials and techniques [22].

The impact of time is reduced for natural classes such
as lions because their appearance does not significantly
change. However, trends also appear, particularly for
classes closely associated with humans, such as pets. For
instance, the popularity of dog breeds evolves [27], influ-
encing the class’ visual representation. Equally important,
framing biases [17] might still affect their depictions regard-
ing how they are photographed and in which contexts.

While we focus on the impact of time, multiple factors
influence visual class depictions. VCT-107 classes are sub-
ject to a selection bias [17, 85]. This bias is amplified in
operational conditions due to the long-tailed nature of vi-
sual datasets [93]. Another important bias comes from the
demographic characteristics of the users of Flickr, with vari-
ations of social status, ethnicity, gender, and location across
time [54]. In particular, some regions of the world tend to
be more represented than others in visual datasets [68]. This
leads to an imbalanced depiction of visual concepts, partic-
ularly for classes such as buildings. The cameras used to
take the photos influence image quality and can affect the
representations learned. Finally, disparities due to lighting
conditions or image colorimetry also occur [79]. Together,
these factors create temporal shifts in visual classes. We
quantify their effect on image classification in Section 4 and
provide an embedding-based analysis in Section 5.

4. Experiments

4.1. Experimental setup

We split VCT-107 into five temporal periods, as de-
scribed in Section 3. We run experiments with the entire
training set and in low-shot scenarios by sampling 200, 100,
50, or 20 images per period. To assess the models’ gener-
alization ability, we train them on each period and measure
their test accuracy on the other periods. In some experi-
ments, we also accumulate training samples over time to
evaluate the effect of retraining from scratch. The test set
of each period is fixed across experiments and contains 80
images per class.

We use SGD with a momentum set to 0.9, a weight de-
cay set to 4 · 10−5, and a cosine learning rate scheduler
initialized at 0.1. We train for 100 epochs for full training
and 20 epochs for linear probing (LP). This transfer learn-
ing method freezes all parameters except the classification
layer [33]. Unless otherwise stated, data preprocessing is
the same and consists of rescaling the images to 256 · 256
pixels, then randomly cropping to 224 · 224 pixels and nor-
malizing using ILSVRC [70] statistics.
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Figure 3. Accuracy across temporal periods when training with the
entire VCT-107 dataset using three different backbone models. To
facilitate comparison, the range of values is displayed from 80%
of the maximum accuracy value of each backbone.

4.2. Impact of the training strategies
We evaluate the capacity of pre-trained and fully-trained

models to mitigate the temporal shift. Full training involves
the entire VCT-107 dataset because it requires more sam-
ples. We use a smaller ResNet18 instead of a ViT as it re-
quires less sample to train. Therefore in Figure 3 we exper-
iment with: (1) a ResNet-18 [25] trained from scratch, (2) a
ResNet-18 pre-trained on ILSVRC [70] (3) a DinoV2 ViT-
B/14 pre-trained on the LVD for easier comparison with
subsequent experiments. The primary objective of these
experiments is to assess the accuracy stability over time,
not to compare the accuracies obtained with each backbone.
Figure 3 shows that the backbone trained from scratch ex-
hibits the largest performance variation. This highlights the
importance of pre-training for mitigating temporal shifts.
The pre-trained ResNet-18 comes second, with the ViT-
B/14 network pre-trained using DinoV2 achieving the high-
est stability across time. The results from Figure 3 confirm
that combining strong pre-training and linear probing con-
stitutes a competitive baseline for mitigating temporal shift.

Due to significant architectural differences, the model
trained using DinoV2 is not directly comparable to the
ResNet-18 model. A comparison with more similar archi-
tectures is necessary to assess whether all pre-training meth-
ods yield the same robustness to temporal shifts. To iso-
late the effect of DinoV2’s unsupervised pre-training, we
compare its generalization performance against a ViT-B/16
model pre-trained in a supervised manner on ILSVRC. Ad-
ditionally, we include a ViT-B/16 variant pre-trained on the
full ImageNet-21k to evaluate the impact of pre-training
dataset size. We evaluate those by training linear probes
with 200 samples per class and period. This removes the is-
sue of having an imbalance in the training data, which may
slightly alter our results. We provide the results for all com-
binations of training and testing periods in Figure 4.

With 200 samples per period, DinoV2 achieves a higher
average accuracy and improves generalization over time.
DinoV2 experiences a maximum accuracy drop of 7.2%,
whereas the ViT-B model pre-trained on ILSVRC sees a
loss of up to 9.0%. Although the ViT model pre-trained
on ImageNet-21k performs slightly worse than DinoV2, it

also exhibits a maximum accuracy loss of 6.7%. These re-
sults suggest that the primary limitation of the ILSVRC pre-
training method lies in the quantity of data rather than its
supervised nature.

Finally, we also consider the increasingly popular Con-
trastive Language-Image Pre-training (CLIP) [64], as its
multimodal approach could offer greater robustness. To
maintain consistency with our previous experiments, we ex-
perimented with two models: the standard ViT-L/14 and a
ViT-B/16. For linear probing, we attach the linear classifier
after the projection to the shared latent space, retaining only
the vision component of the model. This method follows
the original approach described by Radford et al. [64]. Fig-
ure 4 indicates that temporal shifts also affect multimodal
models. However, the ViT-B/16-based CLIP experiences a
maximum accuracy loss of only 5.5%, which is lower than
that of the other ViT-B models, suggesting that CLIP train-
ing provides increased robustness. The appendix provides
zero-shot classification scores for each period to illustrate
its relative classification difficulty.

4.3. Impact of the training set size

The size of the training set strongly influences the gen-
eralization ability in static datasets [51, 85]. Following the
findings from Subsection 4.2, we use DinoV2 with linear
probing. We experiment with n ∈ {200, 100, 50, 20} train-
ing samples per class and period to assess the influence of
time in low-shot settings. We repeat each experiment 4
times for each low-shot scenario using four random seeds
for sampling and report average results in Figure 5.

Reducing the number of images per class harms the over-
all performance since individual class representations pro-
gressively weaken. Figure 5 highlights that when n de-
creases, the accuracy on periods other than the training pe-
riod decreases slower than on the same training period. The
average accuracy obtained when testing on the same period
as training drops by 5.2% when n goes from 200 to 20.
Meanwhile, the average accuracy for the other periods only
drops by 3.3%. We also observe that when testing on pe-
riods other than the training period, the relative accuracy
loss decreases slowly as n decreases. In this case, the aver-
age accuracy loss is 3.8% and 2.0% for 200 and 20 training
images per period, respectively. This result highlights the
ability of strong pre-training to handle temporal shifts. This
is important in practice, as many real-life datasets include
limited training data per class [74].

4.4. Domain-incremental learning

The experiments in Subsections 4.2 and 4.3 do not in-
clude any mitigation strategy other than using a strongly
pre-trained backbone. Here, we test the effectiveness of
continual learning (CL) [57] algorithms against temporal
shifts. Domain-incremental learning (DIL) [87] is a sequen-
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Figure 4. Accuracy across time for cross-period training and testing. All models use linear probing with 200 samples per class and period.

Figure 5. Accuracy over time for DinoV2 ViT-B/14 and linear
probing for n = {200, 100, 50, 20} samples per class and period.

Algorithm
DinoV2 ViT-B14
LVD-142m [55]

ViT-B16 Aug-
Reg IN21k [86]

#Stored
params

NCM 92.6 90.7 82 · 103
FeCAM-1 92.7 92.6 672 · 103
FeCAM-n 94.3 92.9 63 · 106
RanPAC 94.8 94.6 108 · 106
Replay20 93.4 92.5 1.6 · 109
Accumulate 94.1 93.0 16 · 109

Table 2. Average accuracy for six algorithms and two pre-trained
backbones. The algorithms are ordered by the number of param-
eters added to the backbone. The storage needs are computed for
images of size 3*224*224. Best results, second best.

tial learning process where each step corresponds to a new
domain. Here, a domain is a data collection period, e.g.,
2007-2008, 2010-2011, etc. The set of classes to recognize
remains the same, but their distribution changes. Each step
of the process aims to obtain a model that can recognize all
classes, regardless of the data collection period. We follow
the DIL protocol from [44] and include all T = 5 periods
in the test set. The average accuracy is computed as the
mean value of the test accuracy across the T training steps:
A = 1

T

∑T
t=1 Acc(Mt,

⋃T
i=1 Di), where Mt is the model

trained at step st on data collected at time t and Di is the
test dataset corresponding to period i.

We experiment with several competitive CL algorithms
using a fixed encoder. The Nearest Class Mean classifier

(NCM) [31] updates a running mean embedding vector for
each class and predicts the class using the cosine similarity
to class prototypes. FeCAM [20] also stores a mean vec-
tor for each class and computes a shared feature covariance
matrix (“FeCAM-1”) or one feature covariance matrix per
class (“FeCAM-n”), used to compute the Mahalanobis dis-
tance between the embedding of a test sample and the mean
class vectors. RanPAC [44] combines a PETL step with a
random projection from dimension 768 to 10,000 to better
separate classes. At inference, distances to class means are
computed using the Gram matrix. These algorithms do not
store past images, which is useful when storage or privacy
issues must be considered. Still with a fixed encoder, we
also consider linear probing with a cumulative replay buffer
of 20 images per period (“Replay-20”) and a cumulative re-
play buffer containing all the training images seen so far
(“Accumulate”).

We report the average DIL accuracy in Table 2. The re-
sults show that DIL algorithms match or outperform naive
replay and accumulation strategies while requiring at least
250 times less additional memory. RanPAC and FeCAM-n,
the two algorithms that perform the most refined modeling
of past knowledge, obtain the best accuracy. Figure 6 indi-
cates the DIL algorithms reduce the accuracy losses for test
data from past periods but are ineffective for future data.
The results confirm the effectiveness of CL algorithms in
mitigating the effects of domain shifts when combined with
a pre-trained model. However, higher accuracies tend to be
obtained with higher memory requirements.

5. Temporal shifts analysis
We investigate the importance of temporal shift in VCT-

107 by analyzing the embedding space and the performance
variations per general topics over time.

5.1. Topic-based analysis of temporal shifts

We discuss the effect of temporal shifts for eight VCT-
107 general topics by refining the analysis of results from
Subsection 4.3 obtained with 200 images per class and pe-
riod. Figure 7 shows that the intra-period accuracy varies
significantly depending on the topic. Household Objects
and Apparel are the most challenging topics, while Animals
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Figure 6. Accuracy comparison when accumulating samples (“Accumulate” and “Replay 20”) and using linear probing vs. updating the
model using incremental learning (“FeCAM-1”, “FeCAM-n” “NCM”). Experiments with a pre-trained DinoV2 ViT-B/14 network.

Figure 7. Accuracy across temporal periods for the general topics included in VCT-107. The results are obtained using a DinoV2 backbone
with linear probing and 200 training images per class. We exclude Electronic Devices because this topic has only two classes.

and Plants are the easiest ones. The effect of temporal shifts
is also more significant for human-made classes than natu-
ral ones. The fact that time has variable effects for different
topics is important in practice since it indicates that tempo-
ral adaptation could be tailored at the class level.

5.2. Embedding-based analysis of temporal shifts

After observing the effect of temporal shift on VCT-
107 classes, we attempt to predict shift before training. We
compare the following distances: (1) the L2 distance be-
tween the centroids of two distributions, (2) the Fréchet In-
ception Distance [15] (FID) used by [46] to measure the gap
between two distributions when studying generalization, (3)
the energy distance [21, 77] that tests for equal distribution
in high dimensions without distributional assumption [77]
and (4) the Sinkhorn distance for optimal transport, a popu-
lar approximation of the Wasserstein distance [13, 45, 91].

We measure the distance of each class’s mean DinoV2
embedding distributions for each pair of temporal periods
in which the training and test periods are distinct. We com-
pare these distances to the loss of accuracy for the same
pairs of periods. Let Aorigin and Atarget be the test accu-
racy for the training and target periods. The relative loss
in accuracy is given by: (Atarget − Aorigin)/Aorigin. For
readability, in Figure 8, we average the distances and the
accuracy losses by general topic for every pair of a train

and a test period. We observe that for each considered met-
ric, the average distances generally grow with the accuracy
loss. FID and Sinkhorn’s algorithms successfully assigned
higher values to the two most affected topics. They could
be used in practice to decide whether to update the visual
representation of a topic (or even an individual class).

Finally, we check if the magnitude of the shift increases
with the time difference between the two distributions by
the FID metric. We average the distances corresponding to
each topic based on the temporal interval between the target
period and the others. Figure 9 confirms that the average
distance grows for all topics as the interval increases.

6. Discussion and conclusion

We introduce VCT-107 to analyze the impact of time on
visual classification models. We experiment in several set-
tings and observed an accuracy drop when training and test-
ing during different periods. The performance loss gener-
ally grows with the temporal distance between the training
and testing periods. We also observe that the classification
accuracy loss depends on the type of classes.

Practical guidelines. Based on these results, we propose
the following recommendations for improving classification
performance under temporal shifts:
• Use self-supervised pre-training with linear probing to re-
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Figure 8. Relative accuracy loss over time for the classes of the general VCT-107 topics as a function of distribution shift measured with
four metrics. Results aggregate distances and accuracies for individual classes for the assessed training-test period pairs.

Figure 9. VCT-107 topic distributions shift measured with the FID
distance as a function of the temporal interval between training and
test periods. We use the same colors for topics as Figure 8.

duce the performance variability over time. The results
confirm the improved generalization ability of pre-trained
models [55] in a temporal context. The relative pre-
training performance depends on the implemented type of
learning, the dataset size, and the dataset diversity, but the
relation is not always straightforward. In particular, our
experiments indicate that self-supervised visual learning
outperforms multimodal training in an image classifica-
tion task despite visual models having a smaller paramet-
ric footprint and using a smaller training set.

• Implement continual learning algorithms to further mit-
igate performance loss on past data if retraining with all
historical data is not an option. CL algorithms require the
storage of samples or statistical information but make the
training process much more efficient. They benefit costly
learning processes, such as training foundation models
with huge datasets [12].

• Consider the type of visual classes when learning over
time. Our experiments confirm the intuition that human-
made objects are more impacted by temporal shifts. How-
ever, there are important differences between the different
types of human-made objects. The analysis of class em-
beddings indicates that using an appropriate distance can
predict the need to update the training set. Adapting the
update rate for different classes is particularly interest-
ing when training foundation models, whose updates are
needed to keep pace with novelty but are also costly.
Limitations and future work. We discuss limitations

and suggest future work directions to mitigate them.
• The dataset is sourced from Flickr. Adding supplemen-

tary sources would increase the generality of the findings,
but access to photos with temporal metadata over such a
long period is not straightforward. We can only hope that
social platforms will facilitate researchers’ access to data,
but we observe an inverse trend in practice.

• The reliance on third-party data when building large
datasets is needed, which induces redistribution limita-
tions. Acknowledging the potential reproducibility lim-
itations, we follow recent practices [71] and provide the
image URLs to respect image rights.

• We tested pre-training and continual learning to miti-
gate temporal shifts. Other techniques can be considered
to counter this shift, including (1) PETL methods [29]
with adapters designed for temporal shifts, (2) domain
adaptation methods [73] to better preserve past knowl-
edge through time, and (3) imbalanced learning meth-
ods [24, 66] to rebalance performance when the number
of samples per class varies within a period or across them.

• VCT-107 covers several general topics, enabling their
analysis over time. However, the dataset would bene-
fit from including additional topics and enriching exist-
ing ones to broaden the analysis. It would also be inter-
esting to analyze the effects of time for finer-grained vi-
sual classes. These developments are left for future work,
building on the proposed dataset creation pipeline.

• The images included in VCT-107 are labeled for a sin-
gle class, following a protocol commonly used in image
classification [14, 35, 88]. It would be interesting to add
multi-label annotations to all dataset images to test the
effect of class co-occurrences during classification.

• We fixed classes over time to facilitate comparisons
across periods. An enriched version of the dataset could
include classes that appear over time. This enrichment
would be beneficial for fine-grained datasets.

• The dataset measures the effect of time at the year scale.
Refining the temporal scale to enable stream learning
would be interesting, as proposed in [9].
We hope this work will stimulate the community’s inter-

est in considering the temporal dimension of image classi-
fication. This research topic can increase the robustness of
deep models, especially for classes whose visual represen-
tations change frequently over time.
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