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Abstract

Medical eye-tracking data is an important information

source for understanding how radiologists visually inter-

pret medical images. This information not only improves

the accuracy of deep learning models for X-ray analysis

but also their interpretability, enhancing transparency in

decision-making. However, the current eye-tracking data is

dispersed, unprocessed, and ambiguous, making it difficult

to derive meaningful insights. Therefore, there is a need to

create a new dataset with more focus and purposeful eye-

tracking data, improving its utility for diagnostic applica-

tions. In this work, we propose a refinement method inspired

by the target-present visual search challenge: there is a spe-

cific finding and fixations are guided to locate it. After re-

fining the existing eye-tracking datasets, we transform them

into a curated visual search dataset, called GazeSearch,

specifically for radiology findings, where each fixation se-

quence is purposefully aligned to the task of locating a par-

ticular finding. Subsequently, we introduce a scan path pre-

diction baseline, called ChestSearch, specifically tailored

to GazeSearch. Finally, we employ the newly introduced

GazeSearch as a benchmark to evaluate the performance

of current state-of-the-art methods, offering a comprehen-

sive assessment for visual search in the medical imaging

domain. Code is available at https://github.com/

UARK-AICV/GazeSearch.

1. Introduction

Artificial Intelligence (AI) has been growing rapidly and

become an important part of daily life [3, 32, 34–36, 42,

46–49,56,74,79], including important workers like clinical

experts and healthcare providers [4, 25, 31, 37, 54, 65, 72].

Beyond achieving high performance, it is essential to de-

velop AI systems that offer explainable and interpretable

decision-making [2,21,23,51,52,61,63,64,73]. This is es-
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Problem: 
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lung opacity) in this CXR?
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Figure 1. (a) Given a CXR image, we are interested in radiolo-

gist’s eye movement of radiologist when they search for a finding.

(b) But, the existing eye gaze datasets are recorded in a free-view

form, where fixations are distributed across the entire CXR image

and making it unclear which fixations correspond to specific find-

ings. (c) Our new GazeSearch dataset, where fixation sequence is

focused for a specific finding. For example, the gaze sequence in

(c.1) targets lung opacity, while (c.2) focuses on pneumonia. Each

circle depicts a fixation, with the number and radius indicating its

order and duration, respectively.

pecially important in sensitive domains such as healthcare,

where credibility and reliability are critical to ensuring trust

and safe implementation. Even though human experts re-

main the ultimate authority in decision-making, researchers

are focusing on improving AI-assisted systems to reduce

the burden for the experts. For example, we can use AI to

produce preliminary results and the experts can either con-

firm or adjust [72]. As a result, the collaborative approach

between AI and professionals has successfully improved ra-

diological diagnosis in many cases compared to radiologists

or the system alone [65]. However, a key challenge is build-

ing trust in AI, especially with black-box models in health-

care, such as CXR analysis. This has increased the demand

for models that mimic radiologists’ behavior to improve in-

terpretability. For instance, aligning AI systems with radi-

ologists’ visual attention patterns is essential [51, 55]. This

has opened a new domain of research focused on model-
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ing the radiologists’ eye movements to improve the trans-

parency and reliability of AI systems in clinical practice [7].

Recognizing the importance of understanding how ra-

diologists’ eye movements impact diagnosis, datasets like

EGD [30] and REFLACX [5] have been introduced. But,

these eye-tracking datasets present two major challenges:

Challenge #1: Free-view format - Existing eye-tracking

datasets are collected in a free-view format, where fixa-

tions are distributed across the entire CXR image, making it

unclear which fixations correspond to specific findings (as

shown in Figure 1 (b)). Moreover, these datasets often con-

tain ambiguity and suffer from misalignment between the

recorded fixations and the findings in the report, rendering

them unsuitable for accurate scan path prediction.

Challenge #2: Lack of finding-aware radiologist’s scan-

path models - Most existing scanpath prediction mod-

els [43,75,77] are designed for general applications and lack

the domain-specific expertise needed for radiology. Fur-

thermore, current models trained on medical eye-tracking

data are not tailored to the challenges of finding-aware vi-

sual search in radiology. For instance, I-AI [51] only as-

sociates diseases with abnormalities in specific anatomical

areas. While RGRG [60] uses anatomical bounding boxes

without considering gaze for report generation.

To address the challenge #1, we propose a finding-aware

radiologist’s visual search dataset, named GazeSearch.

Our objective is to minimize the misalignment between the

findings extracted from the radiology reports and their cor-

responding fixations. Insprired by the visual search datasets

like COCO-Search18 [75] or Air-D [8], we further process

GazeSearch by reducing the fixation length using a radius-

based filtering heuristic, ensuring that the direction of fix-

ations remains clear and manageable. Additionally, for ev-

ery finding, we ensure that the duration of fixations within

the location of the given finding is maximized. To create

GazeSearch dataset, we utilize the existing free-view eye

gaze datasets EGD [30] and REFLACX [5] (Figure 1(b)) to

conduct a finding-aware radiologist’s visual search dataset

(Figure 1(c)), which produces two scanpaths for particular

findings e.g., “lung opacity” (Figure 1 (c.1)) and “pneumo-

nia”(Figure 1 (c.2)) in this example. The goal of releas-

ing this dataset is to foster the development of algorithms

that better mimic radiologists, especially focusing on under-

standing observation sequences, attention (duration), fre-

quency on key regions, and expert knowledge [45, 71].

To address challenge #2, we introduce ChestSearch,

a scanpath prediction architecture that surpasses existing

models. ChestSearch builds on a standard meta architec-

ture [13] featuring a feature extractor [24, 39] and a Trans-

former decoder [62], with two key enhancements. First, we

train the feature extractor using the self-supervised MGCA

method [66] on the large MIMIC-CXR [29] dataset, provid-

ing a strong initialization for training. Second, we utilize the

modified cross attention from [12] with a query mechanism

to select only relevant fixations for predicting the next fix-

ation. Then, the model’s three heads handle distinct tasks:

predicting 2D coordinates, duration, and stopping points.

Finally, we benchmark ChestSearch against current state-

of-the-art visual search models on GazeSearch, showcasing

the current advancements in radiology visual search.

Our main contributions are:

• GazeSearch: We propose a processing technique that

converts free-view eye gaze data into finding-aware ra-

diologist’s visual search data. This curated dataset is

the first target-present visual search dataset for chest

X-ray, making possible deep learning modeling of

medical visual search prediction.

• ChestSearch: We propose a transformer-based model

that utilizes a radiology pretrained feature extractor

and query mechanism to choose only relevant fixations

to predict subsequent fixations based on previous ones.

Additionally, we evaluate ChestSearch against several

leading generic scanpath prediction models using our

GazeSearch to showcase the current progress in the

medical visual search task.

2. Related works

Visual Search Datasets. Search datasets have been rising

recently due to the interest in understanding human behav-

ior [8,19,22,28,50,67,80]. This is particularly evident in the

general visual domain, where numerous datasets have been

created across diverse settings. These datasets cover a wide

range of scenarios, from searching for multiple targets si-

multaneously [22] to focusing on a single or two target cat-

egories [19, 80]. Some datasets, like COCO-Search18 [75],

feature a large number of target objects, or adopt a Visual

Question Answering approach [8]. In contrast, the medi-

cal domain has lagged behind in terms of dedicated visual

search datasets. Existing medical datasets primarily focus

on multi-target search tasks, as demonstrated by datasets

like EGD [30] and REFLACX [5]. However, there is a

significant lack of search datasets tailored for the medical

domain. This paper makes a novel contribution by address-

ing this research gap. We introduce the first target-present

visual search dataset specifically designed for the medical

field. This dataset opens up new avenues for research and

development in this critical area.

Visual Search Baselines. Parallel to the growth of visual

search datasets, significant advancements have been made

in scan path prediction accuracy [1, 14, 33, 69, 81]. Early

scanpath models mostly rely on sampling fixations from

saliency maps [27, 41, 68, 70]. Recent advancements, in-

cluding the integration of deep neural networks [9, 43, 59,

75, 77, 78], reinforcement learning techniques [9, 75, 77],

and transformer-based architectures [10, 43, 53, 76], have

significantly deepened our understanding of the temporal
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Figure 2. Pipeline of GazeSearch creation, which processes free-

view eye gaze data as input and outputs a finding-aware scanpath.

dynamics of human attention. However, generic models

are designed for broad application, so the performance of

generic visual search models on CXR is uncertain and po-

tentially subpar. This work introduces a transformer-based

method that can work well without these restrictive assump-

tions. Additionally, we further conduct a comparative ex-

periment between state-of-the-art methods from the general

visual domain and our proposed method, providing a com-

prehensive evaluation of their performance in the medical

domain.

3. GazeSearch Dataset

When studying free-view eye-tracking datasets from

sources like REFLACX [5] and EGD [30], we notice that

the eye-tracking data (including both gaze and fixations) is

often ambiguous and lacks clarity. This ambiguity comes

from the data collection settings, where radiologists look

for multiple findings simultaneously. As a result, each fix-

ation captures visual information relevant to multiple find-

ings rather than a specific finding. Therefore, the fixations

from these eye-tracking datasets are unsuitable for studying

their relationship to specific findings, i.e. addressing the vi-

sual search problem. Additionally, when visualizing these

gaze points or fixations over an image, they often cover

more than 80% of the lung area, even though the actual

anomaly area might be much smaller. We calculate the fix-

ation coverage distribution in Supplementary. This raises

Algorithm 1 Radius-based Filtering Procedure

Input: Image width W , image height H , bounding

boxes B, max length M , radius r, fixations F =
{(x1, y1, d1), (x2, y2, d2), . . . , (xn, yn, dn)}
Output: Filtered fixations F̂
Initialize: F̂ = (W/2, H/2, 0.3)
// The last point must be inside B.

j ← max{i|(xi, yi) ∈ B, (xi, yi, di) ∈ F , 1 ≤ i ≤ n}
// Apply radius heuristic with looping backward.

c← {(xj , yj)}, where (xj , yj , dj) ∈ F
for each point (xi, yi, di) ∈ F from j − 1 to 1 do

if (xi, yi) is within radius r of (xi+1, yi+1) then

c← c ∪ {(xi, yi)}
else

x← 1
|c|

∑

k xk, y ←
1
|c|

∑

k yk, d←
∑

k dk,

where (xk, yk, dk) ∈ c
c← {(xi, yi)}
F̂ ← F̂ ∪ {(x, y, d)}
if |F̂ | = M then

break

end if

end if

end for

if c ̸= {} and |F̂ | < M then

x← 1
|c|

∑

k xk, y ←
1
|c|

∑

k yk, d←
∑

k dk,

where (xk, yk, dk) ∈ c
F̂ = F̂ ∪ {(x, y, d)}

end if

Algorithm 2 Time-spent Constraining Procedure

Input: F̂ = {(x1, y1, d1), (x2, y2, d2), . . . , (xn, yn, dn)},
bounding boxes B
Output: Constrained fixations F ′

dout ← {
∑n

i=k,(xi,yi)/∈B di|(xk, yk, dk) ∈ F̂ , 1 ≤ k ≤

n}.
din ← {

∑n
i=k,(xi,yi)∈B di|(xk, yk, dk) ∈ F̂ , 1 ≤ k ≤

n}.
D ← {i|dini ≥ douti , 1 ≤ i ≤ n}.
if 1 /∈ D then

t← minD
F ′ ← {(xi, yi, di)|i ≥ t, (xi, yi, di) ∈ F̂}

end if

a concern that using the free-view fixations from the given

datasets may not be effective and could even pose risks in

sensitive sectors like healthcare, particularly for tasks re-

quiring precise localization of specific findings.

To solve this issue, one way is to collect eye-tracking

data under the visual search setting directly. However, to

collect data by having radiologists examine each of the 14

standard findings in CheXpert [26], would be costly and

98



time-consuming. Therefore, this paper will propose an al-

ternative technique that leverages eye-tracking data directly

from the free-view setting to convert to the finding-aware

visual search setting.

Inspired by visual search, we studied the COCO-

Search18 [75], Air-D [8], and COCO-Freeview [11,78], and

identified two key properties that are required in a visual

search dataset:

Property #1: Late fixations tend to converge to more deci-

sive regions of interest (ROIs) [8]. And, Shi et al. [8] have

concluded the late fixations are for searching.

Property #2: The fixations within the object of interest tend

to have longer durations, while those outside the object are

typically shorter.

Based on those two facts, we propose an approach to

convert from free-view data into a visual search format, en-

suring the filtered fixations retain properties #1 and #2 with-

out sacrificing too many fixations. Figure 2 illustrates the

overview of our data processing pipeline, including Naive

Finding Mapping (Section 3.1) to clean irrelevant fixations

for a given finding, Finding-Anatomy Relation Matrix (Sec-

tion 3.2) to extract key regions, and finally Visual Search

Constraint Imposition (Section 3.3) to produce the fixations

that have both visual search properties.

3.1. Naive Finding Mapping

The first problem we must solve is the mismatch between

the fixations and the corresponding radiologists’ report sen-

tences. The main reason is radiologists observe the images

first and then describe their findings, meaning the fixations

within the time frame of a sentence may not fully capture

the findings reported. Inspired by I-AI [51], we start by

completely removing fixations after the current spoken sen-

tence. Let S = {s1, s2, ..., s|S|} be the sequence of sen-

tences in the transcript. Let C = {c1, c2, ..., cm} be the

set of possible findings (e.g., CheXpert labels). We define

a function ϕ : S → C where cj = ϕ(si) if sentence si
corresponds to finding cj . In our implementation, ϕ(·) is

the Chexbert model [57]. For a target finding c′ ∈ C, let

u = max{i|ϕ(si) = c′, 1 ≤ i ≤ |S|}. Then, the new

finding-aware fixations F for c′ is

F = {(xi, yi, ti, di)|(xi, yi, ti, di) ∈ F, 0 ≤ ti ≤ eu} (1)

where F = {(x1, y1, t1, d1), .., (x|F |, y|F |, t|F |, d|F |)} is

the free-view fixations, with (xi, yi) as spatial coordinates,

ti as captured timestamp, and di as duration, and eu is

the ending time of the sentence su. From this point on-

wards, we only use the triplet (xi, yi, di) and ignore the

captured timestamp ti for our fixation sequence: F =
{(x1, y1, d1), . . . , (xn, yn, dn)}, where n = |F| is the fixa-

tion sequence length.

3.2. FindingAnatomy Relation Matrix

To address this, we leverage the Chest ImaGenome [71]

dataset, which offers pairs of findings and their correspond-

ing anatomies, along with anatomy bounding boxes linked

to each finding. For precision, we rely on the gold subset

of Chest ImaGenome to construct a relation matrix between

findings and anatomies. As a final step, a radiologist with

over 15 years of experience thoroughly reviews and refines

the matrix. The finalized matrix is included in the Supple-

mentary Material. Once the relation matrix is completed,

we reference the given finding c′ to identify the correspond-

ing anatomies and utilize the ground truth anatomy bound-

ing boxes provided by Chest ImaGenome as our B for the

subsequent steps.

3.3. Visual Search Constraint Imposition

After Section 3.1, the maximum fixation sequence length

can be over 340 fixations for a finding. Therefore, another

task we must solve is reducing this length to an interpretable

level for humans.

Utilizing both properties (1) and (2) as our guidance for

this process, we perform two main steps: radius-based fil-

tering (to enforce property #1) and time-spent constraining

(to enforce property #2). Besides property #1, we observe

that the captured fixations from EGD and REFLACX cover

one-degree visual angle [5, 30, 38]. Based on that fact, we

use the Algorithm 1 to cluster the finding-aware fixations

F to create another fixation set F̂ , with a larger radius r of

two-degree of visual angle and M is the max length of fix-

ation sequence. Property #1 is enforced by iterating back-

ward from the end to the beginning of the fixation sequence

F . Then, we use the Algorithm 2 to make sure the late fixa-

tions must spend the most time in the anatomies of interest,

which satisfies property #2.

In Algorithms 1 and 2, we define a point (x, y) to be in

the bounding box sets B for notation convenience:

(x, y) ∈ B ⇐⇒ xleft ≤ x ≤ xright, ytop ≤ y ≤ ybottom,

∀(xleft, ytop, xright, ybottom) ∈ B (2)

To align with the COCO-Search18 dataset, we set the max-

imum fixation length to M = 7 and add a default center

as the start fixation. This choice is based on the observa-

tion that 95% of the samples in COCO-Search18 have fix-

ation lengths under 7. For the first fixation’s duration, we

assign 0.3 seconds to it, which reflects the duration of 91%

of first fixations in COCO-Search18. In total, GazeSearch

has 2,081 images with 413 samples from EGD and 1,668

samples from REFLACX. There are a total of 13 findings.

Each sample has fixations for 1 to 6 findings and has a max

length of 7, including the default middle fixation. For train-

ing and evaluation, we split the dataset into 1,456 samples
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Table 1. Usage validation experiments on our GazeSearch. mHC

(mean Heatmap Coverage) is the average ratio of the heatmap area

to the lung area across all images in GazeSearch.

Method Fixation Type AUC mHC

Naive Classifier ✗ 76% ✗

Temporal Classifier
Freeview 81% 91%

Finding-aware (GazeSearch) 81% 44%

for training (70%), 208 samples for validation (10%), and

417 samples for testing (20%).

3.4. Usage Validation

Filtering fixations requires discarding information, so it

is essential to test and ensure that the new data remains

valuable. To validate that GazeSearch’s fixations can be as

useful as the free-view fixation maps from EGD and RE-

FLACX, we follow Karargyris et al. [30] to perform the

Temporal Heatmap experiment. This experiment evaluates

whether eye gaze data can enhance classifier performance

when using ground truth fixations as temporal inputs. The

results, Table 1, indicate that despite using only half the area

compared to the free-view setting, performance remains

comparable. Detailed implementation of this experiment is

provided in the Supplementary.

4. ChestSearch

Given a CXR image I of dimensions H×W and a target

finding c′, our objective is to generate a scan-path comprises

of fixations y = {fi}
n
i=1, where n represents the number of

fixations, and fi = (xi, yi, di) is the fixation at 2D coordi-

nate (xi, yi) with a duration of di.
Figure 3 provides an overview of our method. The pro-

cess begins by applying a Feature Extractor (Section 4.1)

to process I to extract both detailed and high-level vi-

sual features. Following this, a Spatiotemporal Embed-

ding (Section 4.2) embeds previous fixations, combined

with multi-resolution features, to capture contextual rela-

tionships within the sequence. These features are passed

through a transformer decoder with cross-attention, self-

attention, feedforward layers, and normalization (Sec-

tion 4.3) to create a decoded latent feature. Finally, the

decoded feature is fed into three heads to predict the next

fixation: termination prediction (Section 4.4), fixation du-

ration (Section 4.5), and distribution for the next fixation

(Section 4.6)

4.1. Feature Extractor

Using features from only the last layer is inadequate for

predicting scanpaths [77]. Therefore, we employ ResNet-

50 FPN [39] as our Feature Extractor module (FE). Be-

sides, using the ImageNet [16] checkpoint may not be op-

timal for the medical domain, so we train the FE using a

self-supervised approach based on MGCA [66] with the

Feature Extractor

2D Spatial Indexing

2D Positional Encoding

1D Temporal Embedding

...

...

...

Self Attention

...

MLP

Fixation Decoder

...

Sample

Cross Attention
Add & Norm
Self Attention
Add & Norm

FFN
Add & Norm

Spatiotemporal Embedding

Yes

0.76

QK V

Figure 3. The figure provides a detailed view of Chest-

Search. It begins by processing the previous fixations, denoted

as {(xi, yi, di)}
t−1

i=1
, along with the input chest X-ray image I ,

through a Feature Extractor and Spatiotemporal Embedding to

generates the spatiotemporal embedded feature E. Next, the Fix-

ation Decoder uses a learnable query qc and the embedded feature

E to decode it into a feature Ē. From here, three heads use Ē to

predict the next fixation coordinates (x̂t, ŷt, d̂t). Here, at step t,

the termination head outputs “Yes,” indicating that this is the final

fixation for the image I .

MIMIC-CXR dataset [29]. From the CXR image I with

size H × W , FE produces four multi-scale feature maps

P = {P 1, . . . , P 4}. Then we need to mimic how human

see an image: at first we only see the image at a high level

understanding, with no clear details, and then we look care-

fully to search for what we need [75]. So we use one feature

map with low resolution P l = P 1 ∈ R
C× H

32
×W

32 , where

C is the channel dimension, to represent high-level visual

feature, and one high-resolution feature map Ph = P 4 ∈
R

C×H

4
×W

4 to represent detailed visual information.

4.2. Spatiotemporal Embedding

Given the previous predicted fixations {(xi, yi)}
t−1
i=1 , P l,

and Ph, we then embed the previous fixations to create the

feature list as the input for the decoder in Section 4.3.

2D Spatial Indexing. Every (xi, yi), where 0 ≤ xi ≤ W
and 0 ≤ yi ≤ H , is scaled down to the same resolution as of

Ph, which result in the new 0 ≤ x′
i ≤

W
4 and 0 ≤ y′i ≤

H
4

in our case. Then, we index the feature cell at the coordinate

(x′
i, y

′
i) in Ph, called Ph

i . We will have the list of feature

{Ph
i }

t−1
i=1 .

2D Positional Embedding. For every Ph
i , we encode the

spatial information by using positional encoding twice, first
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in the x-axis, then in the y-axis. As the 2D order is impor-

tant, we enforce the sinusoid version of positional encoding.

1D Temporal Embedding. We also need to let the model

know the order of each fixations. However, the role of fixa-

tion order in diagnosing CXR in practice is complicated, so

we let the model decide the embedding by applying a learn-

able position embedding here. This results in the {P̄h
i }

t−1
i=1

sequence of embedded feature.

Self Attention. Finally, we feed {P̄h
i }

t−1
i=1 into several lay-

ers of self-attention to aaggregate information so that each

position is influenced by the relevant fixations. In the self-

attention layers, we also provide the model with a low-

resolution feature map P l to supply high-level feature infor-

mation. This intuition is also proven effected empirically, as

it will be shown later in Section 5.4. The final embeddings

are E = {El} ∪ {Eh
i }

t−1
i=1 , where El ∈ R

D× H

32
∗W

32 and

Eh
i ∈ R

D.

4.3. Fixation Decoder

At this layer, we have the finding list q = {qc}
|q|
c which

serves as the set of queries. The number of queries is the

number of findings in our dataset |q| = 13 with qc ∈ R
D is

a learnable embedding for the current finding query c. The

previous module (Section 4.2) gives us the embeddings of

previous fixations E.

The Fixation Decoder module is the modified trans-

former decoder [12] including the blocks as shown in Fig-

ure 3. The cross-attention block uses the query embedding

q as the query input Q, with E serving as both key (K)

and value (V). This allows the model to capture the corre-

lations among previous fixations and accurately predict the

next fixation. The resulting feature then passes through self-

attention layers, residual connections, normalization, and a

feed-forward network. This process repeats for L layers in

the decoder. The final output Ē ∈ R
|q|×D is then processed

by three different heads.

4.4. Termination Head

A fixation sequence’s length can vary, so our model

needs to learn when to stop. To achieve this, we use a

head consisting of a fully connected (FC) layer followed

by a sigmoid function that maps Ē to termination value i.e.,

τ̂ ct ∈ R = sigmoid(FCτ (Ē)).

4.5. Duration Head

The duration can be considered as a Gaussian distribu-

tion. We use Ē, then regress it into a mean value µdt
=

FCµ(Ē) and a log-variance λdt
= FCλ(Ē):

d̂t = µdt
+ ϵdt

· exp(0.5λdt
),

ϵdt
∼ N (0, 1)

(3)

where ϵdt
noise gives our prediction a probabilistic charac-

teristic, and d̂t ∈ R
|q| is the duration prediction. The inspi-

ration comes from using the reparameterization trick [18],

which allows us to backpropagate from the label back to the

normal distribution.

4.6. Distribution Head

Because fixation is random in nature, we predict a 2D

distribution in the form of a heatmap ĥt ∈ [0, 1]|q|×(H

4
∗W

4
).

Formally, we compute:

Ē′ = MLP(Ē)

ĥt = sigmoid(Matmul(Ē′, Ph)) (4)

where Matmul(·, ·) is the matrix multiplication between two

input tensors, and Ē′ ∈ R
|q|×D is the latent embedding

prepared for heatmap generation. At inference, we sample

the next 2D coordinate f̂t = (x̂t, ŷt) from the distribution

map ĥt for every given timestamp t.

4.7. Objective Functions

ChestSearch has three objectives, each corresponding to

one of its heads: the loss between the ground truth and pre-

dicted distributions, the loss for termination, and the loss for

duration.

The termination loss is just a standard binary cross-

entropy between the predicted termination value τ̂t and the

corresponding ground truth τt.

Lτ = −τt log(τ̂t)− (1− τt) log(1− τ̂t), (5)

The distribution loss is defined as focal pixel-wise loss:

Lh = − 1
N

∑

ij

{

(1− ĥij)
γ log(ĥij) if hij = 1,

(1− hij)
α(ĥij)

γ log(1− ĥij) otherwise,
(6)

where 0 ≤ i ≤ H
4 , 0 ≤ j ≤ W

4 are the 2D indexes, N =
H
4 ∗

W
4 is the number of values, α and γ are the hyper-

parameters indicating the importance of each pixel. The

duration loss is defined as the L1 loss, i.e., Ld = |d̂t − dt|.
Finally, we train all three losses jointly.

L = Lτ + Lh + Ld (7)

5. Experiments

5.1. Implementation and Metrics

Implementation details. All images are scaled down to

224× 224 for computing efficiency. The Fixation Decoder

has L = 6 layers with a hidden dimension D = 384. The

MLP of Fixation Distribution Head consists of 384 units

with 3 layers and ReLU activation. Eq. (6) has α = 4 γ = 2
based on the best validation results. The Feature Extractor’s

backbone is ResNet-50 [24], and we obtain the ResNet-50

checkpoint using MGCA [66] for 50 epochs with a batch
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Table 2. Performance comparison between our ChestSearch and SOTA visual search methods.

Method
ScanMatch ↑ MultiMatch ↑

SED ↓ STDE ↑
w/o Dur. w/ Dur. Vector Direction Length Position Duration

IRL [75] 0.1495 - 0.8248 0.6402 0.7688 0.6998 - 6.6250 0.7043

FFMs [77] 0.2766 - 0.8914 0.6567 0.8785 0.8140 - 5.9221 0.8055

ChenLSTM [9] 0.2751 0.2153 0.8825 0.6222 0.8731 0.7940 0.6384 5.3468 0.7841

ChenLSTM-ISP [10] 0.2863 0.2205 0.8847 0.6430 0.8721 0.7980 0.6504 5.2895 0.7865

Gazeformer [43] 0.2971 0.2042 0.9080 0.6506 0.9035 0.8147 0.5901 5.1024 0.8030

Gazeformer-ISP [10] 0.2736 0.2146 0.9038 0.6181 0.8892 0.8031 0.6755 5.1905 0.7875

HAT [76] 0.3120 - 0.9064 0.6443 0.9065 0.8138 - 5.0613 0.8006

Our ChestSearch 0.3321 0.2232 0.9173 0.6790 0.9174 0.8293 0.6951 4.8831 0.8089
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Figure 4. Qualitative results between our ChestSearch compared with ChenLSTM-ISP, Gazeformer, Gazeformer-ISP, and HAT. Four

different findings (rows) including Atelectasis, Cardiomegaly, Edema, and Lung lesion are shown from the top to bottom. Each circle

represents a fixation, with the number and radius indicating its order and duration, respectively. As HAT only predicts 2D coordinates, we

let all predicted fixations of HAT have the same radius.

size of 144. We then finetune this checkpoint jointly with

the full pipeline. We train the full pipeline for 30,000 iter-

ations with a learning rate of 1 × 10−5 and a batch size

of 32. The entire training process was conducted using

AdamW [40], on a single A6000 GPU with 48GB of RAM.

Metrics. We evaluate fixation scanpath prediction accu-

racy using various metrics: ScanMatch [15, 58] applies the

Needleman-Wunsch algorithm [44] to compare fixation lo-

cations and durations; MultiMatch [17] assesses similar-

ity across five dimensions; String-Edit Distance (SED) [6,

20] compares character strings representing image regions;

and Scaled Time-Delay Embedding (STDE) [68] mea-

sures mean minimum Euclidean distances between sub-

sequences of predicted and ground truth scanpaths.

Compared Methods. We evaluate several state-of-the-

art (SOTA) visual search methods on our GazeSearch:

IRL [75], FFMs [77], ChenLSTM [9], Gazeformer [43],

ChenLSTM-ISP [10], Gazeformer-ISP [10], and HAT [76].

Note that Gazeformer and Gazeformer-ISP require a pre-

trained CLIP component to encode the finding names, so

we replace its default CLIP with BiomedCLIP [82]. We ad-

here to the original training practices for all baselines. For

more details, please refer to the Supplementary.

5.2. Quantitative results

Table 2 demonstrates the proposed method’s superior

performance, surpassing SOTA approaches. Note that

IRL, FFMs, and HAT do not predict fixation duration,

so their evaluation on this metric is excluded. IRL and

FFMs face challenges with sample efficiency due to re-
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inforcement learning pipelines, while ChenLSTM variants

and ISP methods are limited by their specialized mod-

ules—ChenLSTM relies on pretrained object detectors and

ISPs on Observer-Centric modules. HAT and Gazeformer

overgeneralize and fail to fully leverage domain-specific in-

formation by design, with HAT ignoring duration data and

Gazeformer relying heavily on CLIP for zero-shot visual

search. Our method avoids these limitations. High scores in

metrics such as ScanMatch, MultiMatch, SED, and STDE

demonstrate our method’s capability to effectively capture

complex scanpath dynamics, setting a new standard in chest

X-ray target-present visual search.

5.3. Qualitative results

Figure 4 presents a qualitative comparison of scan-

path patterns across different radiology findings and mod-

els, including radiologists and several state-of-the-art ap-

proaches. Generally, ChestSearch predicts more con-

sistent and radiologist-like fixations than other methods.

ChenLSTM-ISP often exhibits scattered, less focused pat-

terns, while Gazeformer-ISP may overlook key areas or fo-

cus on fewer locations. Although Gazeformer aligns better

with ground truth than its ISP variant, it occasionally misses

critical regions, such as lung lesions. HAT performs reason-

ably well but frequently covers the entire lung, even when

attention should be limited to smaller areas, such as in car-

diomegaly. In contrast, our ChestSearch shows fixation pat-

terns more closely resembling those of radiologists, outper-

forming other state-of-the-art methods. Overall, Figure 4

underscores the effectiveness of our approach in mimicking

expert gaze patterns across different findings. Additional

comparison will be included in the Supplementary.

5.4. Ablation study

To study the design choice of our proposed architecture,

we ablate our method under several aspects.

The importance of low- and high-resolution feature

maps. In Section 4.2, guided by our intuition, we use two

feature maps: a low-resolution map for high-level visual

understanding and a high-resolution map for detailed vi-

sual understanding. These are concatenated into a single

tensor for the Self-Attention layer, with the low-resolution

feature serving as a reference and the high-resolution fea-

ture indexed using 2D Spatial Indexing to generate tempo-

ral features. Ablation results in Table 3 show that omit-

ting 2D Spatial Indexing results in a significant performance

drop due to the loss of temporal information. Conversely,

not using the reference feature before Self-Attention has a

lesser impact. The optimal performance is achieved by us-

ing the low-resolution feature as the reference and the high-

resolution feature for 2D indexing, aligning with our intu-

itive design choices.

Initial Feature Extractor’s weight contribution. This ab-

Table 3. The role of low- and high-resolution feature maps.

Reference Indexing
ScanMatch ↑

MultiMatch ↑ SED ↓ STDE ↑
w/o Dur. w/ Dur.

P l ✗ 0.1848 0.2029 0.7070 6.3636 0.7066

Ph ✗ 0.1939 0.1925 0.7058 6.1424 0.7184

✗ P l 0.3077 0.2177 0.7927 5.0180 0.8027

✗ Ph 0.3176 0.2204 0.7985 4.9078 0.8035

P l P l 0.3129 0.2228 0.7989 4.9100 0.8060

Ph Ph 0.3221 0.2229 0.8015 5.0277 0.8058

Ph P l 0.3184 0.2210 0.8022 5.0224 0.8057

P l Ph 0.3321 0.2232 0.8076 4.8831 0.8089

Table 4. Ablation study of choosing initial weight.

Inital Weight
ScanMatch ↑

MultiMatch ↑ SED ↓ STDE ↑
w/o Dur. w/ Dur.

Random Init. 0.3130 0.2205 0.79224 5.0331 0.8058

ImageNet 0.3238 0.2224 0.79942 4.9723 0.8081

Ours (Self-supervised) 0.3321 0.2232 0.80762 4.8831 0.8089

lation studies the effect of the initial weight for the Feature

Extractor(Section 4.1), shown in Table 4. In conclusion, us-

ing ImageNet checkpoint can give a decent performance.

But with a better checkpoint, the performance is higher.

This shows the robustness of our architecture.

6. Conclusion

This paper addresses two key challenges: ambiguous fix-

ations in existing eye-tracking datasets and the absence of a

finding-aware radiologist’s scanpath model. Drawing inspi-

ration from visual search datasets in general domains, we

align findings with fixations, manage fixation durations us-

ing a radius-based heuristic, and constrain fixations on dura-

tion to produce the first finding-aware visual search dataset,

GazeSearch. Our dataset reflects two key properties of vi-

sual search behavior: #1 late fixations tend to converge on

decisive regions of interest, and #2 fixations within objects

of interest are typically longer in duration compared to those

outside. We then propose ChestSearch that utilizes self-

supervised training to obtain a medical pretrained feature

extractor and a query mechanism to select relevant fixations

for predicting subsequent ones. The extensive benchmark

shows ChestSearch ’s ability to generate radiologist-like

scanpaths, serving as a strong baseline for future research.

Discussion: Our work impacts the behavioral vision

literature in the medical domain, where (i) modeling and

replicating radiologists’ behavior has not been explored,

(ii) understanding the understanding of finding-aware visual

search and their integration with Deep Learning remains

poorly understood [45]. These are critical for advancing

diagnostics in radiology, enhancing decision-making pro-

cesses, and enabling the future development of collabora-

tive interactions between radiologists and AI systems.
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[33] Matthias Kümmerer, Thomas S. A. Wallis, and Matthias

Bethge. DeepGaze II: Reading fixations from deep

features trained on object recognition. arXiv preprint

arXiv:1610.01563, 2016. 2

[34] Minh-Quan Le, Alexandros Graikos, Srikar Yellapragada,

Rajarsi Gupta, Joel Saltz, and Dimitris Samaras. ∞-brush:

Controllable large image synthesis with diffusion models in

infinite dimensions. arXiv preprint arXiv:2407.14709, 2024.

1

[35] Minh-Quan Le, Tam V Nguyen, Trung-Nghia Le, Thanh-

Toan Do, Minh N Do, and Minh-Triet Tran. Maskdiff: Mod-

eling mask distribution with diffusion probabilistic model

for few-shot instance segmentation. In Proceedings of the

AAAI Conference on Artificial Intelligence, volume 38, pages

2874–2881, 2024. 1

[36] Ngan Le, Vidhiwar Singh Rathour, Kashu Yamazaki, Khoa

Luu, and Marios Savvides. Deep reinforcement learning in

computer vision: a comprehensive survey. Artificial Intelli-

gence Review, pages 1–87, 2022. 1

[37] Ngan Le, James Sorensen, Toan Bui, Arabinda Choudhary,

Khoa Luu, and Hien Nguyen. Enhance portable radiograph

for fast and high accurate covid-19 monitoring. Diagnostics,

11(6):1080, 2021. 1

[38] Olivier Le Meur and Thierry Baccino. Methods for compar-

ing scanpaths and saliency maps: Strengths and weaknesses.

Behavior Research Methods, 45(1), 2013. 4

[39] Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He,

Bharath Hariharan, and Serge Belongie. Feature pyra-

mid networks for object detection. In Proceedings of the

IEEE conference on computer vision and pattern recogni-

tion, pages 2117–2125, 2017. 2, 5

[40] I Loshchilov. Decoupled weight decay regularization. arXiv

preprint arXiv:1711.05101, 2017. 7

[41] Olivier Le Meur and Zhi Liu. Saccadic model of eye move-

ments for free-viewing condition. Vision Research (VR),

2015. 2

[42] Mohammad Muzaffar Mir, Gulzar Muzaffar Mir,

Nadeem Tufail Raina, Saba Muzaffar Mir, Sadaf Muzaf-

far Mir, Elhadi Miskeen, Muffarah Hamid Alharthi, and

Mohannad Mohammad S Alamri. Application of artificial

intelligence in medical education: current scenario and fu-

ture perspectives. Journal of advances in medical education

& professionalism, 11(3):133, 2023. 1

[43] Sounak Mondal et al. Gazeformer: Scalable, effective and

fast prediction of goal-directed human attention. In Proceed-

ings of the IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), 2023. 2, 7

[44] Saul B Needleman and Christian D Wunsch. A general

method applicable to the search for similarities in the amino

acid sequence of two proteins. Journal of molecular biology,

48(3):443–453, 1970. 7
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