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Abstract

Diffusion models have emerged as powerful tools for
image generation, offering flexibility in generating images
conditioned on specific classes or properties. Unlike GANs,
diffusion models can be conditioned during training with
relative ease.

However, adapting pre-trained diffusion models to gen-
erate images from new, unlabeled data remains a significant
challenge. The ADM-G approach addresses this by guiding
diffusion models to generate images from a given class, but
it often produces results of lower quality compared to mod-
els originally trained with class-specific conditioning. For
instance, the ADM-G-guided model achieves an FID score
nearly three times worse than that of a class-conditioned
guidance. We identify that this performance gap arises
partly because ADM-G provides minimal guidance dur-
ing the final stages of the denoising process. To overcome
this limitation, we introduce GeoGuide, a novel guidance
method that improves the model’s trajectory alignment with
the data manifold. GeoGuide refines the backward de-
noising process by applying normalized adjustments to the
model’s output. Experimental results show that GeoGuide
significantly outperforms ADM-G in both FID scores and
the visual quality of the generated images.

1. Introduction
Diffusion models are crucial for generating images with

specified characteristics. Compared to GAN models, their
benefit is that they can be easily conditioned to produce out-
comes with the desired attributes [1, 3, 9].

However, given a pre-trained diffusion model, it is not
trivial to construct images that belong to the class that was
not considered earlier in the conditioning process. One
of the possible solutions is given by the guidance model
ADM-G [3]. Roughly speaking, to produce an image from
a new class, we first train a classifier for this class and
then add the rescaled gradient during the backward process.
ADM-G introduces guidance through probabilistic princi-
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Figure 1. In our paper, we propose a new approach to guidance
of diffusion models, called GeoGuide. In contrast to ADM-G [3]
we use updates with the same norm and consequently keep the
guided diffusion process close to the manifold of a given class.
Observe that this allows us to construct images with more details
characteristic of a given class, resulting in a decrease in the FID
score from 12 in ADM-G to 7.32 in GeoGuide, see Table 2. The
images were constructed with the same diffusion noise for ADM-
G and GeoGuide.

ples, for a more detailed description, see Section 4. Un-
fortunately, ADM-G shows a notable difference in the FID
score between the model that only uses guided techniques
and the model with class-conditioned guidance. Specifi-
cally, the ADM-G model achieves a 4.59 FID score with
class-conditioned guidance, while the guided model obtains
only 12 FID score, as referenced in Table 4 of [3].

This paper aims to reduce the gap between the quality
of images generated by diffusion models guided on previ-
ously unlabeled data compared to class-conditioned guides,
see Figure 1. To do so, we switch perspectives from prob-
abilistic to metric. We postulate that the trajectories of the
guided model should be close to the metric properties of the
unguided ones. It occurs that by applying ADM-G guid-
ance, the norms of adjustment in to the backward diffusion
denoising decrease significantly in the last iterations of the
denoising procedure, see Figure 2. As a result, the images
become nearly unguided at half of their trajectory and con-
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Figure 2. Norm values of the gradient modification factor applied
at each iteration of the classifier guided diffusion sampling back-
ward process. Comparison of image generated with GeoGuide and
three random images generated with ADM-G. Observe that in the
case of the vanilla guidance (probabilistic approach) the norm of
the modification at the last steps of the diffusion process is close
to zero, which results in less detail in the produced images, see
Figure 1.

sequently lose the ability to produce details specific to the
given class, see Figure 1 and Figure 3.

To address this issue, we shift the perspective from a
probabilistic framework to a metric-based method. We the-
oretically demonstrate that the trajectory of the diffusion
model lies close to the data manifold. Using such intuition,
we propose a new guidance model GeoGuide, which uses
fixed length updates to force the denoising process to be as
close as possible to the data manifold. GeoGuide use norm
of classification gradient to control updates. Therefore, our
model is easy to implement and outperforms the probabilis-
tic approach with respect to FID score and the quality of
generated images.

Concluding, the main contributions of the paper are the
following:

• we propose a new guidance model GeoGuide, moti-
vated by the metric properties of the trajectories of the
diffusion process,

• GeoGuide is easy to implement and controls the norm
of the guidance,

• GeoGuide outperforms ADM-G in pure guidance with
respect to FID score and quality of generated images.

2. Related Works
Our method aims to improve sample generation of pre-

trained diffusion models [3, 13, 14]. It can be easily incor-
porated into existing models as it does not modify the struc-
ture or inner workings of the network [2, 7]. It only mod-
ifies sampling logic, which allows one to easily leverage

the power of already existing diffusion models and classi-
fiers. In [5] authors present another approach to enhance
sampling quality in diffusion models. They defined alterna-
tive way of training for time-dependent adversarially robust
classifier, and use it as guidance for a generative diffusion
model. These classifier gradients are better aligned with hu-
man perception, and could better guide a generative process
towards semantically meaningful images. In Section 5 we
tried to combine robust classifier with our GeoGuide and
evaluated results.

Another interesting technique for improving guidance
in score-based diffusion models is Discriminator Guidance
[6]. The authors propose integrating a discriminator, com-
monly used in Generative Adversarial Networks (GANs),
to guide the generative process. The key idea is to use the
discriminator to evaluate and refine the intermediate states
of the generative process, improving overall sample qual-
ity. Integrating discriminator guidance helps mitigate mode
collapse and improves sample diversity and fidelity. This
novel approach combines discriminator and vanilla classi-
fier guidance in the generation process. It is possible that
integrating GeoGuide into this approach, instead of a vanilla
guidance, could lead to even better results.

As we can see in Figure 5, diffusion models, especially
when used with high guidance scale values to achieve opti-
mal image quality, are prone to limited output diversity. One
potential solution to this problem is the Condition-Annealed
Diffusion Sampler (CADS) [10]. In this approach, the sam-
pling strategy anneals the conditioning signal by adding
scheduled, monotonically decreasing Gaussian noise to the
conditioning vector during inference to balance diversity
and condition alignment. This results in increased genera-
tion diversity, especially at high guidance scales, with min-
imal loss of sample quality. This method has shown good
results in the context of classifier-free guidance. However,
it might also be possible to successfully incorporate it into
GeoGuide.

3. Diffusion models
Diffusion models are generative algorithms that produce

new samples using an iterative denoising procedure. We
start from Gaussian noise xT and gradually produce less
noisy samples xT−1, xT−1, . . . , x0. Ultimately, x0 comes
from the data manifold. In each time step t, we have a cer-
tain noise level, and xt is a mixture of signal x0 and Gaus-
sian noise ε. The time step t determines the level of noise.
Diffusion models are trained using random elements and
time steps to produce denoised xt−1 from xt. This process
is usually modeled by U-Net [4].

Diffusion models use two processes: the forward and re-
verse diffusion process. The first is simple. Let q(x0) de-
note the data distribution x0 ∼ q(x0). The forward diffu-
sion process adds a small amount of Gaussian noise to the
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sample in T steps, producing a sequence x0, . . . , xT . Such
process is controlled by {βt ∈ (0, 1)}Tt=1:

q(xt|xt−1) := N (xt;
√

1− βtxt−1, βtI). (1)

Such formula allows to obtain xt ∼ q(xt|x0) in one step
instead apply repeatedly q:

q(xt|x0) = N (xt;
√
ᾱtx0, (1− ᾱt)I)

=
√
ᾱtx0 + ε

√
1− ᾱt, ε ∼ N (0, I),

(2)

where αt = 1− βt and ᾱt =
∏t

s=0 αt.
Typically we choose the schedule βt in such a way that

ᾱT is close to 0, which implies that q(xT |x0) is close to
the distribution N (0, I). A simplest schedule for ᾱt which
satisfies this condition can be given by ᾱt = 1 − t/T. Ad-
ditionally, we usually assume that the βt is increasing so
that we have more denoising steps at the end of the back-
ward process, which yields better quality of generated im-
ages (while we simultaneously allow larger denoising steps
at the beginning of the backward process) [4, 8].

By applying Bayes’ theorem, it can be determined that
the posterior distribution q(xt−1|xt, x0) is a Gaussian, char-
acterized by the mean µ̃t(xt, x0) and the variance β̃t as
specified below:

q(xt−1|xt, x0) = N (xt−1; µ̃t(xt, x0), β̃tI),

where µ̃t(xt, x0) :=
√
ᾱt−1βt

1−ᾱt
x0+

√
αt(1−ᾱt−1)

1−ᾱt
xt and β̃t :=

1−ᾱt−1

1−ᾱt
βt.

Theoretically, we can draw samples from the data distri-
bution q(x0). We begin by sampling from q(xT ) and then
proceed by sampling the reverse steps q(xt−1|xt) until we
arrive at x0. With appropriate choices for βt and T , the
distribution q(xT ) approximates an isotropic Gaussian dis-
tribution, making the sampling of xT straightforward.

Since the data distribution is unknown, we use a neural
network to approximate q(xt−1|xt). In the reverse diffu-
sion process, we approximate these conditional probabili-
ties. In [11] the authors show that q(xt−1|xt) approaches a
diagonal Gaussian distribution as T →∞ and, correspond-
ingly, βt → 0. In the reverse diffusion process, we train a
neural network to predict a mean µθ and a diagonal covari-
ance matrix γtI:

p(xt−1|xt) := N (xt−1;µθ(xt, t), γtI).

To ensure that p(x0) captures the actual data distribu-
tion q(x0), we can optimize the corresponding variational
lower bound. Such cost function is theretialy motivated,
but in practice [4] propose to do not directly parameter-
ize µθ(xt, t) as a neural network, but instead train a model
εθ(xt, t) to predict ε from equation (2).

The following outlines the simplified objective:

L := Et∼[1,T ],x0∼q(x0),ε∼N (0,I)

[
∥ε− εθ(xt, t)∥2

]

During sampling, we can use substitution to derive µθ(xt, t)
from εθ(xt, t):

µθ(xt, t) =
1
√
αt

(
xt −

1− αt√
1− ᾱt

εθ(xt, t)

)
.

It is important to note that L does not offer any learning
signal for γt. According to [4], rather than learning γt, it can
be set to a constant value, either βt or β̃t. These constants
represent the upper and lower limits for the actual reverse-
step variance.

4. Classifier guidance and GeoGuide

This section presents our geometric approach to guid-
ance in diffusion models. We start with the general idea be-
hind the guidance of diffusion models, and then we proceed
with the description of ADM-G and GeoGuide.

Let us first recall that given a controlling variance sched-
ule βt ∈ (0, 1), in the forward process, we start from the
point x0 in the data manifold M , and put

xt =
√
1− βtxt−1 +

√
βtεt, where εt ∼ N (0, I).

Finally, we return xT . In the backward pass, we start
with randomly chosen xT ∼ N (0, I), and put xt−1 =
µ(t, xt) + γtεt, where γt are constants, µ is a deep net-
work (typically given by U-NET) and εt ∼ N (0, I). The
function µ and the constants γt are chosen so that the trajec-
tories of the forward and backward pass constructs cannot
be distinguished.

The task of guidance lies in generating data from a pre-
trained diffusion model from a given class y. To do so, we
usually train a classifier on p(y|x) (optimally also on ele-
ments from y with added noise), and adjust the backward
trajectory by the rescaled gradient of the classifier:

xt−1 = µ(t, xt) +
√
γtεt + s ·A(p(y|x),∇p(y|x)),

where s is the scaling parameter. The problem lies in choos-
ing a function A that would lead to the optimal generation of
points of class y. In the case of ADM-G (see Algorithm 1)
we have

A = γt∇ log p(y|x) = γt
p(y|x)

· ∇p(y|x),

while in the case of our model GeoGuide (see Algorithm 2)
we have

A =

√
D

T
· ∇p(y|x)
∥∇p(y|x)∥

.

Before presenting the justifications for both ADM-G and
GeoGuide, observe that the complexity of both adjustments
is similar.
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Figure 3. Comparison of results when guidance is turned off after first 30% of iterations vs fully guided samples. ADM-G is not effective
during last 70% of iterations, whereas GeoGuide is still significantly improving quality of generated images.

Classifier Guidance in ADM-G A key characteristic of
diffusion models is their ability to generate elements based
on arbitrary classes. A classifier p(y|x) can enhance a diffu-
sion generator. As demonstrated in [3, 11, 12], a pre-trained
diffusion model can be conditioned using classifier gradi-
ents. Specifically, a classifier pϕ(y|xt, t) can be trained on
noisy images xt, and the gradients ∇xt log pϕ(y|xt, t) can
then be used to steer the diffusion sampling process towards
a specific class label y. For simplicity, we adopt the notation
pϕ(y|xt, t) = pϕ(y|xt) and εθ(xt, t) = εθ(xt), acknowl-
edging that these represent distinct functions for each time
step t and that during training, the models must be condi-
tioned on the time step t.

Let us assume that we have an unconditional reverse
noising process pθ(xt|xt+1). To incorporate the label y into
the process, we can sample each transition as follows:

pθ,ϕ(xt|xt+1, y) = Zpθ(xt|xt+1)pϕ(y|xt),

where Z serves as a normalizing constant [3]. In practical
applications [12], this can be approximated by a perturbed
Gaussian distribution. In this section, we will revisit this
derivation follow [3].

Note that our diffusion model estimates the prior time
step xt from the subsequent time step xt+1 utilizing a Gaus-
sian distribution (Σ = γt+1I):

pθ(xt|xt+1) = N (µ(t+ 1, xt+1),Σ),

log pθ(xt|xt+1) = −
1

2
(xt − µ)TΣ−1(xt − µ) + C.

(3)

It can be assumed that log pϕ(y|xt) exhibits low curva-
ture compared to Σ−1. This assumption holds with infinite
diffusion steps, where ∥Σ∥ → 0. Under these conditions,
log pϕ(y|xt) can be approximated by performing a Taylor

Algorithm 1 ADM-G Classifier guided diffusion sampling,
given a diffusion model µ(t, xt), γt, classifier p(y|xt), and
gradient scale s.

Input: class label y, gradient scale s
xT ← sample from N(0, I)
for t← T to 1 do

εt sample from N (0, I)
At = γt∇ log p(y|xt)
xt−1 = µ(t, xt) +

√
γtεt + sAt

end for
return x0

expansion around xt = µ as:

log pϕ(y|xt) =

≈ log pϕ(y|xt)|xt=µ + (xt − µ)∇xt log pϕ(y|xt)|xt=µ

= (xt − µ)g + C1,

(4)

where g = ∇xt
log pϕ(y|xt)|xt=µ, and C1is a constant.

Therefore

log(pθ(xt|xt−1)pθ(y|xt))

≈ −1

2
(xt − µ)TΣ−1(xt − µ) + (xt − µ)g + C2

= log p(z) + C4 , z ∼ N (µ+Σg,Σ)

(5)

The constant term C4 can be disregarded, as it includes
in the normalizing coefficient Z. Consequently, we have de-
termined that the conditional transition operator can be ap-
proximated by a Gaussian, akin to the unconditional transi-
tion operator, but with its mean adjusted by Σ. Algorithm 1
outlines the related sampling algorithm. In [3], the authors
introduce an optional scale factor s for the gradients.

Motivation of GeoGuide This part introduces GeoGuide,
which takes advantage of the metric properties of the un-
derlying space rather than depending on probability theory.
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Algorithm 2 GeoGuide: Classifier guided diffusion sam-
pling, given a diffusion model µ(t, xt), γt, classifier
p(y|xt), and gradient scale s.

Input: class label y, gradient scale s
xT ← sample from N(0, I)
for t← T to 1 do

εt sample from N (0, I)

At =
√
D
T

∇p(y|xt)
∥∇p(y|xt)∥

xt−1 = µ(t, xt) +
√
γtεt + sAt

end for
return x0

We can interpret the forward diffusion process as a stochas-
tic process that starts with the data manifold M ⊂ RD and
ends in the distribution N (0, I). In the backward process,
we try to emulate the behavior of the forward process by
reversing the time direction.

The forward diffusion process adds a small amount of
Gaussian noise to the rescaled sample in T steps, producing
a sequence x0, . . . , xT . Using (2) we know that

xt =
√
ᾱtx0+

√
1− ᾱtε ∈

√
ᾱtM+ε, where ε ∼ N (0, I).

Consequently,

d(xt;
√
ᾱtM) ≤ d(xt,

√
ᾱtx0) =

√
1− ᾱt∥ε∥.

Since in fact we only add noise to the element x0, the closest
element to

√
ᾱtx0+

√
1− ᾱtε from

√
ᾱtM would typically

be
√
ᾱtx0. Thus, we obtain the approximation

d(xt;
√
ᾱtM) ≈

√
1− ᾱt∥ε∥.

Since ε ∼ N (0, I), and the dimension D of the space is
large, by the law of large numbers, we obtain ∥ε∥ ≈

√
D.

In conclusion, we see that the distance of the flow of the
diffusion process from the (rescaled) data manifold is given
by

d(xt;
√
ᾱtM) ≈

√
1− ᾱt ·

√
D. (6)

Since the diffusion process satisfies the metric criterion
described above, our intuition suggests that any perturba-
tions to achieve the desired changes should be implemented
without changing this criterion. Thus, modifications that
consider only the gradient are sub-optimal, as the value of
the gradient of the classifier is inconsistent on the trajectory,
see Figure 2. Consequently, we postulate that the norm of
perturbation of the backward process should be consistent
throughout the backward process to influence the trajectory
evenly throughout the backward process.

Consequently, the main idea behind GeoGuide lies in the
observation, that if during denoising we guide the model by
the adjustment with norm proportionally small to the above
distance, the trajectories would still satisfy (6).

Thus assume that we have a deterministic function v(x)
by applying which we would like to modify the trajectory
of the backward process, where by the default we may think
of v(x) = ∇p(y|x). Then we would normalize the norm
of v to make it proportional to

√
D(1− ᾱt), which since

ᾱT ≈ 1, for large t is close to
√
D. On the other hand, since

this perturbation is deterministic, we would also normalize
it by the number of steps T in the diffusion process. Finally,
the adjustment will be given by

At =

√
D

T

√
1− ᾱt

v(x)

∥v(x)∥
. (7)

Such a strategy could be easily implemented, see the Table
2, however it still could be improved by taking into account
properties of the guidance given by the gradient of the clas-
sifier.

Definition of GeoGuide In the above reasoning, we have
taken an arbitrary perturbation v(x), which does not have
to be consistent with the geometry of the data manifold M .
Thus, if the perturbation (at least near M ) is tangent to the
manifold M , we can add a much larger perturbation and
still not destroy the distance from the manifold given by
(6). Observe that when we use the guidance in the back-
ward process, we are close to the elements of the given
class, and consequently, the gradient ∇p(y|x) of the clas-
sifier becomes tangent to the manifold M . Consequently,
applying a larger constant than the baseline for classifier
guidance does not lead to the unwanted behavior of leaving
the predicted distance in (6) from the manifold. Thus, we
can take a function of t which for large t is similar to the
previous

√
D(1− ᾱt)/T (as for large t we are far from the

data manifold), while for small t our trajectory is close to
the manifold M (the gradient of classifier becomes tangent
to M ) and we can choose higher values. Since 1− ᾱT ≈ 1,
the simplest form of such strategy is given by1

At =

√
D

T

∇p(y|x)
∥∇p(y|x)∥

,

which leads to GeoGuide, see Algorithm 2.

5. Experiments
This section presents experiments that demonstrate the

efficacy of the proposed method. The evaluation follows
the protocol from ADM-G [3]. Additionally, a pre-trained
model derived from the provided checkpoints and the au-
thors’ recommended sampling parameters are employed.
Unless otherwise specified, experiments were conducted on
ImageNet 256x256 images, sampled in 250 diffusion steps.

1To compute the ∇p/∥∇p∥ in a numerically stable way we use its
equality to ∇ log p/∥∇ log p∥
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Figure 4. Images generated by guided diffusion using the same noise (random seed) and class label, with a vanilla [3] (FID 12.00, top) and
a geometric (FID 7.32, bottom) guidance. Observe that images generated by GeoGuide are typically much more detailed. In our opinion,
this is because the role of the classifier gradient is also important at the end of the backward process. In the ADM-G, the norm of the
modification at the last steps of the process is close to zero, while in GeoGuide it stays relevant during the entire process, see Figure 2

Quantitative comparison We used the same metrics as
in [3] to quantitatively evaluate our method. In Table 1 we
compare the results from GeoGuide with the vanilla classi-
fier guidance (ADM-G) [3]. To compute metrics, we gen-
erated 50000 random images and used a metric evaluation
script with a reference batch provided by the authors. We
are comparing models in conditional and unconditional set-
ting. We use a classifier scales s = 0.025 and s = 0.15
respectively, which turned out to be the best values for our
approach to minimize the FID score. For unconditional set-
ting, our method shows significant improvement (7.32 vs

12.00) in terms of FID values compared to the baseline ap-
proach. In the conditional case, the improvement is much
smaller, but still significant (4.06 vs 4.59). Other metrics
show improvement in our method as well, if we compare
cases where the classifier scale parameter of the baseline
model is also optimized for FID (see Figure 7).

The classifier guide in its base form introduces a trade-
off between the quality and diversity of the generated im-
ages [3], measured, for example, by FID and Recall. In
our approach, this relationship is also present. Figure 6
shows how it changes depending on the varying classifier
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Model Conditional Guidance Scale FID sFID IS Precision Recall
ADM [3] ✗ ✗ 26.21 6.35 39.70 0.61 0.63

ADM-G [3] ✗ ✓ 1.0 33.03 6.99 32.92 0.56 0.65
ADM-G [3] ✗ ✓ 10.0 12.00 10.40 95.41 0.76 0.44
GeoGuide ✗ ✓ 0.15 7.32 7.98 243.34 0.77 0.42
ADM [3] ✓ ✗ 10.94 6.02 100.98 0.69 0.63

ADM-G [3] ✓ ✓ 1.0 4.59 5.25 186.70 0.82 0.52
ADM-G [3] ✓ ✓ 10.0 9.11 10.93 283.92 0.88 0.32
GeoGuide ✓ ✓ 0.025 4.06 5.19 206.86 0.82 0.55

Table 1. Comparison between vanilla (ADM-G [3]) and geometric (GeoGuide) guidance. GeoGuide produce better results across metrics
when compared against ADM-G variation optimized for highest FID scores. Evaluated on ImageNet 256x256 using 250 iterations during
the sampling.

(a) ADM-G (b) GeoGuide (c) Dataset

Figure 5. Samples with vanilla classifier guidance [3] (FID 12.00, left) vs samples with GeoGuide (FID 7.32, middle) and samples from
the training set (right). Distribution of generated samples using both guidance methods is comparable, but significantly narrower compared
to samples from original dataset.

Model Conditional Scale FID
GeoGuide (

√
1− ᾱt) ✗ 0.15 7.47

GeoGuide ✗ 0.15 7.32
GeoGuide (

√
1− ᾱt) ✓ 0.025 4.78

GeoGuide ✓ 0.025 4.06

Table 2. Comparison of GeoGuide with its variant given by (7),
where we rescale the basic adjustment additionally by

√
1− ᾱt.

Base approach achieves altogether better results. Evaluated on Im-
ageNet 256x256 using 250 iterations during the sampling.

scale (guidance). We can observe that diversity (Recall) is
the highest when we are not using guidance at all, and it is
slowly decreasing as we strengthen the guidance. For the
quality (FID) the relationship is reversed.

Qualitative comparison In Figure 4 we compare one-to-
one samples generated with ADM-G and GeoGuide. The
unconditional model trained on ImageNet 256x256 was
used. Each pair was sampled using the same starting and
intermediary Gaussian noises and labels. We can observe
that our samples are often sharper, with more details and
class-specific features.

In Figure 5 we compare the diversity of the generated
images by looking at the entire batch of images of the same
class. We can notice that the distribution of generated sam-
ples using both guidance methods is comparable, but sig-
nificantly narrower compared to samples from the original
data set.
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Figure 7. Change in sample quality as we vary scale of the clas-
sifier gradients for unconditional ImageNet 256×256 model. It is
possible to optimize for specific metrics by modifying the scale
factor accordingly.

In a handful of cases, ADM-G produces better outputs
than GeoGuide. It is mostly noticeable in case of condi-
tional model, where GeoGuide shows significantly less im-
provement compared to the unconditional case.

GeoGuide scaled As part of our study, we experimented
with a variation of GeoGuide motivated by (7), where we
take At =

√
D/T

√
1− ᾱt∇p/∥∇p∥ instead of the base-

line At =
√
D/T∇p/∥∇p∥. We denote such model by

GeoGuide(
√
1− ᾱt). We thought that guiding toward a

specific class is essential mainly at the early stages of the
backward sampling process, when the image still forms
from Gaussian noise. At later stages, it seemed like guid-
ance should be progressively scaled down, as it would only
provide irrelevant information about the class, which should
already be encoded in the image itself. The numerical com-
parison of these two approaches is shown in Tab 2. As we
can see, in the conditional and unconditional settings, the
base approach is shown to produce better results.

Guidance cut-off As we observed in Figure 2 guiding
factor in ADM-G quickly becomes close to 0. We think
that this makes vanilla guidance effectively irrelevant for
the majority of the sampling process, whereas GeoGuide
can have a positive impact throughout the entire process.

Model FID sFID IS Precision Recall
ADM-G [3] 2.97 5.09 - 0.78 0.59
Robust [5] 2.85 - - 0.82 0.56
GeoGuide 2.83 5.17 151.63 0.80 0.61

GeoGuide + Robust 2.81 5.16 152.37 0.80 0.60

Table 3. Combining GeoGuide with robust classifier on ImageNet
128x128 using a conditional model. GeoGuide improves results
independently and with a robust classifier. Missing sFID and IS
values were not present in the original papers.

To observe this, we made an experiment where we turn off
guidance after first 30% of the sampling iterations. As we
can see in Figure 3a for ADM-G it didn’t make a large dif-
ference in results, which means guidance in the following
70% is not making a large impact. In GeoGuide we can
see in Figure 3b that results are much worse with guidance
cut-off, so guidance stays relevant also at later iterations.

GeoGuide combined with Robust Classifier As GeoGu-
ide can be easily incorporated into existing models, we tried
to combine it with robust classifier [5], which was previ-
ously mentioned in Section 2. In Table 3 we can see that
using both of these methods together further improves sam-
pling quality and achieves the the best results in terms of
quality metrics. Unfortunately, we didn’t have pre-trained
weights required to compare them in unconditional setting,
where we would expect that results would be even more
prominent.

6. Conclusion
This paper proposes GeoGuide, a method for guiding

diffusion models following the distance between the denois-
ing trajectory and the data manifold. Our metric approach
can use similar guidance during the entire denoising pro-
cess to obtain sharper images. In classical methods, such
guidance is more critical at the beginning of the denoising
process. GeoGuide is easy to execute because it depends on
classifier gradient normalization and outperforms the proba-
bilistic method ADM-G regarding FID scores and the qual-
ity of the images produced.
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