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Abstract

Visual framing analysis is a key method in social sci-
ences for determining common themes and concepts in a
given discourse. To reduce manual effort, image clustering
can significantly speed up the annotation process. In this
work, we phrase the clustering task as a Minimum Cost
Multicut Problem [MP]. Solutions to the MP have been
shown to provide clusterings that maximize the posterior
probability, solely from provided local, pairwise probabil-
ities of two images belonging to the same cluster. We dis-
cuss the efficacy of numerous embedding spaces to detect
visual frames and show its superiority over other clustering
methods. To this end, we employ the climate change dataset
ClimateTV which contains images commonly used for vi-
sual frame analysis. For broad visual frames, DINOv2 is
a suitable embedding space, while ConvNeXt V2 returns a
larger number of clusters which contain fine-grain differ-
ences, i.e. speech and protest. Our insights into embedding
space differences in combination with the optimal cluster-
ing - by definition - advances automated visual frame de-
tection. Our code can be found at https://github.
com/KathPra/MP4VisualFrameDetection.

1. Introduction

Frame analysis [11] plays a key role in social science
research. This method extracts the main concepts from a
dataset, which is generally collected for a single analysis
and not shared with the community. While frame anal-
ysis was originally text-centric, visual frame analysis has
gained traction in the field, as images have become ever
more present in communication. Visual frames can be for-
mal/stylistic or content-oriented [44]. The detection of for-
mal/stylistic frames can be easily automated with the help
of style detection algorithms. Content-oriented frame de-
tection is a much harder task to automate. Authors can ei-
ther use zero-shot classification by selecting suitable frames

from previous works, rely on clustering approaches, or a
combination thereof. Automated frame detection is not
well-researched and datasets are often manually annotated.
The detection of abstract and diverse concepts remains a
challenging task [53] and an active field of research.

We argue that clustering is the most suitable approach as
it does not rely on pre-defined frames and thus imposes less
bias on the outcome of the investigation. The emergence of
novel frames, as investigated among others by O’Neill [40],
can only be detected through this approach - or manually.
Mooseder et al. employ clustering in their work to reduce
the number of manual annotations. Similarly, Oquab et
al. [39] use clustering to extend their dataset, while Zhou
et al. employ clustering to evaluate their online tokenizer.
Zhang [53] employs clustering to clean their dataset, by re-
moving outliers. To provide clusters within a probabilis-
tically meaningful framework, we propose to phrase the
clustering problem as a Minimum Cost Multicut Problem
[MP] [8], in which the images are the nodes of a graph with
weighted edges indicating the images’ probability of being
in the same cluster. Without any hyperparameters, one can
obtain a clustering with the maximum posterior probability.

The MP takes image similarities as an input which we
generate using several vision or vision and language mod-
els. The annotated datasets ImageNette [19] and Image-
Woof [20] are our independent validation and test set for
finding the optimal calibration. On the dataset ClimateTV
[41], we show and discuss the effectiveness of our approach
for social science research. Our work further investigates
embedding space differences both in the embedding and the
resulting clusterings.

Our contributions are: (1) We advance automated visual
frame detection by extensive clustering analysis. (2) To this
aim, we formulate semantic embedding-based clustering as
a Minimum Cost Multicut Problem that maximizes the pos-
terior probability of the clustering. (3) We analyse the effi-
cacy of powerful vision foundation models for this novel ap-
plication and provide concrete recommendations on which
embedding spaces are most suitable for this task.

This WACV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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2. Related Work
Visual frame analysis investigates frames in communi-

cation. Alone in the context of climate change, numerous
works have used this method [5,7,12,32,36,38,40,43,44,49,
50]. Advances in automating the annotation process have
recently started. Mooseder et al. [36] employ the k-means
algorithm to cluster their images’ VGG16 features and then
manually annotate 100 random images per cluster. They set
k= 5,000, which results in the manual annotation of 50,000
images. In total, they found 21 distinct frames with 8%
of images excluded based on the clustering results. Given
an optimal clustering for their data, their manual workload
would have been drastically lowered, with a lower bound of
2,100 images to manually annotate.

Phrasing a problem as an MP has many applications in
computer vision. The most prominent use case is multi-
person tracking [16, 17, 37, 46, 47], where it is used to link
and cluster person hypotheses over time. Furthermore, An-
dres et al. employ the MP to generate a probabilistic im-
age segmentation [3], followed by [10, 21–23]. Keuper et
al. build upon this work and use the MP for efficient image
and mesh graph decomposition [28] and motion segmenta-
tion [27] with several follow-up works [24,26,29,30]. Ho et
al. have employed the MP for image clustering [14, 18]. In
contrast to their work, we do not train a deep neural network
when computing the inputs for the MP. While MP cluster-
ing has been done in the past [15], we are the first to use MP
clustering in conjunction with foundation model embedding
spaces. Given the recent advances in computer vision, we
employ models with highly expressive embedding spaces
to create image features and use their pair-wise cosine sim-
ilarities as inputs. This approach to obtaining edge costs
has been proven successful by Swoboda et al. [1], who use
ResNet-50 features [13]. The strength of cosine similarities
has been ever present and its efficacy for foundation models
was highlighted by Radford et al. [42].

In this work, we leverage vision models’ and VLMs’
embedding spaces for feature generation. While clustering
using traditional vision models is aptly, foundation mod-
els clustering is just gaining traction within the commu-
nity [4,48,52]. We want to highlight the concurrent work of
Wagner et al. who show the efficacy of DINO features for
data exploration [48]. In our work, we compare the expres-
siveness of performant vision model’s embedding spaces
w.r.t. their capabilities to represent abstract visual concepts.
Visual frame analysis is precisely interested in such con-
cepts, as its goal is to understand the common themes in
a given dataset. The discussion of embedding space dif-
ferences both adds to our understanding and advances their
applicability in data exploration. We further strengthen our
point by evaluating on OmniBenchmark [53], a computer
vision dataset which is designed to test how universal vi-
sion features are.

We compare CLIP’s general-purpose features which
have been trained on a web-scale image-text dataset and
have a high zero-shot classification accuracy [42] to DI-
NOv2 features, which are trained using optimized training
data collection with the goal of increasing features’ robust-
ness [39]. With ConvNeXt V2 we include another model
which achieves a high classification accuracy [51]. This
architecture contains fully convolutional masked autoen-
coders and a global response normalization. Moreover, we
employ ResNet-50, VGG19-BN, and ViT features to assess
the expressiveness differences between smaller and larger
models. Liang et al. observe the CLIP images’ cosine sim-
ilarities resulting in a narrow cone, and conclude that the
image embeddings occupy a small part of the embedding
space [31]. Based on data distribution comparisons and im-
age cluster analysis, we provide a guideline for the choice
of embedding model.

3. Methods
The Minimum Cost Multicut problem is a graph prob-

lem which involves finding the cutting of the graph into dis-
tinct clusters such that the cost, the sum of the cut edges’
weights, is minimal. As we phrase the clustering problem
as a Minimum Cost Multicut Problem [MP] [8], we map
the images to a graph structure. To this end, we embed all
images and construct a fully connected graph which edge
weights are the images’ cosine similarities. We investigate
embedding differences with respect to their expressiveness
and effectiveness of finding visual frames. We use six mod-
els, differing in terms of parameters and classification per-
formance. ResNet-50 [13], VGG19-BN [45], Vision Trans-
former B/32 [9], ConvNeXt V2 [51], and DINOv2 [39] are
pure vision models, while CLIP ViT-B/32 [42] is trained in
a multi-modal setting using image-text pairs. An overview
of the employed models and their characteristics can be
found in Appendix A.

3.1. Image Clustering

We phrase the image clustering task as a MP, also re-
ferred to as weighted Correlation Clustering.

Definition 1 A finite, undirected graph G = (V,E) with cost
w : E → R associated with the edges is separated into
detached components such that the cost is minimal

min
y∈{0,1}|E|

c(y) = yT w =
∑
e∈E

weye, (1)

where y is the binary edge label indicating whether the edge
should be cut. This is subject to the linear constraint

∀C ∈ cycles(G),∀e ∈ C : (1− ye) ≤
∑

e′∈C\{e}

(1− ye′).

(2)
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xe ye Y

e ∈ E

Figure 1. The Multicut Problem can be understood as a Bayesian
Network which aims to predict the optimal partitioning Y .

In line with previous work [3,28], the MP can be understood
as a Bayesian Network, where the optimal partitioning Y
depends on the individual edge decisions ye ∈ {0, 1}. They
are dependent on the image-pair features xe ∈ Rn for all
e ∈ E of the graph G, as shown in Fig. 1.

Given appropriately set edge costs we =

log
(

1−p(ye|xe)
p(ye|xe)

)
, solving the MP is equivalent to maximiz-

ing the posterior probability py|x,Y with

p(y | x,Y ) ∝ p(Y | y) · p(x, y) (3)

which can be rewritten as

p(y | x,Y ) ∝ p(Y | y) · p(x | y) · p(y). (4)

This proportionality holds under the assumption that x and
Y are conditionally independent. The right-hand side of
Eq. (4) contains three parts, the likelihood of a clustering
p(Y | y) which is set to zero, if y differs from the opti-
mal clustering, and to a constant otherwise, as we do not
have any prior knowledge about the clustering. The sec-
ond part is the likelihood of the image similarity feature
p(x | y) and the third part is the bias term p(y). By choosing
strong embedding models, we assume all p(x | y) are high
for their respective Y and that different embedding spaces
allow to detect different frames. We compare the visual
frames detected using MP clustering to centroid-based k-
means, density-based DBSCAN, and hierarchical agglom-
erative clustering using WARD linking.

3.2. Image-graph mapping

To formulate our clustering task as a MP, we map the
images to nodes in a fully connected graph as Ho et al. sug-
gests [14]. In the graph, the edge weights represent the co-
sine similarity between image embeddings. While the co-
sine similarity is defined for the range −1 ≤ cs ≤ 1, our
analysis in Sec. 4.2 shows that its distribution differs greatly
between embedding models. First, min-max scaling is used
to confine the weights to the range [0, 1]. Then, the weights
are transformed such that the decision boundary for cutting
an edge is at zero, with positive weights corresponding to
the likelihood of images belonging to the same cluster and
negative weights to different ones. Naı̈vely, the decision
boundary is at the transformed, normalized cosine similar-
ity of 0.5, using

wab = log
1− p(yab | xab)

p(yab | xab)
∝ log

sc(a, b)

1− sc(a, b)
(5)

where a,b are nodes in the graph, corresponding to images,
and sc(·, ·) is their cosine similarity. Depending on the em-
bedding space, the inherent decision boundary can be lo-
cated at different positions. To assign appropriate pseudo-
probabilities and account for different calibration of the co-
sine similarity w.r.t. probabilities, we ablate a calibration
term cal for each embedding space and set

wab = log
sc(a, b)

1− sc(a, b)
+ log

1− cal

cal
. (6)

We ablate for 0.1 ≤ cal ≤ 0.9 in Sec. 3.6 on independent
validation and test sets. To this end, we use two annotated
datasets and compare the clusterings to the dataset’s classes.

3.3. Solvers

Efficient heuristics [28] are used to solve the MP
i.e. finding image clusters. We employ the Greedy Additive
Edge Contraction [GAEC] and the Kerninghan-Lin [KL] al-
gorithm [25] to efficiently cut the graph into distinct com-
ponents in the implementation of Keuper et al. [28] in [2].
More algorithm details can be found in the documentation.

Algorithm 1 Greedy Additive Edge Contraction

Require: G = (V,E), Edge Weights we ∀e ∈ E
Ensure: Final set of clusters C and total cost

Initialize C with each vertex in its own cluster
Initialize total cost = 0
Create a priority queue Q to store edges (u, v) sorted by
their weights in descending order
while Q is not empty and highest edge weight ≥ 0 do

Extract edge (u, v) with the highest weight from Q
Merge the clusters containing u and v
Update the cluster set C accordingly
for each edge (x, y) adjacent to u or v do

Update the weight of the edge (x, y) if needed
Reinsert updated (x, y) into Q

end for
Update total cost += weight of merged edge (u, v)

end while
return the final set of clusters C and total cost

First, we use GAEC, described in Algorithm 1, to com-
pute a preliminary clustering. This algorithm starts with
each image in a separate cluster and iteratively merges the
two clusters connected by the largest, positive edge weight.
The graph size is continuously reduced during the execu-
tion and the algorithm stops when merging any two addi-
tional clusters would have a negative weight. The result-
ing, preliminary clustering is then optimized using the KL
algorithm described in Algorithm 2, where three types of
changes are possible, (1) exchange nodes of two neighbour-
ing clusters, (2) move nodes to an new cluster, and (3) join
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two neighbouring clusters. The clustering refinement using
the KL algorithm improves the clustering results, as shown
in C. Conceptually, the KL algorithm tries to improve an
initial clustering by iteratively making small adjustments to
the clustering and tracking their effect in terms of overall
clustering cost. The cost of a clustering consists of the the
sum of all cut edges’ weights and the algorithm aims to min-
imize it.

Algorithm 2 Kernighan-Lin Algorithm with Joins (KLj)

Require: Graph G = (V,E), Edge Weights we∀e ∈ E
Ensure: Partitioning P with |P | > 1

procedure EXTERNAL COST(a, P )
return

∑
v∈P\{Pa} w(a, v)

end procedure
procedure INTERNAL COST(a, P )

return
∑

v∈Pa
w(a, v)

end procedure
Compute initial D-values for all v ∈ V where D(v) =
EXTERNALCOST(v, P )− INTERNALCOST(v, P )
repeat

for each edge e = (a, b) ∈ E do
if node changed(a) or node changed(b) then

Update D(a) and D(b)
Update partition P ′

end if
end for
for each node a ∈ V do

if node changed(a) then
Update D(a)
Update partition P ′

end if
end for

until no further changes in P ′

return the optimized partitioning P ′

3.4. Metrics and Evaluation

To measure the differences between clusterings, we use
the variation of information [VI] proposed by Meilă [35]

V I(C,C ′) = H(C | C ′) +H(C ′ | C), (7)

where V I is the sum of the two conditional entropies of the
two clusterings. Each clustering result may consist of 1 to x
clusters. The V I = 0 ⇐⇒ C = C ′ has the upper bounded
V I(C,C ′) ≤ log n where n is the number of nodes in the
graph i.e. the number of images. It is a true metric and the
triangle inequality holds. We ablate the calibration term by
investigating the two conditional entropies, comp. Eq. (8)
on an independent validation and test set.

H(Y | X) = −
∑
x∈X

∑
y∈Y

p(x, y) log p(y | x) (8)

We use the implementation of [6], which iterates over all
combinations of clusters in the two clusterings.

Additionally, we use standard cluster statistics to com-
pare the clusterings in terms of cluster sizes and diversity.
For ClimateTV, we manually investigate the largest clusters
by randomly selecting 10 images per cluster. The differ-
ences between embedding models are further assessed in
terms for common clusters and clustering differences. We
extend this by investigating which clusters are entirely con-
tained within another dataset’s larger cluster.

3.5. Datasets

We employ two curated datasets, ImageNette [19] and
ImageWoof [20], for determining the optimal cal term for
each embedding space. ImageNette is selected to assess the
efficacy for the distinction between broad concepts and Im-
ageWoof for fine-grained concepts. Cal is selected based
on the training set clustering and its effectiveness is vali-
dated using the validation set. In both cases we compare
the MP clusterings to the dataset’s classes. Moreover, we
use OmniBenchmark to measure how many realms and con-
cepts the assessed embedding spaces can distinguish be-
tween. It contains 21 realms which each consist of sev-
eral concepts, in total 7,372 non-overlapping concepts are
included and classification top-1 accuracy is currently be-
low 50%. To this end, we randomly select 10k images
from the train set and compare the clusters to the original
labels, both on realm level and concept level. Finally, we
employ the ClimateTV dataset [41] to exemplify the effi-
cacy of our method in detecting visual frames. This clas-
sification dataset contains animal classes, social media vi-
suals of political protest, conferences, climate change solu-
tions such as wind energy, and several climate change con-
sequences, e.g. floods, droughts, economic instability, and
human rights infringements. The authors have collected all
images that were shared on X (formerly Twitter) in the year
2019 in the context of climate change. We focus our evalu-
ation on the images tweeted in January 2019. More details
can be found in their work.

3.6. Experimental Setup

We create image embeddings using ResNet50, VGG19-
BN, ViT, ConvNeXt V2, CLIP ViT, and DINOv2 (details
in Appendix A), and build complete image graphs with
weighted edges based on the image embedding’s cosine
similarity. This graph is then divided into clusters using
heuristic solvers for the MP. The experiments were run on
Intel Xeon CPU E5 and the image embeddings are created
using NVIDIA GeForce RTX 4090. The clusterings are
compared with respect to their VI. Additionally, we report
further cluster statistics, e.g. cluster sizes, distribution, and
cleanliness. The comparison of quantitative and qualitative
results concludes our investigation.
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Figure 2. Calibration term [c] ablation across embedding spaces on ImageNette’s train set shows that embedding spaces where the distance
between different data points is increased during training require a smaller cal compared to traditionally trained embedding spaces.

4. Results
We determine the calibration term cal (defined

in Sec. 3.2) for each embedding space using the annotated
ImageNette [19] and ImageWoof datasets [20]. Moreover,
we report on the characteristics of the embedding spaces
such as their data distributions and the overlap between em-
bedding spaces using UMAP [33] visualizations using the
official implementation [34]. Finally, we discuss clusters
for the ClimateTV [41] dataset to show how our method
can support social science research. We compare the clus-
ter statistics and results to other clustering approaches. This
includes an excursion into multi-modality where we com-
bine image and text input for the CLIP model.

4.1. Calibaration Term Validation

We determine cal by assessing the similarity of im-
age classes and clusters. The train set is used for ex-
periments using 0.1 ≤ cal ≤ 0.9 with a step size of
0.1, whereof the best performing cal is independently val-
idated. This is done for ImageNette, which has highly di-
verse classes, and for ImageWoof, which has fine-grained
differences between classes. Conceptually, the larger cal
is chosen, the more edge weights are larger than zero; re-
ducing cal has the opposite effect. Fig. 2 shows the most
optimal cal term in terms of two conditional entropies,
H(Class | Cluster) and H(Cluster | Class). Given
that the framework is probabilistic, we expect minor differ-
ences between runs. We select cal such that H(Class |
Cluster) and H(Cluster | Class) are balanced, as we
aim for a high overlap between the clusters and the classes,
i.e. a low VI. VI’s differ slightly between the train and
the validation set. Overall, CLIP ViT-B/32, DINOv2, and
VGG19-BN have the worst clustering performance in terms
of overlap with the original classes. All other models per-
form well, with ResNet-50 achieving the highest VI over-
all, as Tab. 1 shows. The same trends can be observed for

Emb. model cal ∆trH1, H2 V Itrain V Ival

CLIP ViT-B-32 0.5 0.40 1.55 1.34
DINOv2 0.6 0.43 0.89 1.19
ConvNeXt V2 0.7 0.02 0.28 0.42
ViT-B-32 0.7 0.07 0.46 0.26
ResNet-50 0.7 0.07 0.44 0.54
Inc.-ResNetv2 0.5 0.17 0.49 0.40
VGG19-BN 0.7 0.19 0.73 0.94

Table 1. Clustering ImageNette using ConvNeXt V2 closely fits
the training set’s classes. We use ∆H1, H2 = H(Class |
Cluster) − H(Cluster | Class) as an indicator of clustering
performance. ResNet-50 has the best validation VI.

fine-grained differences, as the experiments on ImageWoof
show (Tab. 2). Again, CLIP ViT-B/32 achieves the worst
VI and ResNet-50 the best. However, in this setting, all
embedding models’ performances, except CLIP’s, are more
alike. For the majority of embedding spaces, reducing cal
by a factor 0.1 improves the clustering similarity to the orig-
inal classes. We suggest selecting cal based on our ablation
with the application in mind. If the data contains small dif-
ferences, cal can be reduced by 0.1.

We hypothesize that the slightly larger cal aids the clus-
tering of broad concepts, as it allows more images to be
clustered together by GAEC. This algorithm does not join
any negative edge, thus any two image representations con-
nected by it, cannot initially be in the same cluster. The
KL algorithm may alter the initial cluster assignment, how-
ever, the larger the negative cost, the less likely is this sce-
nario. Likewise, in the setting with fine-grained differences
between classes, it appears optimal to have a lower number
of initially positive edge weights to avoid clustering differ-
ent classes together. We expected that CLIP and DINOv2
would require lower cal terms, as their training includes
contrastive loss and the KoLeo regularizer respectively.
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Figure 3. UMAP visualization for image embeddings on ClimateTV reveals the differences in embedding space occupancy between
different embedding models. DINOv2 and CLIP ViT-B/32 have a similar sc distribution but only a small overlap. The embedding space
comparison of CNNs pre-trained on ImageNet1k shows almost no overlap.

4.2. Embedding Space Analysis

Emb. model cal ∆trH1, H2 V Itrain V Ival

CLIP ViT-B-32 0.4 1.05 2.31 2.26
DINOv2 0.5 0.40 1.45 1.39
ConvNeXt V2 0.6 0.01 0.61 1.03
ViT-B-32 0.6 0.04 1.04 1.10
ResNet-50 0.7 0.03 0.86 0.73
Inc.-ResNetv2 0.5 0.04 0.72 0.97
VGG19-BN 0.6 0.41 1.25 1.13

Table 2. Clustering ImageWoof using ResNet-50 closely fits
the dataset’s classes. ∆H1, H2 = H(Class | Cluster) −
H(Cluster | Class) is an indicator of clustering performance.

We analyse all image embeddings’ un-normalized cosine
similarities to asses the dataset’s native distribution, as vi-
sualized in Fig. 10. All cosine similarity distributions have
a long-tail towards cs = 1. This is anticipated, as each
image is only similar to the other 10% of images which
have the same class and are dissimilar to the remaining
90% of the images. The tail of the ViT and the ConvNeXt
V2 model appear almost disjoint from the remaining dis-
tribution. While some cosine similarity distributions ap-
pear more bell-shaped (DINOv2, CLIP RN50, CLIP ViT,
Inception-ResNet-v2), others appear more skewed (Con-
vNeXt V2, RN50, ViT, VGG19). It appears that the more
PDF resembles the normal distribution, the lower cal term
is optimal. Models, which have less similar embeddings
require a higher cal to have a large enough number of pos-
itive edge weights. Our findings also show narrow cone
effect [31], i.e. embeddings having an above average cosine
similarity and thus only cover a narrow cone in the embed-
ding space hypersphere. The narrow cone effect [31] can
be observed in the CLIP (ViT & RN50) embedding space
and in the DINOv2 embeddings space, as their µ values
are far beyond zero. When the same architecture (ViT &

RN50) is pre-trained without contrastive loss, the narrow
cone is not formed. We have included the ResNet-50 CLIP
encoder here, to show another instance of the narrow cone
forming through multi-modal training. The narrow cone is
apparent for some of the self-supervised models, but not for
ConvNeXt V2. Further causal investigations are beyond the
scope of this work.

We find that the choice of embedding model has a large
effect on the clusterings’ VI, as no clear relation between µ
and VI can be observed. Fig. 3 shows how little different
embedding spaces overlap. We can observe, that DINOv2
embeddings have the largest spread, while CNN embedding
spaces appear more dense.

The models with a more Gaussian distribution are natu-
rally less affected by an alteration of cal . More details on
the sc distributions can be found in Appendix A.1.

Based on this ablation, we advocate for setting cal ac-
cording to the sc distribution of the embedding model.
When the inherent differences between embeddings are
large, cal = 0.7 is required to create an impactful clus-
tering. Models whose embeddings are approximately nor-
mally distributed require no calibration, i.e. cal = 0.5. We
find that the shape of the distribution is more influential than
its mean value. The granularity of the embedding space has
a large effect on the final clustering.

4.3. Clustering using MP

We compare the clusterings’ statistics to better under-
stand model differences to further investigate on image
level. For the annotated dataset, we compare the cluster-
ing to the classes. Here, the number of clusters was larger
than the number of classes (10).This can be helpful in de-
tecting outliers, i.e. unlikely representations of the class, as
for all classes clusters of size one exist. Overall, the clus-
terings depend on the employed embedding model, as both
statistics and image-level investigations show. The cluster-
ings are also subject to the diversity of the dataset, as VIs
are generally larger for ImageWoof than for ImageNette.
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This section highlights selected findings, additional re-
sults can be found in Appendix D.

ImageNette clusters confirm our expectations that un-
usual representations are separated into single image clus-
ters (first row), while images that contain visual elements
common for other classes might be mis-clustered (Sec. 4.3).
The image of the plain church, without any cross, which
contains a beautiful sky is mixed with most of the parachute
images, while the image with a parachute resembling a roof
like structure is added into the large church cluster. This
stands in contrast to the clustering obtained using the CLIP
sc, where 41% of clusters are mixed. They contain up to 9
classes with at times equal contributions.

Figure 4. The ImageNette church class is grouped into two single
image clusters (r1), one fn as parachute and one fp parachute (r2).

ImageWoof clusterings contain fewer clusters for most
models. Exclusively for DINOv2, more clusters are gen-
erated for ImageWoof as ImageNette. These clusters con-
tain many images of a single class in combination with a
few outliers. While this results in a high VI compared to
the class labels, the clusters appear meaningful, as they are
based on common features shown in Fig. 5

ClimateTV image clusterings are highly diverse, with
V I = 3.99 between ConvNeXt V2 and DINOv2 cluster-
ings. The number of clusters returned is more 2x higher for
ConvNeXt V2 than for DINOv2. While the largest clus-
ter’s size is comparable between models (approx. 11,5k),
the cluster size distributions differ. DINOv2 contains more
large clusters in comparison, but also has a lower median
value, due to more image clusters of size 1. The largest clus-
ter’s contents differ greatly, as the DINOv2 cluster contains
persons, while the ConvNeXt V2 cluster contains computer
generated content e.g. posters, visualizations, text. The next
larger ConvNeXt V2 clusters contains speakers (5k), out-
door photographs (5k), protest (1k), portraits (427), satellite
images/earth visualizations. The largest agreement (81%)

Figure 5. DINOv2 features appear to encode dog position and
background, as r1 and r2 each show one cluster for ImageWoof.

between the two model’s clusters is observed for frogs.
Both clusters contain few additional images without frogs.
Several ConvNeXt V2 clusters are contained in DINOv2
clusters, i.e. frequently in persons, but also in animals.

Figure 6. ConvNeXt V2 image features are clustered into content
based topics, e.g. polar bears (r1) and rockets (r2). Image back-
ground and common object can lead to mis-clustering (r3) where
a hockey player and road construction workers form a cluster.

In line with previous experiments, the ConvNeXt V2
features result in meaningful clusters, examples shown in
Fig. 6, even for smaller cluster sizes. When comparing the
polar bear cluster between models, its images appear in 12
DINOv2 clusters. All images containing persons (Fig. 6,
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r1, left) are in persons. This includes both a person wear-
ing a polar bear costume and a theater performance with
stuffed polar bears, which we find remarkable. Polar bear
photographs in nature are in both cases clustered together.
However, for DINOv2, this cluster also contains images of
other animals. The combination of the two clusterings fur-
ther allows us to identify noise.

The small ConvNeXt V2 clusters of mixed images
(Fig. 6, r3) can again be found in the same DINOv2 cluster,
however, here in combination with almost 12k other images
containing humans. Other large DINOv2 clusters contain
event information or natural images, which indicates that
DINOv2 clusters represent common patterns in the data.
Fig. 7 shows that both embeddings have a shape bias which
results in small clusters of uncommon objects with similar
shapes. The DINOv2 cluster (Fig. 7, r1 & r2 left) is one ex-
ample thereof, while ConvNeXt V2 clusters contain more
variations of the curly shape (Fig. 7, c1).

Figure 7. While both models have a certain shape bias, DINOv2
strong tendency to clusters persons together offsets this. All im-
ages without humans form one DINOv2 cluster. The staircase im-
ages (r2, right & r1, right) by ConvNeXt V2.

Clustering Comparison When comparing our proposed
MP clustering to KMEANS, DBSCAN, and agglomeration
clustering, we can observe the same trends. The CLIP em-
beddings’ clusterings are the least similar to the other clus-
terings, with DINOv2’s embedding space being to closest
to it. While the clusterings of KMEANS and agglomerative
clustering are highly diverse, the results of DBSCAN all
have inter-model VI’s of less than 0.4. The main advantage
of MP clustering over KMEANS is that it can detect clus-
ters of varying length, e.g. DINOvs’s people class would
not be possible in this way. Additionally, KMEANS clus-
tering is less suitable for outlier detection as it - by design -
only has few small clusters.

Multimodal clustering We obtained the text corre-
sponding to the ClimateTV images and used both as input
to the MP. The CLIP ViT-B/32 embedding space is already
aligned and we use cal = 0.5 as for the uni-modal model.
Due to the increased computational cost of using twice the

nodes in the graph, we selected a random subset of 1,000
images to investigate the performance of the multi-modal
MP. We confirm prior findings of the modality gap [31] by
having only image or text clusters.

5. Discussion
Image clusterings strongly depend on the image embed-

ding model. We observe a narrow cone for both CLIP
models, but also for the uni-modal DINOv2 and Inception-
ResNet-v2 model. Given that the clusterings using CLIP
embeddings were most distinct when compared to the class
labels, our results of it reducing embedding expressiveness
are in line with previous works [31]. The analysis of the
ClimateTV dataset shows that DINOv2 features allow for a
high-level understanding of the dataset by producing clus-
ters such as person, outdoor scene, and nature. In spite of
ResNet-50’s strong performance on ImageNette and Image-
Woof, its clustering on the abstract ClimateTV dataset con-
tained a strong shape bias The investigation of ImageNette
clustering appeared to still contain too specific classes, so
this effect was only identified when manually analysing the
clusterings. ConvNeXt V2 clusters however depend on fine-
grained differences by e.g. differentiating between speech
and protest, which contain shared visual elements. The
analysis of ImageWoof indicates that DINOv2 embeds the
background and position of elements in the image, which
can be helpful both in its own clustering or the validation of
clusterings returned by another model. The polar bear clus-
ter was divided and cleaned using the DINOv2 clustering.
In the context of climate change, we argue that the high-
level DINOv2 and the fine-grained ConvNeXt V2 cluster-
ings combined are a good starting point for frame analysis.

6. Conclusion
In this work, we propose a new method for social scien-

tists to automate visual frame detection. Our probabilistic
clustering is phrased as a MP and uses image similarities of
strong vision (and language) foundation models as a proxy
for clustering probabilities. In our experiments, we show
the efficacy of MP clustering for detecting visual frames.
We find that especially abstract frames such as speech can
only be detected by foundation models. The intersection
of clusterings can be used in order to reduce the number
of noise in the clusters, given that the two clusterings are
sufficiently distinct. Our analyses have shown the potential
usefulness of inter and intra embedding model multi-stage
clustering, which we plan to investigate in future work.
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laume Lavoué, Thomas Brox, and Bjorn Andres. Efficient
decomposition of image and mesh graphs by lifted multi-
cuts. In International Conference on Computer Vision. IEEE,
2015. 2, 3

[29] Margret Keuper, Siyu Tang, Bjoern Andres, Thomas Brox,
and Bernt Schiele. Motion segmentation and multiple ob-
ject tracking by correlation co-clustering. Transactions on
Pattern Analysis and Machine Intelligence, 42(1), 2018. 2

[30] Evgeny Levinkov, Amirhossein Kardoost, Bjoern Andres,
and Margret Keuper. Higher-order multicuts for geometric
mmdel fitting and motion segmentation. Transactions on
Pattern Analysis and Machine Intelligence, 45(1), 2022. 2

[31] Weixin Liang, Yuhui Zhang, Yongchan Kwon, Serena Ye-
ung, and James Zou. Mind the gap: Understanding

2142



the modality gap in multi-modal contrastive representation
learning. In Advances in Neural Information Processing Sys-
tems. OpenReview, 2022. 2, 6, 8

[32] Aidan McGarry and Emiliano Treré. Fire as an aesthetic re-
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