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2 LTCI, Télécom Paris, Institut Polytechnique de Paris

3 Dept. of Electrical and Computer Engineering, UC San Diego, CA, USA
alberto.presta@unito.it

Abstract

Learned progressive image compression is gaining mo-
mentum as it allows improved image reconstruction as more
bits are decoded at the receiver. We propose a progressive
image compression method in which an image is first rep-
resented as a pair of base-quality and top-quality latent
representations. Next, a residual latent representation is
encoded as the element-wise difference between the top and
base representations. Our scheme enables progressive image
compression with element-wise granularity by introducing
a masking system that ranks each element of the residual
latent representation from most to least important, dividing
it into complementary components, which can be transmitted
separately to the decoder in order to obtain different recon-
struction quality. The masking system does not add further
parameters or complexity. At the receiver, any elements of
the top latent representation excluded from the transmitted
components can be independently replaced with the mean
predicted by the hyperprior architecture, ensuring reliable
reconstructions at any intermediate quality level. We also in-
troduced Rate Enhancement Modules (REMs), which refine
the estimation of entropy parameters using already decoded
components. We obtain results competitive with state-of-the-
art competitors, while significantly reducing computational
complexity, decoding time, and number of parameters.

1. Introduction

In recent years, Learned Image Compression (LIC) has
attracted significant interest, outperforming standardized
codecs [5, 33, 39] in Rate-Distortion (RD) efficiency for
natural images [26, 43]. In a learnable codec, an encoder on
the transmitter side projects an image to a latent space that
is quantized and entropy coded into a compressed bitstream.
On the receiver side, the bitstream is processed by a decoder
that reverses the encoding process, recovering (a distorted
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Figure 1. Compression results for three different qualities, which
increase across rows. Adding details via the masking system (a)
increases the standard deviation in the non-masked latent represen-
tation (b) to add details (c) for a better reconstruction (d).

version of) the original image.
However, LIC codecs still face the challenge of meeting

the rate of channels whose capacity changes as a function
of connection type and congestion at the nodes. Scalable
coding [31] consists in encoding a content as one base bit-
stream enabling to recover a low-quality version of the con-
tent and a few enhancement bitstreams enabling improved
quality when received. With progressive image compression,
sometime known also as fine-grained scalability (FGS), this
concept is further extended improving the quality of the re-
constructed image as each extra bit from the same bitstream
is received [23], allowing to truncate it at. A few learn-
able image compression schemes with progressive decoding
properties have been known to exist to date; some allow ad-
justing the tradeoff between compressed bitrate and quality
by exploiting a single rate-variable model [8, 18, 21]. How-
ever, a different bitstream must be encoded and delivered for
each different bitrate target. Early models such as Diao et
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al. [9] and Lu et al. [27] achieved progressive representation
through distributed recurrent autoencoder and nested quanti-
zation, respectively. Lee et al. [22] introduced a novel way
to represent each element of the latent representation based
on trit-plane coding, achieving state-of-the-art RD efficiency,
without exploiting any kind of context model, which were in-
troduced by [15] for both rate and distortion reduction. A RD
prioritized transmission system was introduced to be able
to find the trit-planes with more information and give them
priority for being encoded first. However, exploiting such
modules for both encoding and decoding and finding the
right priority transmission distribution make [15] and [22]
costly in terms of computational resources and time.

In this work, we propose a learnable, efficient, and pro-
gressive image compression architecture. It has two initial
levels, base and top; the first defines the lowest quality while
the second allows the system to achieve all the other higher
qualities. To achieve FGS, we first compute a residual latent
representation by means of element-wise difference between
the top and base ones, and then break it down into comple-
mentary parts, which form the final bitstream, which can
be encoded and sent separately, resulting in reconstruction
at multiple qualities, as shown in Fig. 1. Furthermore, we
added in the main architecture learnable rate enhancement
modules (REMs) to further improve the estimation of en-
tropy parameters. Our progressive approach is built on a
channel-wise entropy parameter module [30].

The main contribution of this paper are the follows:

• We introduced a method where, to achieve FGS, com-
plementary portions of a residual latent representation
are added to the base one, which represents the lowest
level in terms of bitrate.

• We exploited a lightweight masking policy which ranks
the elements of the residual latent representation from
most to least important, also identifying their positions,
which allows for the creation of a progressive system
where more elements are added incrementally.

• We achieved competitive results with respect to [15] in
RD performance, significantly reducing complexity in
terms of computational resources, decoding time, and
number of parameters.

2. Related work
2.1. Learning-based image compression

While seminal works about learning-based image com-
pression are based on recurrent neural networks [12, 36, 37],
those based on variational autoencoders (VAEs) [19] have
gained significant importance. Initially, the general archi-
tecture is formed by a simple autoencoder [3, 35] where
the latent representation is modeled with a channel-wise
probability distribution, extracted analytically [32] or with a

neural network. Quantization is replaced by uniform additive
noise during training; this effective technique became the
most common practice in such models. To further improve
the entropy estimation of the latent elements, a hyperprior
autoencoder is added to the main architecture [2, 29], with
the aim of finding spatial correlation within the image. In
such a scenario, the main latent representation is modeled
with a Gaussian distribution. More effort has been put into
optimizing the entropy estimation by introducing a paral-
lelizable checkerboard context model [13] or a channel-wise
approach [30]. The latter divides the latent space into blocks,
called slices, along the channel dimension. For example, if
the latent space has 320 channels and 10 slices are desired,
each slice contains 32 channels. These slices are sequentially
encoded, exploiting previous ones; this method can be seen
as an autoregressive model along channels, improving effi-
ciency of such models, and enhancing entropy parameter es-
timation. Other alternative techniques have been used, such
as invertible modules [41], sparse representation spanned by
learned visual codebooks [16], or graph-based attention [34].

Other works tried to exploit an attention mechanism to
optimize the bits allocation, by integrating non-local atten-
tion blocks in the image compression architecture [7, 25, 42].
In [43], the authors replaced the non-local attention block
introduced in [25] with a window block computed from
spatially neighboring elements that focus on image details,
proving that this can improve RD performance with less com-
putation. Similarly, the model in [26] combines Transformer
and CNN blocks to leverage both local and non-local mod-
eling abilities. They also improved the entropy estimation
module by adding a Swin-attention module.

2.2. Progressive image compression

In progressive image compression, reconstruction qual-
ity improves as more bits of the bitstream are received and
decoded. To achieve this property, early works exploited
recurrent neural networks (RNNs) [28]. The model in [36]
exploits long-short memory [14] to transmit bits progres-
sively. The encoder and decoder structures were improved
in [37] for higher resolution images. In [12] a recurrent
model is exploited, enhancing perceptual quality through
a generative model; however, this method is suitable only
for low resolution patches. In [9], a distributed recurrent
auto-encoder was designed for scalable image compression,
while [17] introduced an iterative process to generate the
binary codec and supported spatially adaptive bit rates that
dynamically adjust bit allocation based on context.

In [6], a new architecture with a single encoder and two
decoders was introduced. This setup produces two repre-
sentations: a preview image from the first decoder and a
full-quality image from the second one. Although it uses
two representations like our model, [6] relies on concatena-
tion rather than residual addition, thus doubling the input
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dimension of the second decoder. Furthermore, they did
not introduce a technique for sending partial portions of the
latent space. Due to these limitations, [6] supports only two
levels of quality. These methods not only have worse per-
formance than standard codecs, but also support only coarse
granular scalability. In [40], several progressive encoders
were introduced, one for each target quality, to achieve dif-
ferent levels of reconstruction; however, they do not provide
FGS, and this method requires training separate encoders for
each desired target quality.

To obtain FGS, [27] introduced a nested quantization,
obtaining results comparable to conventional deep image
codecs. [22] proposed a novel trit-plane coding method,
which represents each element of the latent space with a
ternary number. Specifically, they use L trits to express each
element, ordered from the most significant to the least signifi-
cant trit. In that sense, they also introduced an RD-prioritized
transmission system that optimizes the order of trit transmis-
sion based on their priorities. This method was improved
in [15] by introducing a context model capable of improv-
ing both the estimation of the entropy parameters and the
quality of reconstruction. Although [15] obtains competitive
results with standard codecs such as VVC [5], it still relies
on complex context modules and iterative RD-prioritized
transmission; this makes [15] extremely complex in terms of
encoding/decoding time, computational resources, and the
number of parameters required.

3. Proposed method

3.1. General architecture

Our progressive method is based on [43] as illustrated
in Fig. 2. It uses a hyperprior-based architecture [2] and a
channel-wise entropy model [30]. We generate two latent
representations: the base provides the reconstructed image
at the lowest bitrate, while the top yields the image at any
higher bitrates; to obtain FGS we first obtain a residual repre-
sentation by means of element-wise difference between the
top and the base latents, and then we introduce a masking
system that ranks its elements from the most to least impor-
tant, and mask only the ones needed to achieve a specific
target quality, replacing the others with the mean. Quality
is indicated by q∈ [0,100], where 0 and 100 represent the
lowest and highest level, respectively.

Our approach has two advantages: It makes the first train-
ing step easier, since it is sufficient to introduce two different
target qualities, i.e. base and top, in the loss function, and it
enables choosing the distance between the lowest and high-
est levels, thus focusing on a specific bit range. Furthermore,
the masking policy introduced in Sect. 3.3 is simple and
efficient, with no parameters to train.

For an image x (Fig. 2) the two latent representa-
tions yb/t are extracted with the encoders gb/t

a , that is,

PCEEM 

Figure 2. Overview of our proposed architecture. Green and red
boxes represent encoder and decoder modules, respectively, while
blue boxes must be stored at both encoder and decoder. q represents
the target quality.

yb/t =gb/t
a (x;φ

b/t), where φ
b/t are learnable parameters, and

the superscript b/t represents both the base and the top rep-
resentations in a more compact manner. The latents yb/t

are modeled as Gaussian distributed with mean µb/t and
standard deviation σb/t . As in [2], a hyperprior autoencoder
{ha,hs} is introduced to find spatial correlations within the
image, optimizing rate reduction. In particular, we have
z = ha(yb,yt ;φ h), which is then quantized to ẑ = Q(z). Q
is the quantization function, which is replaced by the addi-
tion of uniform noise (U ) during training. We then obtain
[db/t

µ ,db/t
σ ] = hs(ẑ,θ h); these tensors are part of the input

for the progressive channel-wise entropy estimation mod-
ule (PCEEM), explained in Sec. 3.2, to extract both entropy
parameters and ŷq:

ŷq = PCEEM(yb/t ,q, [db/t
µ ,db/t

σ ]). (1)

We input q to obtain the latent representation for the target
quality q, then encode and add them to the final bitstream.

The final reconstruction x̂q at quality q is obtained through
the decoders: x̂q = gb/t

s (ŷq,θ b/t), where θ b/t are learnable
parameters. We implemented two different decoders that are
used depending on the target quality; If q = 0, we use gb

s ,
while in any other case we use gt

s.

3.2. Progressive channel-wise entropy estimation

To develop a progressive channel-wise entropy estimation
model (PCEEM), both yb and yt are divided into s slices
along the channels [30], for a total of 2×s slices. Fig. 3
illustrates PCEEM. To achieve the initial base quality recon-
struction, only yb is necessary. For the other levels, we also
consider yt .

To encode the base latent, the process is similar to previ-
ous works [26, 30, 43]. Given an index i such that 0≤ i < s
and the corresponding slice yb

i , we obtain the entropy param-
eters (µb

i ,σ
b
i ) = Ψb

i (µ
b
i ,σ

b
i , ŷ

b
<i), where Ψb

i is a learnable
module and ŷb

<i are the previous slices. After the quantiza-
tion step, ŷb

i = Q(yb
i ), a module LRPb

i is applied to reduce
the quantization error; the resulting slice ŷb

i is concatenated
to the previous slices. The final tensor ŷb can be used either
as input to the decoder gb

s to obtain the base reconstruction
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Figure 3. Progressive channel wise entropy estimation model (PCEEM) during the i-th slice, considering a general quality q. ŷb represents
the base latent representation already obtained. || represents concatenation along channels, while

⊙
represents element-wise operation,

which can be summation (+) or subtraction (-).

image x̂b, or as input for estimating the entropy of higher
qualities.

For any other possible quality q greater than 0, the top
latent representation is handled differently. Given the index
i and a target quality q, we have the initial slice yt

i; as in
residual video coding [24], we first compute the latent resid-
ual representation rt

i =yt
i− ŷb

i , and then extract the entropy
parameters (µ t

i ,σ
t
i ) through a learnable module Ψt

i:

(µ t
i ,σ

t
i ) = Ψ

t
i(ŷ

b
i ,d

t
µ ,µ

t
<i,d

t
σ ,σ

t
<i). (2)

Note that Ψt
i is the same for every possible target quality.

Unlike the base scenario, this module receives the entropy
parameters (µ t

<i,σ
t
<i) of previous slices instead of the slices

yt
<i, crucial for applying the masking policy described in

Sect. 3.3, enabling progressive quality representation without
altering the already obtained bitstream entropy parameters.
σ t

i is used to compute the mask mq
i =M (σ t

i ,q), where M
represents the masking operator.

In summary, mq
i masks certain elements of rt

i , replacing
them with the mean µ t

i . In this way, rt
i is effectively down-

sampled, with only one encoded part and the rest replaced
with reasonable values such as the mean; this process is
described by the following equation:

r̂q
i = Q(rt

i −µ
t
i )⊗mq

i +µ
t
i , (3)

where ⊗ represents element-wise multiplication. We first
mask Q(rt

i − µ t
i ), which is then encoded and added to the

bitstream; At the decoder side, we then add back the mean
µ t

i (eq. 3 ); in this way, all the elements omitted by mq
i are

replaced by the mean already computed. This operation is
represented by the red box in Fig. 3. We employed ANS
coding [10] for entropy coding; since the residual represen-
tation elements are modeled as independent Gaussians with

parameters derived from Ψt
i , the bitstream can be split into

complementary parts without loss of efficiency.
A network LRPt

i is applied to r̂q
i to reduce the quanti-

zation error [30]. Finally, the resulting r̂q
i is added to the

corresponding base slice ŷb
i , obtaining the final quantized

slice ŷq
i ; the latter is further concatenated (symbol || in Fig. 3)

with the previous slices, obtaining ŷq
<i. If i < s, then the next

slice i+1 is encoded (blue box i = i+1 in Fig. 3).
Once all slices have been computed, the resulting tensor

ŷq is used as input for gt
s to obtain the reconstructed image

x̂q at a specific target quality q.

3.3. Progressive mask-based coding

To encode elements of rt
i , we propose a progressive mask-

ing method based on the corresponding standard deviation
σ t

i ; it is worth pointing out that it is possible to compute σ t
i

on both the encoder and decoder sides, as they are required
for the encoding / decoding of the bitstream, and also it does
not change with respect to different qualities. The general
idea is to add more and more elements of rt

i to progressively
improve reconstruction quality. In this context, it is reason-
able to identify the most important elements in the residual
latent representation as those with a larger variance, as they
are more likely to change and cause a greater reconstruction
error; this is the reason we use σ t

i .
In particular, a progressive masking procedure for the i-th

block rt
i is described in Alg. 1. Each target quality value

q∈ [0,100] unambiguously determines the elements of rt
i

to be masked, i.e. skipped, in the encoded bitstream. A
higher q means fewer masked elements. We compute the
(100−q)-th percentile of σ t

i and mask all elements of rt
i

whose corresponding standard deviation is below that value
(lines 7-12 in Alg. 1). These elements are not encoded in the
bitstream, but are replaced with the mean µ t

i (line 16).
This approach first encodes elements with higher stan-
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dard deviation, improving reconstruction quality. The latent
representation is divided into complementary portions, prior-
itized by importance, which can be decoded separately. This
masking policy has multiple advantages:

• It is an easy-to-compute progressive mechanism to ob-
tain RD transmission priority, since it does not require
any optimization procedure or further parameters;

• It is possible to compute such masks consistently both
at the encoder and the decoder, providing also elements
position: this allows the encoder to simply skip the
masked values without any signaling overhead.

• Only the value q needs to be signaled within the en-
coded bitstream. However, q is represented by a floating
point or an integer with negligible overhead.

Algorithm 1 σ -masking procedure M

Input: σ t
i , µ t

i , rt
i , q

Output: mq
i r̂q

i
1: sh← Shapes(σ t

i ) ▷ extract the shape of σ t
i

2: σ t
i ← Flatten(σ t

i ) ▷ flatten σ t
i to a 1-dim vector

3: L← len(σ t
i ) ▷ extract length of σ t

i
4: q-th percentile← Perc(σ t

i ,100−q)
5: mq

i ← Zeros(L)
6: j← 0
7: while j < L do
8: if σ t

i < q-th percentile then
9: mq

i [ j] = 0
10: else
11: mq

i [ j] = 1
12: end if
13: j← j+1
14: end while
15: mq

i ← Reshape(mq
i ,sh) ▷ reshape mq

i to sh
16: r̂q

i ← Q(rq
i −µ t

i )∗mq
i +µ t

i

Figure 4. Blueprint of REM for a fixed checkpoint quality q̄ and
for the slice i.

3.4. Slice-wise rate enhancement modules

Taking inspiration from [15], we introduce checkpoint-
based learnable modules by means of Slice-wise Rate En-

hancement Modules (REMs) that aim to improve the esti-
mation of the entropy parameters of each slice. The idea
is to fix some checkpoint qualities along the bit range and
use them as input for a REM to improve the encoding of
higher quality. As explained in Sect. 3.2, regarding the top
representation, we do not utilize slices ŷt

i as in [30]; REMs
are meant to incorporate information coming from already
encoded/decoded residual representation.

Consider a specific slice i, a checkpoint quality q̄, and a
target quality q∗, with q∗ > q̄. Fig. 4 shows how we inserted
such a module, corresponding to the i-th slice and checkpoint
quality q̄, which we called REMq̄

i . It receives three elements
as input: the quantized representation of the checkpoint ŷq̄

i
(already decoded and present in memory), and (µk

i ,σ
k
i ) with

k={b, t}, and enhances the estimation of (µ t
i ,σ

t
i ) only for

residual latent elements that must be added to transition from
checkpoint quality q̄ to q∗. This is represented by the mask
m∆

i in Fig. 4, computed as:

m∆
i = M (σ t

i ,q
∗)−M (σ t

i , q̄). (4)

which preserves only those points that need to be added
progressively for the quality q∗; this means that the REMq̄

i
will affect only the elements that have been added to the
bitstream, leaving unchanged the parameters of the other
elements. In practice, by fixing some checkpoint qualities
q̄’s for improving rate estimation, we divide the bit range
into different subranges, denoted by the symbol Lb if only
ŷb is used (base level), L0 if no REMs are used, and Lq̄ j if
the i-th REMq̄ j is used; here j travels across the number of
checkpoints added.

3.5. Training

Training occurs in multiple phases. The first phase is
to train the general architecture without any REMs to re-
construct the image at the base and top qualities. The loss
function is the sum of the rate-distortion trade-off for the
two different levels:

L = ∑
k={b,t}

Lk, (5)

where each term of the summation is represented by

Lk = λkEx∼px [d(x, x̂
k)]+

Ex∼px [− log2 pŷk|ẑ(ŷ
k|ẑ)− log2 pẑ(ẑ)].

(6)

The first term in (6) represents the quality of the recon-
struction, where d represents a generic distortion metric,
while the other two terms estimate the bitrate required for
the two latent representations ŷk and ẑ. Here, λ ={λb,λt}
denotes the Lagrangian parameters that balance the trade-off
between rate and quality.

The second phase refines gt
s to be able to reconstruct im-

ages with different qualities 0 < q≤ 100. When q=100 we
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Figure 5. Rate-distortion performance of our method compared with progressive image compression algorithms: Jeon [15], Lee [22], Lu [27]
and JPEG2000 [33]. We tested our method on Kodak (left), JPEG-AI (center), and CLIC validation dataset (right).

consider the top latent representation without the mask. In
this context, we only optimize the first term of (6), consid-
ering only k= t. In particular, in this stage, at each training
step, we sample a value of q and refine gt

s for that specific tar-
get quality; this enhances the decoder’s robustness to various
values of q, representing different versions of the residual
latent representation.

Finally, we insert a fixed number of REMs at certain
checkpoint qualities and train them in the architecture, keep-
ing other network parts frozen. In this phase, the training
loss is the second term of (6) considering k= t. The number
of REM modules is arbitrary, trading off the complexity of
the entire architecture and the rate reduction.

4. Experiments

4.1. Setup and training details

For training, we used 300k images from the OpenImages
dataset [20] and the Adam optimizer, fixing the dimensions
of yb/t and z to 320 and 192, respectively. In the first training
phase, we trained the entire model for 100 epochs with a
batch size of 16 and a learning rate of 10−4, which was
reduced by a factor of two after a plateau with patience of
ten epochs. We set λ = {5×10−3,5×10−2} in (6).

Secondly, we refine gt
s for 80 epochs with a learning rate

of 10−4, while in the last one we fixed the number of REMs
to three to balance performance and complexity, empirically
selecting quality checkpoints at q̄={0.5,7.5,20} and refin-
ing them for 30 epochs. These values, approximately 5%,
40%, and 65% of the Kodak bitstream, ensure that a REM
module covers the entire bit range while improving entropy
parameter estimation in a sensible portion of the latent space,
avoiding excessively high q.

We compare our method with several models
(Jeon et al. [15], Lee et al. [22], Lu et al. [27], and
JPEG2000 [33]), on three datasets: Kodak [11], CLIC vali-
dation dataset [38], and JPEG-AI [1]. Our implementation
is built upon the compressai [4] library, and we used
NVIDIA A40 gpu for training.

Table 1. BD-Rate and BD-PSNR on the three datasets considering
Jeon et al. as reference and our method as proposed.

Kodak JPEG-AI CLIC

BD-Rate −1.05 0.47 −0.75
BD-PSNR 0.04 -0.01 0.01

4.2. Rate-distortion (RD) performance

Fig. 5 shows the PSNR results for the three datasets. Our
method outperformed three of the other algorithms in the
bit range and is competitive with Jeon et al., as seen in the
reconstruction in Fig. 6. In particular, we outperformed
Jeon et al. for low and medium bit rates, with a slight
deterioration for higher qualities. The competitiveness of
our model is also seen in Table 1, which represents BD-Rate
and BD-PSNR for the three different datasets considering
Jeon et al. as the reference model. Our method is better for
Kodak and CLIC, with a small deterioration for JPEG-AI.

Fig. 7 shows the RD trade-off with respect to some state-
of-the-art fixed-rate (non-progressive) models. As these
methods do not have the progressive property, our archi-
tecture is expected not to outperform them. Although we
performed less well than the most recent models (for ex-
ample, Zou et al. [43] and Liu et al. [26]), we obtained
comparable results with other methods, demonstrating our
competitiveness. We point out that the deep learning models
in Fig. 7 are fixed-rate, i.e., there is a separate model for each
target quality, and they do not achieve FGS.

4.3. Model Complexity

Figures 8a and 8b represent GFLOPs and the time to
decode on GPU, respectively; we compared our results with
the most complex version of Jeon et al., which is competitive
in terms of RD.

We analyze the different ranges defined in Sect. 3.4, to
understand how complexity varies when adding additional
portions of the bitstream. With our efficient masking system
and parallelizable modules, our method is optimal in time
and computational resources compared to Jeon et al..
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0.45/30.33bpp/PSNR 0.46/30.24
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0.46/26.07
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Figure 6. Kodim14 reconstruction from Kodak dataset by different codecs: Proposed, Jeon et al., JPEG.

Table 2. Complexity comparison between our proposed method and Jeon et al. on Kodak.

GPU CPU Parameters (M)

Dec. time Enc. time ∼ GFLOPs Dec. time Enc. time GFLOPs Encoder Decoder

Proposed 1.15 1.72 787.94 6.33 5.49 789.98 97.26 90.78
Jeon et al. 2.018 1.64 2012 10.9 4.16 1980.87 323.6 399
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Figure 7. RD curve for some fixed-rate models on Kodak:
Ballé et al. [2], Minnen et al. [29] Cheng et al. [7], Zou et al. [43],
and Liu et al. [26]. Dotted lines represent that such models are not
able to achieve FGS.

The complexity improvement of our method is substan-
tial, especially for lower bitrates, i.e., where fewer modules,
and so fewer iterations, are required. Our gain marginally
decreases when increasing the bit rate while always being
significantly faster than Jeon et al.. On average, we obtain
an improvement of a factor of 2 both in terms of GFLOPs
and decoding time, as shown in Figures 8.

Our method becomes less efficient at higher qualities
due to REMs, as decoding the fixed checkpoint latent rep-
resentations is necessary before achieving the target quality.
We attribute our superior time performance compared to
Jeon et al. to several factors: first, our general architecture,
with also the addition of REMs, is smaller than the context
model used by Jeon et al. and only needs to be applied once
during decoding; furthermore, our masking policy is fast
and efficient, whereas Jeon et al. relies on a complex opti-
mization method for RD priority transmission; finally, our
algorithm allows one to encode and decode the complemen-
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Figure 8. GFLOPs and decoding time complexity on NVIDIA A40
GPU (a,b) vs. Jeon et al. for different subranges on Kodak.

tary portions of the final bitstream, making the computation
simpler for a specific target quality. Tab. 2 compares the
complexity of our method and Jeon et al. on the entire bit
range of interest. Our method is better for both GPU and
CPU usage, requires fewer parameters, and maintains similar
performance at encoding.

4.4. Ablation study

Fig. 9 shows how REMs and decoder retraining improve
the performance of our method on Kodak. The refinement
of gt

s turns out to be important in improving overall per-
formance (purple line versus pink line in Fig. 9); this is

7687



0.2 0.3 0.4 0.5 0.6

30

31

32

33

34

35

PS
NR

 (d
B)

Kodak

3 BWREMs
2 BWREMs
1 BWREM
No BWREM
No Ref.
Jeon

Figure 9. Results on Kodak considering different configurations.

Table 3. BD-RATE, BD-PSNR, and the number of parameters for
different configurations considering Jeon et al. as the base model.

BD-Rate BD-PSNR # Dec. Pars (M)

3 REMs + gt
s Refine −1.05 0.04 90.8

2 REMs + gt
s Refine −0.56 0.02 79.4

1 REM + gt
s Refine 0.94 - 0.04 67.9

gt
s Refine 1.24 - 0.05 56.6

No gt
s Refine 5.53 -0.25 56.6

reasonable since we make the decoder robust to change of
qualities. Furthermore, adding more REMs enhances coding
efficiency across various subranges of the bitrate. The mod-
ule operating in the central portion of the bit range offers
the most significant improvement because at this stage in
progressive coding, a large portion of the bitstream is already
available, meaning the checkpoint quality has more informa-
tion compared to lower-quality stages, but there is still room
for enhancement in the remaining bitstream.

Table 3 shows results in terms of BD-Rate and BD-PSNR,
using Jeon et al., as reference model; The proposed method
produces a gain in terms of general RD performance only
from 2 REMs, always exploiting less parameters.

4.5. Masking policy

Fig. 10 shows how our masking policy works for different
q’s, considering a sample image from the CLIC validation
dataset. As expected, the base level is characterized by very
low std values (Fig. 10 (b)) for less variable areas, i.e., the
background, with the model focusing only on the main part
of the image, such as the foreground. As q increases, more
elements are added. Following the policy introduced in
Sec. 3.3, the most relevant elements, which are part of the
subject in the foreground, are prioritized (Fig. 10 (d-g)), and
then those that have less impact on the final reconstruction in
terms of standard deviation (10 (e,h)). In this way we obtain
latent representations with increasing details (Fig. 10 (f,i)),
resulting in reconstructions at multiple quality levels.

(a) Input image

(b) Base std (c) Base channel

(d) mask at q=10 (e) std at q=10 (f) channel at q=10

(g) Mask at q=50 (h) std at q=50 (i) channel at q=50

Figure 10. Original image (a), base latent channel and estimate
standard deviation (b,c) obtained mask, estimate standard deviation,
and resulting latent channel for two different q (d,e,f,g,h,i).

5. Conclusions

We proposed a novel learning-based model for progres-
sive image compression based on two latent representations:
base for the lowest quality reconstruction and top for all
higher qualities. FGS is achieved by a lightweight masking
system that decomposes the residual between the top and the
base latent representations into complementary parts that can
be encoded/decoded separately. We also introduced REM
modules in the proposed architecture, improving entropy
estimation.

Despite simplicity, our method achieves competitive, if
not better, RD results with SOTA methods Jeon et al. [15],
Lee et al. [22], reducing computational complexity, decoding
time, and required parameters.

Given the promising results, this method could be further
improved, for example, by introducing a system for calcu-
lating entropy parameters that takes advantage of the lower
quality levels continuously, without the need to set check-
points or REMs, or by introducing a scalable system for
the base layer, to obtain both granularity on it and a larger
bitrange.
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