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Figure 1. Given 50 images of Michelle Obama, we personalize a pre-trained 3D generative prior and demonstrate the benefits of per-

sonalization in various downstream tasks. Each downstream task presents the original input image of Michelle (top left), alongside the

corresponding output generated using the pre-trained face prior (bottom left), compared to the output using our personalized face prior

(right). Our personalized prior can faithfully retain the key facial characteristics of Michelle Obama, as opposed to the pre-trained prior.

Abstract

In recent years, generative 3D face models (e.g., EG3D)
have been developed to tackle the problem of synthesiz-
ing photo-realistic faces. However, these models are often
unable to capture facial features unique to each individ-
ual, highlighting the importance of personalization. Some
prior works have shown promise in personalizing genera-
tive face models, but these studies primarily focus on 2D
settings. Also, these methods require both fine-tuning and
storing a large number of parameters for each user, pos-
ing a hindrance to achieving scalable personalization. An-
other challenge of personalization is the limited number
of training images available for each individual, which of-
ten leads to overfitting when using full fine-tuning methods.
Our proposed approach, My3DGen, generates a personal-
ized 3D prior of an individual using as few as 50 training
images. My3DGen allows for novel view synthesis, seman-
tic editing of a given face (e.g. adding a smile), and syn-
thesizing novel appearances, all while preserving the orig-
inal person’s identity. We decouple the 3D facial features
into global features and personalized features by freezing
the pre-trained EG3D and training additional personal-
ized weights through low-rank decomposition. As a result,
My3DGen introduces only 240K personalized parameters
per individual, leading to a 127× reduction in trainable
parameters compared to the 30.6M required for fine-tuning
the entire parameter space. Despite this significant reduc-
tion in storage, our model preserves identity features with-
out compromising the quality of downstream applications,
both quantitatively and qualitatively.

1. Introduction
Recently, dramatic advancements in deep generative mod-

els like generative adversarial networks (GANs) [5, 33, 55,

58] and diffusion models [18, 29] have led to a surge in

their popularity for computer vision applications. Notably,

GANs have proven to be particularly powerful at gener-

ating realistic photos of faces [34–38]. These techniques

have been extended to 3D vision as well, leading to the de-

velopment of models that are capable of reconstructing 3D

models of existing 2D facial images, synthesizing novel ap-

pearances, and editing various facial attributes such as facial

expressions [11, 49, 50, 54, 64]. These models play a cru-

cial role in virtual communication, AR/VR/MR, and con-

tent creation, thereby increasing engagement.

However, current 3D generative models [11, 49, 50, 54,

64] are unable to create authentic 3D face models of partic-

ular subjects. Although these models can synthesize photo-

realistic fake faces, they cannot generate, reconstruct, or

modify the distinctive traits of a particular real person’s face

without distorting their identity. This problem is further ex-

aggerated for underrepresented demographics whose facial

characteristics are sparsely represented in widely used train-

ing datasets like FFHQ [37] or CelebA [46]. Existing inver-

sion techniques [1,6,39,60,69,73] are only able to preserve

identity by tuning the model separately for every test image,

an impractical and inefficient approach. Furthermore, they

cannot edit the inverted image or synthesize novel appear-

ances without identity distortion. Thus, this paper presents

an approach to create a personalized 3D generative prior for

an individual. This prior enables 3D facial reconstruction,

synthesis of novel appearances, and editing of existing ap-

This WACV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

961



pearances, while maintaining the individual’s identity.

A major obstacle to the deployment of personalized 3D

generative models at scale for real-world applications is

their enormous storage demand. We can illustrate this

scalability problem with a concrete example: Consider

that naively personalizing a 3D generative model such as

EG3D [11] requires storing approximately 31 million pa-

rameters (121 MB) for each user. For three billion users

(monthly active users of Facebook), this would require

363 PB of memory, an extremely cost-prohibitive demand

even for a company the size of Meta. Hence, we need to

design more parameter-efficient personalization techniques

that will enable the building of 3D generative priors for a

large population. Another challenge of personalization is

that an average user often takes only a limited number of

photos of themselves each day or week [48]. The limited

training set size makes it difficult to fine-tune a large global

generative model, leading to overfitting, mode collapse [2],

and data drift [42, 47], all of which prevent the model from

generalizing to unseen test images of an individual.

Our idea is to decouple the facial features of an individ-

ual into (a) shared global features that can be represented by

a generative model trained across many different identities

and (b) personalized features of an individual that can be

represented with much fewer trainable parameters, trained

on images of that individual only. We use EG3D [11] as our

pre-trained generative model and train additional weights

for low-rank decompositions of every convolutional and

fully-connected layer to capture the personalized features of

that individual. Drawing inspiration from the recent success

of Low-Rank Adaption (LoRA) [31] in parameter-efficient

fine-tuning of large language models [32, 76] and diffusion

models [63], we use LoRA during personalization, which

hasn’t been well explored in convolution-heavy GAN-based

models before. Our approach allows for personalization us-

ing only 240K (0.9 MB) trainable parameters instead of re-

quiring fine-tuning of all 31 million (121 MB) parameters.

For three billion users, this means that only 2.7 PB of stor-

age memory would be needed instead of 363 PB.

Quantitative and qualitative analyses show that our pro-

posed My3DGen outperforms the pre-trained 3D genera-

tive model EG3D [11] on multiple tasks including 3D re-

construction, novel appearance synthesis, image enhance-

ment, and semantic editing. Additionally, our personal-

ized model can produce results similar to those achieved

by naively fine-tuning a pre-trained model with 31 million

parameters [11], while only using as few as 240K trainable

parameters. We further provide insights based on different

parameterization strategies. We observe that increasing the

rank of LoRA modules only contributes to better overfit-

ting of the background without improving the shape or the

identity-preserving performance after personalization. Fur-

thermore, we find that personalizing earlier layers of Style-

GAN2 has the most impact on the resulting quality, indicat-

ing that coarse and middle layers are more responsible for

capturing the shape and identity of the person.

In conclusion, we propose the following contributions.

(1) To the best of our knowledge, our research presents

the first attempt to personalize a 3D generative model and

demonstrates its effectiveness in various downstream tasks;

(2) We design a generative prior where an individual’s facial

features are disentangled into global features–represented

by a pre-trained 3D generative model, and personalized

features–captured by training additional low-rank weights

requiring only 240K stored parameters. This method helps

to avoid overfitting and has the potential to improve per-

formance over naive tuning without LoRA; (3) Departing

from previous works that primarily utilized LoRA solely for

linear layers within transformers or diffusion models, our

approach incorporates LoRA into convolution-centric GAN

architectures, presenting an innovative perspective on using

LoRA for 3D personalization.

2. Related Work
3D Face Reconstruction. Parametric 3D models, also

known as 3D Morphable Models (3DMM) [8, 22], are of-

ten widely used for modeling 3D human faces through a

linear combination of basic shapes. Typically, 3DMMs are

constructed using high-quality facial scans from multiple

individuals. However, when fitting a 3DMM to a test im-

age [41, 67, 68], the result often appears unrealistic due

to limitations in the expressiveness of the linear blended

model. Also, training a 3DMM using 2D photo collec-

tions is challenging due to the absence of corresponding

3D scans. As a result, recent research has focused on de-

veloping generative models for 3D faces [12,25,54], which

are able to achieve a remarkable level of facial detail and

capture small wrinkles and bumps by training solely on 2D

images. Nevertheless, these models only aim to generate ar-

bitrary fake faces, and there is a lack of research addressing

the personalization of such models.

Personalized Generative Models. Personalization plays a

significant role in the field of generative AI, with diverse ap-

plications including deepfakes, video avatars, talking heads,

and text-to-image generation [2, 13, 14, 56, 62, 63, 72, 75].

Previous inversion works [3, 6, 60] designed a model-

dependent encoder or fine-tuned the pre-trained model to

best fit an input image. However, these methods struggle to

generate diverse appearances or edit existing appearances of

an individual without distorting their identity. Most inver-

sion methods also require updating and storing a separate

set of network weights for every single image, which is im-

practical. In personalizing a 3D generative model, our goal

is to use only a single set of network weights that can re-

construct, edit, and synthesize any novel appearances of an

individual while preserving identity. Our work is inspired

by the recent success in 2D generative model personaliza-
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tion [51,78]. However, 2D personalization cannot create 3D

faces or produce unique perspectives, and frequently falters

for nonfrontal views due to a lack of geometric information.

Our paper extends personalization from 2D to 3D, assum-

ing that an individual’s facial appearance can be decom-

posed into global features represented by the pre-trained

model and personalized characteristic features represented

by parameter-efficient low-rank adaptive weights.

Parameter-Efficient Fine-Tuning. Large foundation mod-

els [9, 20, 45, 59, 61] often achieve impressive performance

for tasks in their domain. However, the huge number of

parameters in such models often prevents them from be-

ing fine-tuned for downstream tasks using a limited bud-

get. For example, GPT-4 [53] contains 1.76 trillion pa-

rameters, which is impractical for most users to fine-tune.

To tackle this issue, many parameter-efficient fine-tuning

(PEFT) techniques have been previously proposed to fine-

tune models efficiently. In natural language processing, ap-

proaches [30,31,44] have been proposed to enable efficient

adaptation of pre-trained language models to various down-

stream applications without fine-tuning all of the model’s

parameters. For image generation, ControlNet [79], Hy-

perDreamBooth [63], and AnimateDiff [27] have been pro-

posed to tune pretrained diffusion models with additional

modules. Our approach is inspired by LoRA [31], a tech-

nique for efficiently finetuning large language foundation

models by imposing low-rank structures on weight matri-

ces. LoRA [31] was first proposed to predict additional net-

work weights without changing the pre-trained transformer,

allowing efficient adaptation and storage for task-specific

models [31]. Subsequently, LoRA has found widespread

use in fine-tuning pre-trained networks for various down-

stream tasks, including network quantization, parameter

budget allocation, and continual learning [17, 66, 80].

3. Method
Our objective is to personalize a 3D generative model with

ideally 50 images of an individual. First, we introduce back-

ground concepts in Sec. 3.1. Then we formulate the prob-

lem of personalizing EG3D [11], a pre-trained 3D genera-

tive model, in Sec. 3.2. Finally, we discuss how we incor-

porate parameter-efficient personalization into our model in

Section 3.3 with a visual overview in Fig. 2.
3.1. Preliminaries
EG3D. In this work we use the state-of-the-art 3D gen-

erative model EG3D [11] as the pre-trained model that

captures global facial features across multiple identities.

EG3D has four main components: (i) a StyleGAN2 gen-

erator that takes as input a random latent code and outputs

256 × 256 × 96 feature maps, which are further reshaped

into three 256 × 256 × 32 triplanes, (ii) a neural renderer

that decodes triplane features and renders a face given a

camera pose input, (iii) a super-resolution module that up-

samples rendered images to a resolution of 512 × 512, and

Figure 2. Architecture of our personalization approach. We

project an individual’s images into StyleGAN2’s W space through

latent code optimization to obtain a set of latent anchors. We then

tune the generator to reconstruct an individual’s images based on

these anchors. During tuning, the generator is frozen while only

LoRA weights are personalized.

(iv) a StyleGAN2 discriminator that differentiates between

generated images and real images. The entire pipeline is

trained following the typical non-saturating minimax GAN

loss [24]. In this paper, we discard the discriminator and

will use a reconstruction loss to personalize the generator.

LoRA. Our approach is based on Low-Rank Adaptation of

Large Language Models (LoRA) [31], a technique for ef-

ficiently finetuning convolution-free transformer networks

by imposing low-rank structures on weight matrices. LoRA

shows that a pre-trained model’s weight matrix W0 ∈ R
d×k

for any fully-connected layer can be fine-tuned with a low-

rank decomposition using the following formulation: Let

Wft = W0 + ΔW = W0 + BA be the fine-tuned adapted

weight matrix, where B ∈ R
d×r and A ∈ R

r×k are trained

while W0 is frozen, and the rank r � min(d, k) [31]. Al-

though this approach demonstrates impressive decomposi-

tion performance for transformers [28] and diffusion mod-

els [63], previous work solely focuses on the decomposition

of linear layers [27, 40, 63, 66, 71], while GAN-based mod-

els are convolution-heavy. In our paper, we apply LoRA to

the convolution-heavy EG3D model for personalization.

3.2. Personalization Formulation
We consider a scenario where an individual has a training

set of N 2D images xi, each with an associated camera pose

ci, denoted as Dp = {(xi, ci)}Ni=1. We let G(·; θG +ΔθG)
denote our personalized EG3D model where G is the EG3D

architecture, θG represents the frozen pretrained weights,

and ΔθG represents our trainable parameters. Our goal is

to tune this model on a low-dimensional manifold in the

W latent space, dubbed a personal convex hull [51], which

is a subspace defined by all latent codes of the N images.

Our personalization scheme is inspired by the success of

PTI [60] and MyStyle [51] in tuning a pretrained 2D Style-

GAN. We first invert images from (xi, ci) ∼ Dp with as-

sociated camera poses into latent vectors wi, dubbed an-

chors in MyStyle [51], with an off-the-shelf inversion tech-

nique [38]. That is, we freeze both the camera pose and the

model weights while only optimizing the randomly initial-

ized latent vector.
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We then tune the weights ΔθG of the model G using re-

construction objective Lrec, which represents the difference

between each image xi and its reconstruction. Formally,

L(i)
rec = Llpips (G (wi, ci; θG +ΔθG) , xi)

+ λL2
‖G (wi, ci; θG +ΔθG)− xi‖2 (1)

and we have ΔθGp
= argminΔθG

∑N
i=1 L(i)

rec as our opti-

mized parameters for the personalized EG3D model Gp.

3.3. Parameter Efficient Personalization
Naively fine-tuning the model can lead to forgetting of

knowledge learned in pretraining and entanglement of pre-

trained facial features with the personalized features, com-

promising both the model’s interpretability and generaliza-

tion. Therefore, in order to decouple the global features,

captured in the pre-trained model, from the personalized

features, we freeze the weights of the pre-trained model and

tune additional weights to capture an individual’s distinct

facial priors. We use the technique of Low-Rank Adaptation

(LoRA) [31] to train the additional personalized weights,

using only 240K parameters per identity.

The original LoRA paper focuses on convolution-free

transformers where linear fully connected layers are de-

composed into low-rank submatrices A and B, respec-

tively [31]. However, EG3D’s generator StyleGAN2 and

super-resolution modules are convolution-heavy, and con-

volution operations are often implemented with general

matrix multiplication using the well-known ‘im2col’ algo-

rithm [4]. Thus, when adapting for personalization, we de-

compose both the convolution and fully connected layers

in the StyleGAN2 generator and super-resolution modules

using LoRA 1. Pretrained weights W0 of the StyleGAN2

generator and the super-resolution module are frozen while

only A and B are trained. We tune all the parameters of the

neural renderer in EG3D, as it is relatively small with 4K

parameters. Under this setting, the number of parameters

needed to be tuned is determined by the rank r. With rank

r = 1, we can reduce the 30.6M trainable parameters of

EG3D to only 240k, a reduction of 127×.

4. Experiments
We first discuss the details of our evaluation framework in-

cluding datasets, experiment pipeline, and evaluation met-

rics in Sec. 4.1. Then we present both qualitative and quan-

titative results of our approach, My3DGen, in Sec. 4.2. We

further analyze the effect of LoRA for personalization in

Sec. 4.3. Finally, we present ablation studies in Sec. 4.4.

4.1. Experiment Details
Dataset. We conduct experiments using facial images of

celebrities, the same dataset used by Mystyle [51]. Images

are preprocessed following [11, 34] to align and crop faces

1Details of our implementation of the convolutional LoRA decomposi-

tion are provided in the supplemental material.

to 512 × 512. Finally, the faces are separated into refer-

ence sets and test sets for each celebrity. The number of

images included in the reference set and the test set for each

celebrity is presented in the supplementary. Unless other-

wise noted, for each celebrity, we personalize a model using

50 images from the reference set as the training set.

We use an off-the-shelf pose extraction [16] model to

both identify the face region and label the pose of the face,

following the same pipeline in EG3D [11]. We project im-

ages into the model’s W latent space following the Style-

GAN [38] optimization scheme for 500 iterations to obtain

their latent codes (anchors).

Training. We choose 50 images per individual for all per-

sonalization tunings. The effect of dataset size is further dis-

cussed in Sec. 4.4. We tune the model starting from the pre-

trained EG3D (on FFHQ), which outputs images at resolu-

tions of both 128×128 (I128) and 512×512 (I512). Hyper-

parameters are chosen as follows: λlpips = λL2 = 1. We

apply Lrec on both I128 and I512. Our further experiments

show that a higher LPIPS regularization weight (λlpips > 1)

will lead to checkerboard-style artifacts and a lower LPIPS

weight (λlpips < 0.1) will cause nonphotorealistic artifacts,

which aligns with results in previous work [6]. Based on

this observation, we use λlpips = 1.

Evaluations. We evaluate our methods on unseen test im-

ages for the following primary downstream tasks: 1) Image
inversion through PTI [60]; 2) Image interpolation where

we interpolate between two anchors in the latent space and

generate images that morph from one face to another; 3)

Image synthesis where the goal is to generate novel appear-

ances of an individual by sampling from a latent space,

following the protocol outlined in Mystyle [51]; 4) Im-
age enhancement tasks such as image-inpainting and super-

resolution; 5) Semantic editing where the goal is to mod-

ify the facial expression or age of the person while main-

taining the identity and pose. Note that we modify the

model weights after personalization via PTI only for image-

inversion tasks, for consistency with prior research on 3D

GAN [11]. For any novel views, we render faces with a

yaw range of ±0.35 (radians) and a pitch range of ±0.25
(radians) relative to the frontal face for all our experiments.

Metrics. When evaluating inversion outcomes, it is

standard to use pixel-based metrics such as PSNR and

SSIM or neural network-based perceptual metrics such as

LPIPS [81] and DISTS [19] to assess the inverted image and

compare it with the original image. However, due to errors

in the estimation of face poses, Live3Dportrait [69] reports

that a minor misalignment between the ground truth and the

estimated face poses will cause traditional pixel-based met-

rics to be unreliable. Recent work further indicates that deep

perceptual image metrics are also sensitive to small mis-

alignments [23]. Therefore, we additionally adopt the facial

identity score IDsim, i.e. a metric to evaluate the preserva-
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F.T. LoRA DISTS ↓ LPIPS ↓ IDsim ↑ Personal.

Params. ↓
- - 0.12 0.19 0.56 -

� - 0.08 0.12 0.60 31M

� � 0.08 0.13 0.61 0.2M

Figure 3. Qualitative (top) and quantitative (bottom) evaluation

for image inversion, i.e. generate 3D-aware view synthesis from a

single image. F.T. indicates fine-tuning, and Personal. Params. in-

dicates the number of personalized parameters. DISTS and LPIPS

compare the inverted image against the input image in the same

pose, IDsim evaluates the preservation of identity across multi-

ple poses. Ours is My3DGen with LoRA rank r = 1 where the

number of trainable parameters = 0.2M. Visual differences are

highlighted with a red-box, zoom in to view finer details.

tion of the individual’s identity [10, 51]. Nonetheless, we

still include DISTS and LPIPS results in our inversion tasks

to align with prior works [11, 69]. The identity score IDsim

of an image is determined by the individual’s reference set,

which contains all the images available from that individ-

ual. Given an image, we extract the identity features and

report the cosine similarity of the given image to the nearest

image in the personal reference set. Formally,

IDsim (wi, ci) = max {〈R(G(wi, ci, ·)), R(xj)〉}Nj=1 (2)

where R is a pretrained ArcFace [15] network for feature

recognition, 〈·, ·〉 computes the cosine similarity between

its argument as the ID scores [57], and N is the number of

2D images in a reference set.

4.2. Applications of My3DGen
Inversion. Given a 2D RGB image of a face, image in-

version here refers to performing 3D reconstruction of the

face. We apply PTI [60] for inversion benchmarking to

align with the original EG3D work [11]. We optimize a ran-

domly initialized latent code for 600 iterations, followed by

fine-tuning the model for an additional 350 iterations [69].

We calculate DISTS and LPIPS for single-view inversion,

and report IDsim to evaluate multi-view reconstruction.

As shown in Fig. 3, the pretrained EG3D can have ar-

tifacts such as i) a visible seam between the face and the

rest of the head (1st row, 3rd column), ii) 3D shape dis-

tortion (4th row, 5th column), and iii) identity drift caused

by changing pose, which can be observed in Fig. 1 re-

garding novel view synthesis. Furthermore, the pretrained

EG3D overly smooths skin textures. We recommend read-

ers to zoom in to observe these finer details (2nd column

of Fig. 3). In contrast, ours decomposes facial features

into global features and personalized features, producing a

higher quality and identity-preserving inversion. Compared

to full fine-tuning, our approach yields almost the same

quality for single-view inversion as measured by LPIPS,

and produces similar multiview inversion results with a

slightly higher IDsim. We speculate that full fine-tuning

can result in better single-view quality by inverting images

with an overfitted background, but may also introduce ar-

tifacts by overfitting particular facial features. For back-

ground overfitting, we examine this problem in Fig. 8 where

we demonstrate that increasing LoRA rank enhances back-

ground fitting but provides minor improvements in terms of

IDsim. For facial features, as shown in Fig. 3 (5th row),

full fine-tuning does not preserve the identity in the lower

jaw and ear regions, which are obscured in the input im-

age. My3DGen can help reduce these artifacts as well as

‘floaters’ from NeRF [74]. We suggest the readers check

the video results in the supplementary for more examples.

Interpolation. The results obtained from the inversion

tasks are overfitted to the test image via PTI, requiring sep-

arate optimization of the generator for each image. Our

approach aims to provide a single generative model for all

images of an individual without requiring further optimiza-

tion. We support this claim by generating images from la-

tent vectors produced through linear interpolation between

two randomly selected training anchors [51].

We interpolate between the anchor pair at 10 equally

spaced interpolation weights. At each interpolation step θ,

given the interpolated latent code, we randomly generate

20 novel views and compute the average IDsim scores of

each view as described in Eq. 2. We repeat this process

for 10 randomly selected anchor pairs for each personalized

model, averaging our results across all models and pairs.

We compare the results before and after personalization in

Fig. 4 and show that personalization maintains the identity
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Figure 4. Qualitative (top) and quantitative (bottom) evaluation

for interpolation in latent space between two anchor images, high-

lighted in color. We measure identity preservation using IDsim,

for which illustrative visual results at different interpolation steps

θ are also provided. We compare the interpolation results before

and after personalization.

when traversing between two anchor images (exemplified

by Scarlett Johansson) while the pre-trained model distorts

identity.

Synthesis. We conduct image synthesis to further examine

the personalization capacity of our approach. Our goal is to

produce new, distinctive images of an individual that have

not been seen before. We sample a latent code from the con-

vex hull following MyStyle [51]. Then we feed the latent

code into the generator together with a random pose. To

this end, we randomly synthesize images from each gener-

ator and compare the results based on identity preservation.

We evaluate the image synthesis results and present them

in Fig. 5, accompanied by visual examples. To assess the

diversity of the synthesized images, we follow the protocol

proposed by Ojha et al. [52]. Specifically, for each celebrity,

we produce 1,000 images and assign each of them to one of

the k training images, by choosing the one with the lowest

LPIPS distance. We then compute the standard deviation

of pairwise LPIPS distances within members of the same

cluster and then average over the k clusters. Our model sur-

passes pretrained EG3D in all metrics and performs compa-

rably to full fine-tuning with fewer trainable parameters.

Image Enhancement. We choose the tasks of image in-

painting (IP) and super-resolution (SR) as representative ex-

amples of image enhancement. To perform inpainting, we

utilize a mask positioned at the center of the faces and feed

the masked images into the generator. We subsequently

post-process the resulting outputs by blending the genera-

tor’s output within the masked area with the input in other

areas. The background regions of the outputs are replaced

through post-processing using a Lanczos-upsampled ver-

sion of the input image. These regions have been segmented

according to the methodology in [70]. For SR, we reduce

the original image size from 512× 512 to 32× 32 and sup-

ply the blurred images to the generator. It is noteworthy that

F.T. LoRA IDsim ↑ Diversity ↑ Personal.

Params. ↓
- - 0.53 0.19 -

� - 0.62 0.21 31M

� � 0.62 0.21 0.2M

Figure 5. Qualitative (top) and quantitative (bottom) evaluation

for synthesizing novel appearances of an individual. Generated

images of Oprah Winfrey are provided for visual inspection. F.T.

indicates fine-tuning and Personal. Params. indicates the number

of personalized parameters.

in previous studies on image enhancement [82], no quality

evaluation is performed against a reference standard, i.e. a

ground truth image. “Quality” here refers to a pixel-to-pixel

comparison against the original ground truth. The reason-

ing behind this approach is that, although the restored facial

details may differ from the original image, personalization

still preserves the key facial characteristics of the individual,

resulting in valid restorations [51,78]. We follow the estab-

lished convention and do not include additional quantitative

quality evaluations. However, in addition to using the IDsim

metric in the experiments, we also conducted user studies

based on subjective assessments of identity preservation.

We used Amazon Mechanical Turk to gather 330 re-

sponses from 17 users. In the study, users were shown the

original image, along with two results: one from the pre-

trained model and the other from the personalized model,

in a randomized order. Users were instructed to select the

result that most closely resembled the person in the original

image. In cases where both results were similar, participants

could select ‘No Preference’. Results are reported as a per-

centage of each selected option. Images utilized in the user

study were selected from a random subset of those used for

quantitative evaluation. We present the enhancement results

in Fig. 6, showing visual examples of inpainting (IP) and

super-resolution (SR) tasks followed by both quantitative

and qualitative analysis. The User % for ‘No Preference’ is

5.5% for inpainting and 3.6% for super-resolution. Our re-

sults demonstrate that My3DGen successfully personalizes

the pretrained EG3D, achieving both a higher quantitative

score (IDsim) and qualitative preference (User %).
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F.T. LoRA IDsim ↑ User % ↑ Personal.

Params. ↓

IP

- - 0.62 12.7 -

� - 0.72 - 31M

� � 0.72 81.8 0.2M

SR

- - 0.61 7.9 -

� - 0.73 - 31M

� � 0.73 88.5 0.2M

Figure 6. Qualitative (top) and quantitative evaluation (bottom) for

image enhancement by inpainting (IP) and super-resolution (SR).

The original images are degraded as input images and then fed

into the model. We have included original images for the bene-

fit of readers who may not be familiar with the faces of Michelle
Obama, Dwayne Johnson, and Kamala Harris. F.T. indicates fine-

tuning and Personal. Params. indicates the number of personalized

parameters. User % reflects the percentages of responses for each

option in the image enhancement tasks.

Semantic Editing. Personalization also enables tailored

editing of facial attributes. For example, while a generalized

pre-trained model may learn how an average human smiles

or ages with time, it struggles to capture the specific smile

or aging process of an individual. Our hypothesis is that

a personalized generative prior can enable us to more accu-

rately depict how specific attributes of an individual change.

To validate this hypothesis, we perform semantic edit-

ing of ‘smile’ and ‘age’ features using 3D generative pri-

ors, both pretrained and personalized. We start by identi-

fying suitable editing directions for each model using the

InterFaceGAN framework [65], followed by reconstructing

the input image and then conducting personalized seman-

tic editing in the α-space, as described in MyStyle [51].

Our findings are illustrated in Fig. 7, where we also em-

ploy the user study as quantitative metrics for evaluation.

Our study design for the user survey aligns with that of the

image enhancement evaluations, including 165 responses

from a total of 17 participants. Quantitatively, our model

F.T. LoRA IDsim ↑ User % ↑ Personal.

Params. ↓
- - 0.60 4.8 -

� - 0.76 - 31M

� � 0.76 95.2 0.2M

Figure 7. Qualitative (top) and quantitative evaluation (bottom) for

semantic editing of ‘smile’ and ‘age’. We show Barack Obama,
Scarlett Johansson, Dwayne Johnson, and Kamala Harris top-to-

bottom. F.T. indicates fine-tuning and Personal. Params. indicates

the number of personalized parameters. User % reflects the per-

centages of responses for each option in the downstream task.

yields a nearly identical IDsim to the fully fine-tuned EG3D

model and substantially higher IDsim than the pretrained

model. Qualitatively, we note that our model can some-

times outperform the fully fine-tuned model in retaining im-

age styles, such as lighting, background color, and hairstyle

post-editing. A detailed examination of Fig. 7 demonstrates

improved preservation of skin tone and background color in

the first row, enhanced reproduction of hair color, style, and

background color in the second row, and better handling of

lighting and skin tone in the last row, showing LoRA may

mitigate overfitting in semantic editing.

4.3. Analysis of Personalization with LoRA
In Sec. 4.2, we show that personalizing 3D-GAN with

LoRA can help avoid overfitting and has the potential to

improve downstream results such as inversion and semantic

editing compared to naive full fine-tuning. In this section,

we start by demonstrating that tuning the pre-trained model

with LoRA rank r = 1 suffices for personalization. We

then study the importance of feature blocks with different

resolutions for personalization with rank 1.

Effect of Rank in LoRA. To investigate the impact of rank

selection in LoRA and find the optimal rank, we repeat the

same personalization method for each celebrity, with LoRA
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Table 1. Quantitative analysis of the rank of LoRA for inversion

and interpolation tasks. ‘-’ indicates full fine-tuning. We report

the average IDsim across latent paths from the interpolation task.

Inversion Interpolation Personal.

LoRA LPIPS ↓ IDsim ↑ IDsim ↑ Params. ↓
- 0.12 0.60 0.62 31M

rank=1 0.13 0.60 0.62 0.2M

rank=4 0.11 0.60 0.63 0.9M

rank=16 0.09 0.60 0.63 3.5M

Figure 8. Visual examples of inversion results for different LoRA

ranks. The backgrounds are highlighted to aid inspection along

with LPIPS and IDsim scores.
ranks of 1, 4, and 16, tuning the generator accordingly. We

report the model’s performance on inversion and interpo-

lation tasks in Table 1. For inversion tasks, increasing the

rank from 1 to 16 doesn’t help improve identity preservation

measured by IDsim, but it does help to fit the background

and thus leads to a better LPIPS score, for which visual re-

sults are shown in Fig. 8. This clarifies the contrast between

our method and full fine-tuning regarding single-view inver-

sion results outlined in the inversion task in Sec. 4.2. How-

ever, since matching backgrounds is not the primary focus

of personalization and there is only a slight improvement in

IDsim for interpolation tasks when the rank increases. Thus,

we choose to use rank = 1 in most of our experiments.

Personalization of Feature Blocks. We show that fea-

ture blocks with different resolutions have different levels

of importance during personalization. Determining the im-

portance of weights in a network is an open question [7].

Previous work proposes including gradient information to

evaluate the importance of LoRA modules during the tun-

ing [80]. Here, after tuning with LoRA, we follow the com-

mon approach in model pruning where the change in param-

eter magnitude is used as a criterion to evaluate layer impor-

tance [21, 43]. That is, |ΔW |/|W0| × 100%, where ΔW is

the personalized LoRA weights and W0 is the pre-trained

weights. EG3D uses the first seven StyleGAN2 resolution

blocks to generate 256 × 256 tri-plane representations. We

compute the relative LoRA weight change for each block

against the pre-trained weights.

We report the mean and variance of the changes across

different individuals in Fig. 9. The results show that feature

blocks of resolution 8 × 8, 16 × 16, and 32 × 32 require

more weight changes than other resolution blocks. This

suggests that distinct facial features are primarily learned

in the ’coarse’ and ’middle’ layers during personalization,

with minimal fine-tuning needed for the ’fine’ layers.

Figure 9. LoRA weight change compared to the pre-trained

weights after personalization, averaged across celebrities.

Dataset Dp

Size Ablations

Metric Dp = 10 Dp = 50 Dp = 100

IDsim ↑ 0.618 0.628 0.629

Table 2. The effect of training dataset size Dp on personalization.

We evaluate each model’s performance through the interpolation

task in Sec. 4.2 and report the average IDsim.

4.4. Ablation study
Effect of Dataset Size. We investigate the effect of training

dataset size on the performance of the personalized genera-

tor. We sample various random subsets of images for each

celebrity, with sizes of 10, 50, and 100, and tune the gen-

erator accordingly. Next, we assess the generator’s perfor-

mance using the interpolation tasks outlined in Section 4.2,

which evaluates the generalization capacity of the personal

convex hull by traversing through the latent subspace. We

report the average IDsim across latent paths. As shown in

Table 2, the performance improves significantly from 10 to

50 images, but there is no significant improvement from 50

to 100 images. While further experiments are required, we

speculate that adding more images may not contribute to

dataset diversity and might even hurt the results [51]. There-

fore, we use 50 images for our personalization method in

most of our experiments, unless otherwise stated.

AFHQv2 Cats. In addition to human faces, we also extend

our personalization method to cat faces with the same per-

sonalization procedure. We present our results in the sup-

plementary material, highlighting the versatility and effec-

tiveness of our method across different domains.

5. Discussion
Limitations and Future Work. Our model can accurately

capture facial features but encounters difficulty when ob-

jects heavily obscure the face (e.g. hats, phones, etc). Fur-

ther works may leverage the power of per-image inversion

methods for better performance [6,26,77]. Ours also strug-

gles with heavily cropped faces, where the whole face is not

fully captured in the original image and thus image bound-

aries are filled with reflection-padded values to align the

face during preprocessing. One may mask out these in-

valid values during inversion. This will be similar to the

in-painting task discussed in Section 4.2.

Ethical Considerations. This study holds the potential to

generate manipulated images of actual individuals, posing

a substantial societal threat. Future research for detecting

fake composites is needed.
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