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Abstract

Figure skating automatic scoring is the task of estimat-
ing the competition score of a performance video. The tech-
nical element score (TES) aggregates the technical qual-
ity (grade of execution) and difficulty (base value) scores
for each element. Most prior work, adapted from short-
term action quality assessment, entangle difficulty and qual-
ity, and compute TES for the entire video, reducing inter-
pretability for athletes. This is mainly due to a lack of el-
ement segmentation and difficulty annotations in existing
datasets. Motivated by increasing interpretability, we pro-
pose a novel method that implicitly segments a video to pro-
duce element-level representations and uses adherence with
a natural language rubric to score each element, without
needing additional annotations. We compute element-level
representations using learnable element queries in a trans-
former and propose implicit segmentation regularization to
encourage element queries to attend to elements rather than
background transitions between elements (most of video).
Additionally, we use the element list (sequence of elements)
to isolate difficulty, just like judges who receive the rou-
tine list in advance, so we can focus on the more critical
problem of how well elements are done. These compo-
nents significantly improve interpretability, scoring preci-
sion, and ranking capability. Code is released at https:
//arushirai1.github.io/rcs-project.

1. Introduction
To the untrained eye, figure skating lacks the clear en-

vironmental feedback or visible outcomes that typically de-
termine how points are scored in other sports (e.g., a ball
going through a hoop). Instead, each performance is scored
by judges who award points based on adherence to rubric
items that evaluate quality, difficulty, technical proficiency,
and artistic expression. While this scoring may seem sub-
jective, judges are fairly consistent in their scores for a given
performance; a panel of judges will agree on scores 96% of
the time [14]. This consistency is achieved through detailed
rubrics and scoring protocols.

Figure 1. Key concepts of our approach: (1) The model fo-
cuses solely on predicting quality, not difficulty; (2) Scoring is
interpretable, using rubric criteria to compute grade of execution
from element embeddings; (3) Scoring is explainable, with ele-
ment embeddings computed from cross-attention between the el-
ement query and clips. The cross-attention distribution is regular-
ized by element segmentation priors to focus on relevant elements,
not the background, without needing additional annotations.

This underlying structure behind subjective scoring in
Olympic sports led to substantial interest in developing ma-
chine learning models for automatic action quality assess-
ment. One sport whose automated scoring has been partly
explored is figure skating. Athletes in competitive figure
skating would benefit from automatic action quality assess-
ment during personal practice if a coach or judge is not
available. Such a system would need to be interpretable by
the athlete to garner insights on how to improve their per-
formance. However, scoring of long video activities, such
as figure skating, is challenging for a number of reasons.
We focus on two gaps in the literature.

First, long video activities like figure skating consist
of a few elements (actions) over minutes of performance.
Performance quality can vary throughout the video where
some actions may be well done and others may be executed
poorly. This calls for element-level scores, however, these
long video activity datasets are sourced from publicly avail-
able sports broadcasts that do not have action segment an-
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notations. Thus, action quality assessment methods learn
to score the entire video and it is elusive how much each
action contributed to the score, causing a challenge with
interpretability. In contrast, during competitions, the scor-
ing rubrics provide key insights into areas needing improve-
ment and aspects that are done well.

Second, score prediction, as formulated in prior work,
overfocuses on one component of scores, leading to mis-
predictions. Competition scores consists of two subscores:
(1) holistic program component score (PSC); and (2) tech-
nical element score (TES) which aggregates (2a) techni-
cal quality (grade of execution, GOE) and (2b) difficulty
(base value, BV), scored for each element. While TES com-
bines both difficulty and quality, the variation in TES is of-
ten dominated by difficulty (base values) due to magnitude.
Further, difficulty is easier to estimate since it only requires
recognition whereas quality requires estimating how well
multiple latent criteria are satisfied. Thus, existing figure
skating AQA systems can get away with only estimating
difficulty, rather than quality, providing limited value.

Our goal is to develop an interpretable scoring mech-
anism inspired by rubrics developed by the International
Skating Union (ISU), which scores each element individ-
ually, and a single-stage architecture capable of provid-
ing element-specific scores without a separate segmentation
model. Such a model should benefit athletes by offering ac-
curate and understandable feedback without additional an-
notation burdens. While we choose to focus on figure skat-
ing, other sports also have rubrics and involve longer perfor-
mances which would benefit from this type of architecture:
gymnastics (artistic and rhythmic), synchronized swimming
(artistic swimming), dressage (equestrian), freestyle skiing
and snowboarding, ice dancing, martial arts, and cheerlead-
ing and dance competitions.

To utilize the element-level rubric items to score each el-
ement, we develop an architecture capable of scoring each
element, rather than the whole video, and isolate learning
quality only, rather than both difficulty and quality. To pre-
vent scoring only difficulty, we follow a protocol that judges
use: we use the performance’s list of elements to look up the
associated difficulty in advance, just like judges. We score
elements in parallel using our proposed element transformer
which produces element embeddings. We then use rubric
text from the ISU scoring protocol documents, represented
as text embeddings, to predict grade of execution (i.e., the
term for the quality score in figure skating) for each element
as shown in Fig. 1. We further improve the correspondence
of the element embeddings to element segments through
regularization. This regularization is inspired by the def-
inition of a segment; it guides the queries in the decoder
transformer layers to have cross-attention patterns where
(1) each query attends to different parts of the video and
(2) attention is concentrated on contiguous clips rather than

scattered across the video. We call this implicit segmen-
tation because the cross attention between the queries and
clips should implicitly attend to element segments without
requiring training over annotated segments. This approach
aims to be interpretable through the use of rubric text for
scoring and the long video architectural improvements help
set up the use of rubric text and improve the accuracy of
explanations and scoring performance.

Our proposed method outperforms state-of-the-art tech-
niques and our strong baselines on the Fis-V benchmark
[24] for figure skating technical element scoring in terms of
both scoring precision (measured by mean-squared error)
and ranking capability (measured by Spearman rank cor-
relation). We also show results on FS1000 [21] in supp.
Our method achieves significantly higher scoring preci-
sion, reducing the mean-squared error from 19.05 and 19.53
to 9.34 compared to the state-of-the-art and our best pro-
posed baseline, respectively. To assess the impact on im-
plicit segmentation, we annotated a small subset of the Fis-
V test set with element segmentation (56 elements). We
find a drastic increase in element queries attending to ele-
ment segments in the video rather than background transi-
tions (movements between elements) with our full method
(12.5% to 35.7%). Our method also improves the Spear-
man rank correlation between our predicted TES scores and
ground truth TES scores, increasing from 0.70 to 0.84 com-
pared to the state-of-the-art. It achieves interpretability and
performance without compromising on either.

2. Related Works
Action quality assessment. Automatic action quality

assessment (AQA) was first explored by [14] using pose
features and handcrafted spatiotemporal descriptors to as-
sess Olympic diving and figure skating. [11, 22] showed
improvements by fine-tuning spatiotemporal video-based
architectures pretrained on large-scale action recognition
datasets like Kinetics and UCF101. [12] introduced the
AQA-7 dataset for short Olympic sports actions; while this
is a common benchmark in AQA, our focus is on longer,
structured activities so we evaluate only on figure skat-
ing. [24] found LSTM architectures more effective than
average-pooling for longer videos like figure skating. [5]
address long video skill assessment outside of sports which
isn’t applicable to our work on structured, rubric-based ac-
tivity assessment. Some methods incorporate judging in-
sights similar to our approach. [19] propose an uncertainty-
aware method that predicts a score distribution to account
for multiple judges and decouples difficulty from execution
quality for single-action videos, while we focus on multi-
action videos. [7, 25] use exemplars for relative scoring,
which is unsuitable for longer activities like figure skating,
where selecting the appropriate exemplar is challenging due
to multiple sub-actions and varying sequences.
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Use of language. [13] release a multi-task dataset with
commentary for diving events, which is used to train on a
captioning task in addition to scoring regression. [20] col-
lect gesture error feedback from expert surgeons for surgical
skill assessment but do not use these captions. [6] collect
and uses commentary to distill knowledge from a teacher
model. Our method leverages the semantic knowledge in
CLIP text embeddings for scoring without relying on exter-
nal language information per video.

Figure skating-specific models. Similar to our architec-
ture, [23] exploits the encoder-decoder transformer blocks
to bottleneck clips into a few “grade-aware” output em-
beddings. Our focus is on interpretability, so we fix the
number of output embeddings to be the number of ele-
ments. Rather than computing the final score through a
Likert-based rubric, we use the rubric developed by com-
petitive figure skating judges for scoring. [9] use a two-stage
approach, where one fully-supervised segmentation model
segments the video and then, a second model scores each
segment individually. In contrast, we propose a single-stage
model where “segmentation” is done implicitly, which does
not require additional annotations and is more efficient to
train (single-stage).

Interpretability. In action quality assessment, [25] use
Grad-CAM saliency maps [18] to highlight regions in a div-
ing frame that impact the score prediction (positively or
negatively) and [14] use score gradients to identify direc-
tions in which joints can be moved to improve scores. The
former could be difficult to interpret by a figure skating ath-
lete, and the latter relies on pose features rather than visual
features so it can’t exploit strong pretrained video models.
An alternative is to make the model interpretable inherently
[16]. For example, ad-hoc interpretability is built into [3]
where image parts are mapped to their closest visual part
prototypes of object categories, and then combined to pro-
duce a final object category prediction. [10] uses a vision-
language model, CLIP [15], to calculate an alignment score
between an image and each object attribute for an object
class (text prototypes) and then aggregates the score for im-
age classification. Similarly, we use alignment between el-
ement representations and natural language rubric text de-
fined by judges to score figure skating videos.

3. Method
Overview. Our focus is on utilizing rubric items that are

mostly objective, so we focus on technical element scoring
(TES) rather than program component scoring (PCS) which
captures more artistic, abstract aspects of performance. TES
combines difficulty (base value) and quality (grade of exe-
cution) over all the elements. To decouple difficulty and
quality, and enable interpretable scoring, we use an element
list provided in advance (just like a competition) to focus on
a single quality prediction task. To be able to score each ele-

ment independently, we propose two technical innovations.
First, to score without explicit element segmentation, our
element transformer produces element embeddings using
regularization techniques to guide attention toward element
segments. Second, implicitly aligning rubric items’ text
with element embeddings through score regression is diffi-
cult with limited data, so we use visual-only rank-aware and
vision-text pretraining to align high-quality and low-quality
elements with rubric items. Our method aligns model cross-
attentions with human expectations and rubric guidelines.

3.1. Decouping difficulty and quality

We focus on the figure skating short program, where
skaters perform a series of seven elements within a speci-
fied time limit. The difficulty is captured by the base value
(BV), a score predetermined by the ISU for each element
type. For example, a “double axel” requiring two rotations
in the air during an axel jump would be awarded 3.3, and
a “triple axel” with increased difficulty due to an extra ro-
tation would be awarded 8.0. The quality (grade of execu-
tion, GOE) focuses on aspects such as the correctness of
form, the takeoff leg, and landing stability, along with other
aspects like speed, control, and overall fluidity of the move-
ment. If a severe mistake impacts the perceived difficulty,
the BV is deducted by some points (e.g., drifting on the ice
during a spin), or the element is downgraded to an easier
element (e.g., triple axel to double axel). The routine is
shared in advance to judges so a base value score is com-
puted and only deductions and GOE need to be scored after
each element’s performance. Figure skating datasets pro-
vide only the technical element (TES) score rather than the
entire score sheet that lists the per-element score breakdown
of difficulty (BV) and quality (GOE).

We look up the base value from our knowledge base (ISU
protocol) for each element and combine this with a neural
model to predict the grade of execution per element and this
is regressed against the ground truth technical element score
of the performance. Base values can be found in two places:
the ISU scoring cheatsheet1, or scoring sheets2. Base val-
ues from score sheets include deductions/downgrades and
this provides an unfair advantage compared to an element
list per performance and static, performance-agnostic base
value lookup table (without deductions/downgrades). Thus
we use the ISU scoring cheatsheet to scrape the base values
corresponding to each element, agnostic to a particular per-
formance. In one experiment, we also compare base value
reported in the scoring sheet like [9] to using base values
from the ISU scoring cheatsheet, but we do not use scoring
sheets for our method. We also scrape the grade of execu-
tion for visual-only rank-aware pretraining, explained later.

1https : / / usfigureskating . org / sites / default /
files/media-files/Scoring%20Cheat%20Sheet.pdf

2https://skatingscores.com/
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Figure 2. Overview of our proposed architecture. The video and element list (in dark green) of the routine are inputs to our framework.
The transformer encoder-decoder architecture produces contextualized clip embeddings (1) from the encoder and element embeddings (2)
from the decoder. The latter is produced from just clip embeddings without additional element segmentation annotations through learnable
element queries (3) and cross-attention. The element embeddings are input (4) to the rubric-constrained scoring head. In the detailed view
of the rubric-constrained scoring head (right), we follow the intermediate outputs corresponding to the highlighted element (5) and only
a shortened rubric list is shown, listing some negative criteria (full list in supp.) and their associated points (6). To score, the element
embedding is evaluated against negative criteria via cosine similarity (7) to weigh each criterion’s contribution (8) towards the predicted
GOE. Then, action masking (9) uses the element name to avoid using irrelevant criteria to compute the GOE (10).

Element transformer. Figure skating short programs
consist of seven elements with different types of jumps
and spins, and one step sequence or choreographic step se-
quence placed throughout the 2-3 minute program. Since
we know the number of elements but don’t have ground
truth segmentation for where the elements occur in the
video, we utilize queries in the transformer decoder layer to
implicitly localize and produce element embeddings which
are then used to score each element. First, the element trans-
former encoder takes frozen clip feature embeddings E =
{e1, e2, . . . , en} where n is either fixed (when batched)
or the maximum number of non-overlapping consecutive
clips (inference) in an input video. The encoder then pro-
duces contextualized clip embeddings, H = Encoder(E) =
{h1,h2, . . . ,hn}. Latent queries Q = {q1,q2, . . . ,qm}
in the element transformer decoder are used to bottleneck
the contextualized clip embeddings H into m element em-
beddings, O = Decoder({q1,q2, . . . ,qm},H), where m
are the number of elements (7 in short program). The di-
mensions of e, h, q, o are 1024, 768, 768, 768, respectively.
Note, the dimension for e depends on the pretrained clip
encoder (Video SWIN [8]). This approach is inspired by
DETR [2] which uses a transformer encoder-decoder archi-
tecture for detection. DETR found that the latent queries in
the decoder operated like object anchors, attending to dif-
ferent regions in the image to recognize and detect possible

objects. Similarly, in our case, each “anchor” should attend
to each element in the video.

Predicting GOE scores. After getting element embed-
dings, we apply an MLP scoring head, f , to produce a
grade-of-execution score; this is combined with the base
value of the element for the final score. We denote the base
value lookup table as BV L and BV L(j) looks up the base
value for the jth element in the program (without deduction
information) and i is the ith video. The predicted score,
yi ∈ R, is then regressed via the mean squared error loss.

ŷi =

m∑
j

BV L(j) + f(oji ) (1)

Lse = (yi − ŷi)
2 (2)

3.2. Implicit segmentation regularization (ISR)

Implicit segmentation regularization introduces element
segmentation priors for the cross-attention maps in the final
decoder layer. Cross-attention at each decoder layer is com-
puted between queries, Q, and the contextualized clip em-
beddings, H, generated by the encoder. This cross-attention
distribution over clips softly segments the video into clips
most significant for a specific query, qj , and is used to com-
pute a weighted average of the clip embeddings for each
query. Thus, the cross-attention distribution will directly in-
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Figure 3. For each query, j, we greedily select the peak pj with
the largest attention value from cross-attention distribution (Aj)
to compute the desired attention distribution (Gj). Then, Aj is
encouraged to align with Gj in the peak loss.

fluence the element embeddings (output of decoder). How-
ever, we noticed that without priors, the queries attend to
the same region in the video (redundant) and to temporally
disjoint clips of the video (non-contiguous). To address
these issues, we propose two regularization techniques: en-
forcing orthogonality between cross-attention distributions
from different queries to reduce redundancy and encourag-
ing peakiness in the cross-attention distribution to ensure
attention is focused on specific, contiguous clips.

First, the orthogonality loss reduces redundant attention
across queries. Given the cross-attention map between the
latent queries and the contextualized clip embeddings H is
A ∈ Rm×n, we minimize the dot product between cross-
attention distributions Rn from different latent queries:

Lo =

m∑
k=0

m∑
j=0

Ak ·Aj for k ̸= j (3)

Lo will encourage each query to attend to a different region
in the video as the minimum dot product (0) indicates no
overlap between cross-attention distributions.

Second, we encourage the cross-attention distributions to
be concentrated in contiguous clips in videos to satisfy the
contiguous aspect of an element segment. This is done by
generating a desired distribution that maximizes attention
over a single set of contiguous clips. Without annotations
on element segments, we must use a heuristic to generate
this desired distribution. In Fig. 3, we demonstrate how
from the cross-attention distribution Aj , we select the clip
(peak) pj ∈ [0, n] with the maximum attention value. This
peak is the center of a desired attention distribution, mod-
eled as a normal distribution. To align the actual attention
and desired attention distributions, we minimize the KL di-
vergence between the two.

More formally, let Aj ∈ Rn be the cross-attention dis-
tribution for the j-th query. We aim for this attention distri-
bution to be normally distributed around the selected peak,
pj . So, the desired attention Gi

j ∈ R probability over the
ith clip for query j is defined as:

Gi
j =

1√
2πσ2

exp

(
− (i− pj)

2

2σ2

)
(4)

where σ controls the spread of the distribution (set to 1.5,
but could be conditioned on the type of element).

The peak loss is:

Lp =

m∑
j=1

DKL(Aj∥Gj) =

m∑
j=1

n∑
i=1

Ai
j log

(
Ai

j

Gi
j

)
(5)

This will encourage Aj to attend to a few, contiguous clips
rather than disjoint segments over the video.

The final loss is a combination of the regularization
losses and the regression loss (squared error):

LISR = Lo + Lp (6)
L = Lse + LISR (7)

3.3. Rubric-constrained scoring

Having decoupled difficulty from quality and produced
element-level representation through the element trans-
former and regularization, we can now apply the quality-
only rubric items for scoring each element.

Rubric items. For figure skating assessment, judges
have a detailed rubric that indicates when to award points
and when to deduct points. This rubric contains positive
rubric text like “spin with good speed or acceleration during
spin” or negative rubric text like “fall during jump”. More
rubric text examples are shown in Fig. 2 and the full list is
in supp. Generally, the rubric items can be divided into two
dimensions: sentiment (positive points vs. negative points)
and the super-action category (jump, spin, step sequence).
While positive rubric items have an equal weight (+0.5), the
negative rubric items have deductions at differing levels of
severity as shown by points (numbered 6) in Fig. 2.

Scoring. For rubric-constrained scoring, the predicted
grade of execution is computed by weighing the points for
each rubric item according to how much an element aligns
with that rubric item. Specifically, a pretrained text encoder
computes text embeddings for each rubric item; in our ex-
periments, we use the CLIP [15] text encoder. Then, align-
ment is computed using the cosine similarity between the
element embeddings oi and rubric text embeddings r.

cos(oj
i , rk) =

oj
i · rk

∥oj
i∥∥rk∥

(8)

The cosine similarity (rubric activations) is then used to
generate a weighted score; the weighted score for the j-th
element embedding and the k-th rubric item with an associ-
ated score of sk is:

wij = sk · cos(oj
i , rk) (9)

This scoring mechanism replaces the MLP regressor in
Eq. 1. This reduces the number of trainable parameters and
enhances interpretability, as the rubric activations directly
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contribute to the grade of execution and total score. Ad-
ditionally, the rubric activations are linked to the rubric’s
natural language text, making this scoring process under-
standable to a human compared to a black-box MLP. The
final grade of execution is the sum of the weighted scores
across all rubric items for each element and then sigmoid
rescaled within the grade of execution range, [−3, 3]:

GOEj
i = 6 ∗ σ(

∑
k

sk · cos(oj
i , rk))− 3 (10)

This requires no additional changes during inference to pre-
dict the final score, just like Eq. 1.

Action masking. Not all rubric items are relevant to
scoring; for example, if “triple axel” is performed then only
the jump rubric items (positive or negative) are relevant.
For this, we propose masking rubric activations from rubric
items not corresponding to the super-action, so that they
don’t contribute to the predicted grade of execution.

Pretraining for video-rubric text alignment. Initially,
there is low alignment between element embeddings with
rubric text embeddings, leading to suboptimal solutions
with rubric activations close to zero. To address this, we
use a contrastive triplet loss [17] to align the embeddings.
Since rubric breakdowns are unavailable, we heuristically
assume that high-scoring elements align more with positive
rubric items and low-scoring elements align more with neg-
ative rubric items. Using the grade of execution scores, we
form triplets: a high-scoring element embedding as the an-
chor, oa, with sampled positive r+a and negative r−a rubric
text embeddings, and vice versa for low-scoring elements.
The triplet loss is then applied to these sets:

Lvt =
∑
a

[
max

(
0, d(oa, r

+
a )− d(oa, r

−
a ) +m

)]
(11)

where a is from the set of indices corresponding to high-
scoring elements (above a threshold, 1.3) and low-scoring
elements (below a threshold, -2), and m is the margin. We
denote this visual-text pretraining PTvt in experiments.

We selected triplet loss over other contrastive losses
which require large batch sizes, as it only needs one positive
and one negative which keeps the computational demands
low. We tried other losses like cosine embedding loss, but
found triplet loss more stable to train.

Additional visual pretraining. Since figure skating
scoring datasets are fairly small, we use contrastive pre-
training within the visual space to enforce geometric struc-
ture that is rank-sensitive [4]. For example, high-scoring
samples of the same super-action should be closer in the vi-
sual embedding space than low-scoring samples of the same
super-action, and vice versa. To do this, we also use a triplet
loss. In this case, we also treat the element embedding as an
anchor oa but without any grade of execution (GOE) thresh-
old restrictions compared to Lvt above. Per batch, for each

element a, in the batch, a positive pair, o+
a , is selected on

the basis of the super-category and difficulty being exact
matches and the GOE within 0.2 between the pair. A close
negative, o−

a , is selected for the element a where both the
super-category and difficulty match, but the GOE differs by
more than 0.5.

Lvis =
∑
a

[
max

(
0, d(oa,o

+
a ) +m

)]
(12)

We denote this visual pretraining PTvis in experiments.
We combine these two pretraining objectives and train

them jointly by alternating between Lvt and Lvis each
epoch. This is denoted as PTjoint in our experiments.

4. Experiments
We will first show the value of doing a base value lookup

as explained in Sec. 3.1 and our full method and compare
them against prior state-of-the-art methods. Then, we ablate
each aspect of our method. Lastly, we evaluate the impact
of each component of our method on implicit segmentation.
We do not apply our method to Rhythmic Gymnastics (RG)
[26] since certain aspects of our method, such as scoring
each element independently, implicit element segmentation,
action masking, and vision-text pretraining (rubric contains
only negatives), are not directly applicable. We leave these
challenges for future work.

Experiment details. We use the Fis-V dataset [24] for
our experiments. This consists of 400 training videos and
100 testing videos. On average, videos are 2-3 minutes
long. These are from broadcasts of international skating
competitions scraped between the years 2014-2017. The
grade of execution scoring is between [-3,3] instead of the
post-2018 modern range of [-5,5]. We follow [23] and
sample non-overlapping 16-frame clips spanning the en-
tire video and extract frozen embeddings for each clip from
Video Swin Transformer [8]. There is one encoder layer and
two decoder layers. For our implementation, we use Py-
Torch 1.10.1 with CUDA 10.2 and train on a single Quadro
RTX5000 GPU. During training, we use a batch size of 64
and a learning rate of 1e-5. We use a batch size of 32 and a
learning rate of 1e-2 during pretraining. For both, we use a
fixed number of clips, 128, and during inference, any num-
ber of clips can be provided as input. Lastly, we use RM-
SProp optimizer and weight decay of 1e-4.

Metrics. (1) For our experiments measuring the scor-
ing ability of models, we report mean-squared error (MSE),
which judges the precision of the predicted score, and
Spearman correlation, which judges the relative rank of
multiple scores. There are two use cases for an athlete, one
is when practice needs to be evaluated without reference (no
other performers), then score precision, MSE, is more im-
portant in selecting the best model. However, if the athlete
wanted to compare multiple performances of their own, the
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Method MSE (↓) Sp. Corr. (↑)
CoRe** [25] (2021) 23.50 0.66
GDLT* [23] (2022) 33.60 0.69
TPT** [1] (2022) 27.50 0.57
MLP-Mixer** [21] (2023) 19.57 0.68
SGN [6] (2024) 19.05 0.70
Base Value Lookup (BVL) 19.53 0.76
GDLT (2022) [23] w/ BVL 28.52 0.77
Ours 9.34 0.84
GT Base Value 12.03 0.91

Table 1. Comparison of our proposed method (Ours), a strong
baseline (Base Value Lookup), and state-of-the-art methods on
FIS-V dataset [24] technical execution score (TES) component.
Note [9] is not reported as it was applied only to MIT-Skate [14],
a smaller dataset and was trained on private segmentation annota-
tions, thus not reproducible. Bold indicates best in column; under-
line indicates second-best in column. * indicates our reproduced
results. ** indicates reproduced by [6].

precision can be lower as long as there is relative consis-
tency where a better performance receives a higher score
than a worse performance regardless of the specific score.
(2) We also evaluate how much the cross-attention peak per
query corresponds to elements. We annotate 56 elements in
videos sampled from Fis-V [24] with start and end times-
tamps. We use the metric of order-sensitive precision cal-
culated by the ratio between the number of cross-attention
peaks that fall into the correct segment corresponding to
the query/element. This order-sensitive precision can be
too strict so we have two other metrics: order-insensitive
precision and order-insensitive precision (1:1). The latter
enforces a 1:1 assignment between peaks and the matched
ground truth segment whereas the former is less strict and
multiple peaks can be matched to the same segment. 1:1
assignment is determined by using the assignment permu-
tation that yields the highest matches between the peak and
ground truth segment. The less-strict metric considers if the
query attends to at least an element in the sequence rather
than the background which is the minimum level of intu-
itiveness for scoring.

4.1. State-of-the-art comparison

Just like how judges receive the sequence of elements for
the routine, our method requires an element list per video.
We use this to lookup the base value (represents difficulty)
per element name. The Base Value Lookup baseline takes
the sum over the mapped base value for each element in
the sequence as the “predicted score”. In Tab. 1, we ob-
serve that prior methods fall significantly behind on Spear-
man correlation compared to this simple base-value lookup
that doesn’t even consider quality.

In prior work [9], base values are scraped from ground-

Method MSE (↓) Sp. Corr. (↑)
ElTr w/ Orig. Rubric 11.87 0.816
ElTr w/ S. Rubric 10.68 0.828

Table 2. Effect of simplifying rubric. ElTr = Element Transformer,
S.Rubric = Simplified Rubric. Bold indicates best in column.

Type HN MSE (↓) Sp. Corr. (↑)
Org. No 13.99 0.810

Simpl. No 12.27 0.811
Simpl. Yes 13.03 0.815

Table 3. Rubric type and use of hand negatives during visual-text
pretraining; reporting performance on Fis-V test after fine-tuning
(without action masking) on train split.

truth score sheets, however, these include deductions (indi-
cators of quality) or downgrades if the element performed
is missing revolutions. In Tab. 1 we see that the use of
ground truth base value like in [9] provides an unfair ad-
vantage as shown by the superior performance of using the
ground truth base value in the last row compared to all the
other prior state of the art methods in MSE and all methods,
including ours, when comparing the Spearman correlation;
this shows that the ground truth base value from the score
sheets does not separate difficulty and quality, rather quality
also entangled with the reported base value. So, our Base
Value Lookup is more fair to provide and is also truly known
in advance. Our full method improves significantly over the
Base Value Lookup.

4.2. Ablations

We show the influence of augmenting the rubric text on
scoring performance, and show that better text inputs lead
to better performance. We ablate implicit segmentation reg-
ularization and show the effectiveness on both scoring pre-
cision and implicit segmentation. We also compare other
important aspects of our method like using hand negatives
during visual-text pretraining and action masking.

Simplified rubric text. Some rubric items are ver-
bose and use terminology not easily understood (“element
combo of one jump, final goe must be”); this also impacts
the quality or sentiment (positive or negative) separation
and element type separation of rubric items in the text em-
bedding space. For more well-separated text representation,
we simplified the rubric to avoid using specialized terms
and long sentences (denoted as S. Rubric). In Tab. 2, we
see that using simplified rubric text on top of the element
transformer, without pretraining, improves both MSE and
Sp. Corr. The rubric text may be more informative and
clearer, leading to better text embedding representation.

Pretraining. We ablate the margin in both visual pre-
training and visual-text pretraining (tables in supp), and we
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Method MSE (↓) Sp. Corr. (↑)
Element Transformer 13.14 0.824
+ Lpeak 11.50 0.817
+ Lortho 12.02 0.825
+ LISR 10.68 0.828

Table 4. Regularization ablations without pretraining. ISR = im-
plicit segmentation regularization.

Method MSE (↓) Sp. Corr. (↑)
Ours 10.68 0.828
Our w/o AM 14.68 0.785

Table 5. Effect of action masking. These experiments are without
pretraining. AM = Action Masking. Bold indicates best in column.

find the optimal margin parameters with 0.5 for PTvis and
1.0 for PTvt and use these settings for PTjoint and achieve
our best MSE (9.34) and correlation (0.84). In Tab. 3, we
also experiment with crafting hand negatives for each rubric
item (the hand negative for “combo contained only one
jump” is “combo contained two jumps”; the full list can be
found in supp.). Simplifying the rubric had a positive im-
pact during visual-text pretraining, but hand negatives had
mixed results. We still use hand negatives in our final joint
pretraining method. We show more results in supp.

Effect of implicit segmentation regularization on
score prediction. In Tab. 4, we observe that the orthogonal-
ity loss lowers mean-squared error, but degrades Spearman
correlation compared to the vanilla element transformer;
peak loss improves on both metrics. Combining these two
losses as implicit segmentation regularization (ISR) yields
lower mean-squared error and improves Spearman corre-
lation. Beyond metrics, when looking at a sample cross-
attention map (shown in supp), we observe that the element
transformer with no regularization has severe redundancy
in the queries; all queries have the same cross-attention pat-
tern. However, after ISR, the queries have more obvious
peaks and focus on disjoint parts of the video, as desired.

Action masking. We also ablate action masking during
rubric-constrained scoring in Tab. 5. We find that action
masking is especially important for improving score preci-
sion, and also improves Spearman correlation. We suspect
the scoring precision improves by eliminating GOE contri-
bution from irrelevant criteria.

Accuracy of implicit segmentation and impact of pre-
training. We observe in Tab. 6 that peak loss improves
order-sensitive precision but overall the queries do not at-
tend to elements, instead background. The orthogonality
loss improves the ability to attend to actual elements as ev-
idenced by serious jumps in order-insensitive metrics (35.7
to 57.1 and 12.5 to 32.1); however the order-senstive pre-
cision drops to zero, indicating that the element query is

Method POIS

(%)
POIS

(1:1) (%)
POS

(%)
Ours w/o LISR 35.7 12.5 0.0
+ Lpeak 25.0 3.6 3.6
+ Lortho 57.1 32.1 0.0
+ LISR 39.3 33.9 7.1
+ LISR, PTvis 42.9 37.5 3.6
+ LISR, PTvt 67.9 42.9 1.8
+ LISR, PTjoint 58.9 35.7 1.8

Table 6. Effect of pretraining and regularization on implicit seg-
mentation ability. The “attention peak” over clips for each element
query is the clip with the maximum cross attention value for that
query. POIS = Order-Insensitive (OIS) Precision which is correct
when the attn. peak overlaps with any annotated element segment
in the video. POIS (1:1) = a modified version of POIS where a
1:1 assignment between attn. peaks and annotated element seg-
ments of a video is enforced. POS = Order-Sensitive (OS) Preci-
sion which is correct when the attn peak overlaps with correspond-
ing annotated segment based on element query position.

not attending to element corresponding to its order. When
combining these regularization methods, there is an im-
provement in order-sensitive precision. In terms of pretrain-
ing, visual-text pretraining seems to have the most impact
on order-insensitive metrics compared to the other method
variants. Joint pretraining improves both order-insensitive
precision metrics compared to our vanilla method. How-
ever, there is a drop in order-sensitive precision. These
results indicate that while there is an improvement in the
explainability (at least each query attends to an actual ele-
ment), due to the lack of explicit segment supervision, the
queries don’t attend to elements in the correct order. Further
research is needed to address this.

5. Conclusion
We showed a new, interpretable, well-performant mech-

anism for action quality assessment in figure skating. It re-
lies on a well-defined rubric of criteria for figure skating
elements, and an implicit segmentation approach to obtain
element-level scoring. Our approach is a first step in us-
ing freely available, structured, language-based resources
for improving interpretability in figure-skating scoring. In
the future, we will experiment with further peak loss and
ordering loss techniques. Adding explicit element super-
vision will likely improve performance and explainability,
which opens the possibility of actual use from athletes.
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