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Figure 1. Segment Anything Meets Point Tracking (SAM-PT). SAM-PT is a point-centric method that utilizes sparse point propagation
for video segmentation. We extend SAM [22] with long-term point trackers to effectively operate on videos in a zero-shot manner.
SAM-PT takes user clicks as “query points” that denote the target object (positive points) or designate non-target segments (negative
points). The points are tracked throughout the video using point trackers that propagate the query points to all video frames, producing
trajectory predictions and occlusion scores. SAM is subsequently prompted with the non-occluded points in the trajectories as to output
a segmentation mask for each video frame independently. The final masks are refined and optionally used for tracking re-reinitialization,
and the propagated points can be further edited for accurate interactive segmentation and tracking.

Abstract

Foundation models have marked a significant stride to-
ward addressing generalization challenges in deep learn-
ing. While the Segment Anything Model (SAM) has es-
tablished a strong foothold in image segmentation, existing
video segmentation methods still require extensive mask la-
beling for fine-tuning, or face performance drops on unseen
data domains otherwise. In this paper, we show how foun-
dation models for image segmentation make a step toward
enhancing domain generalizability in video segmentation.
We discover that, combined with long-term point tracking,
image segmentation models yield state-of-the-art results in
zero-shot video segmentation across multiple benchmarks.
Surprisingly, point trackers exhibit generalization to do-
mains beyond their synthetic pre-training sequences, which
we attribute to the trackers’ ability to harness the rich local
information in the vicinity of each tracked point. Thus, we
introduce SAM-PT, an innovative method for point-centric
video segmentation, leveraging the capabilities of SAM
alongside long-term point tracking. SAM-PT extends SAM’s
capability to tracking and segmenting anything in dynamic

videos. Unlike traditional video segmentation methods that
focus on object-centric mask propagation, our approach
uniquely exploits point propagation to utilize local struc-
ture information independent of object semantics. The ef-
fectiveness of point-based tracking is underscored by direct
evaluation on the zero-shot open-world UVO benchmark.
Our experiments on popular video object segmentation and
multi-object segmentation tracking benchmarks, including
DAVIS, YouTube-VOS, and BDD100K, suggest that a point-
based segmentation tracker yields better zero-shot perfor-
mance and efficient interactions. We release our code at
https://github.com/SysCV/sam-pt.

1. Introduction
Object segmentation and tracking in videos are central

pillars for a myriad of applications, including autonomous
driving, robotics, and video editing. Despite significant
progress made in the past few years [6,8,45,52], the prevail-
ing methods in semi-supervised Video Object Segmentation
(VOS) and Video Instance Segmentation (VIS) exhibit per-
formance gaps when transferred to video domains not seen
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during training, i.e., in a zero-shot setting.
Foundation models have made significant stride in ad-

dressing generalization challenges in deep learning. The
Segment Anything Model (SAM) [22], trained on 11 mil-
lion masks and 1 billion object masks, has established it-
self as the representative foundation model for image seg-
mentation, with impressive zero-shot generalization capa-
bilities across tasks in image segmentation. SAM supports
being prompted with different modalities, including point
prompts, for interactive image segmentation to produce
high-quality masks. However, existing methods for video
segmentation still struggle in zero-shot settings and rely on
expensive labels for fine-tuning to achieve high accuracy.

In this work, we show how foundation models for image
segmentation make a step toward enhancing domain gener-
alizability in video segmentation. We discover that, com-
bined with long-term point tracking, image segmentation
models yield state-of-the-art results in zero-shot video seg-
mentation across multiple benchmarks. We have witnessed
significant progress in point tracking recently [13–15, 20,
40, 59]. Surprisingly, point trackers exhibit generalization
to domains beyond their synthetic pre-training sequences,
which we attribute to the trackers’ ability to harness the rich
local information in the vicinity of each tracked point.

Therefore, we introduce SAM-PT (Segment Anything
Meets Point Tracking), the first method to utilize sparse
point tracking combined with SAM for video segmenta-
tion, offering a new perspective on solving the generaliza-
tion problem. Instead of employing object-centric dense
feature matching or mask propagation, our point-centric ap-
proach capitalizes on tracking points using rich local struc-
ture information embedded in videos. SAM-PT only re-
quires sparse points annotation to denote the target object
in the first frame and provides better generalization to un-
seen domains. This approach also helps preserve the in-
herent flexibility of SAM while extending its capabilities
effectively to video segmentation. Similar to the integration
of SAM in data annotation pipelines, our point-centric ap-
proach can potentially be integrated with the existing mask-
based approaches in video applications.

SAM-PT prompts SAM with sparse point trajectories as
depicted in Fig. 1. These trajectories are predicted by state-
of-the-art point trackers, such as CoTracker [20], harness-
ing their versatility for video segmentation. We found that
initializing points to track using K-Medoids cluster centers
from a mask label was most compatible with prompting
SAM. Tracking both positive and negative points enables
clear delineation of target objects from their background. To
further refine the output masks, we propose multiple mask
decoding passes that integrate both types of points. Ad-
ditionally, we devised a point reinitialization strategy that
increases tracking accuracy over time. This involves dis-
carding points that have become unreliable or occluded, and

adding points from object parts or segments that become
visible in later frames, such as when the object rotates.

We evaluate SAM-PT on multiple setups including semi-
supervised, open-world, and fully interactive video segmen-
tation. Our method achieves stronger performance than ex-
isting zero-shot methods by up to 2.5% on DAVIS, 2.0%
on YouTube-VOS, and 7.3% on BDD100K, while also sur-
passing a fully-supervised VIS method [51] on UVO by 5.4
points. We also set up a new benchmark for interactive
point-based video segmentation to simulate the process of
manually labeling the whole video. In this setup, SAM-PT
significantly reduces the annotation effort required for at-
taining SAM’s high-quality segmentation masks for videos
and compares favorably to a state-of-the-art interactive
method. These results are attained without the need for any
video segmentation data during training, underscoring the
robustness and adaptability of our approach, and indicat-
ing its potential to enhance progress in video segmentation
tasks, particularly in zero-shot scenarios.

2. Related Work
Point Tracking for Video Segmentation. Classical fea-
ture extraction and tracking methods [2, 26, 27, 36, 38] as
well as newer methods [11, 35, 54] have shown proficiency
in identifying or tracking sparse features and establishing
long-range correspondences. However, these techniques of-
ten falter in dynamic, non-rigid environments. While flow-
based approaches [37, 47] offer improvements, they too
struggle with maintaining long-term point accuracy due to
error accumulation and occlusions. Addressing these short-
comings, recent innovations [14,15,20,40,46,59] optimize
for robust long-term trajectories and effectively manage oc-
clusions. Our work is unique in applying these methods
to guide image segmentation models for video segmenta-
tion tasks. This is different from methods such as Point-
Track [49] that are also point-based but instead use ran-
domly sampled points to encode a global category-specific
embedding that can be associated across frames. Ours also
differs from other tracking approaches such as by opti-
cal flow, box tracking, feature matching, in-context visual
prompting, etc., which we elaborate on in Sec. 3.3.
Segment and Track Anything. SAM [22] is a foundation
model for image segmentation with impressive zero-shot
capabilities. Extensions such as HQ-SAM [21] improve
mask quality but are not designed for video tasks. Attempts
to extend SAM to video [10, 51] integrate fully-supervised
mask trackers [8, 53] but fall short in zero-shot settings.
Zero-Shot VOS and VIS. Generalist models such as
Painter [43] apply visual prompting across tasks but show
limited VOS performance. SegGPT [44] also uses visual
prompting and competes closely with our method on some
datasets. Other approaches [5, 18] perform VOS through
feature matching. Our approach distinguishes itself by tak-
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ing the point-centric approach to enhance performance on
VOS benchmarks in a zero-shot setting.
Interactive VOS. Interactive VOS has shifted from labor-
intensive manual annotations to more user-friendly inter-
action, such as scribbles, clicks, and drawings, enabling
rapid and intuitive video editing [4, 16, 17, 28–30, 39, 55].
MiVOS [9] stands out for its modular design that decou-
ples mask generation from propagation, effectively incor-
porating user interactions from diverse modalities. Unlike
MiVOS and other fully-supervised methods, SAM-PT is the
first to use point propagation instead of mask propagation
and thus operates effectively in zero-shot settings. Exist-
ing benchmarks focus on scribble-based corrections [3] or
in-distribution user studies [9], but to fairly compare point-
based and brush-based interactions, we set up a new bench-
mark for interactive point-based video segmentation.

3. Method
We propose SAM-PT for addressing video segmenta-

tion tasks in a zero-shot setting. SAM-PT combines the
strengths of the Segment Anything Model (SAM), a foun-
dation model for image segmentation, and prominent point
trackers, such as PIPS [15] and CoTracker [20], to enable
tracking of anything in videos. Sec. 3.1 provides essential
background on SAM. Sec. 3.2 details the SAM-PT method
with its four constituent steps. Lastly, Sec. 3.3 situates
SAM-PT within the current landscape of video segmenta-
tion methods as the first point-centric method.

3.1. Preliminaries: SAM

Whereas in computer vision “zero-shot (learning)” usu-
ally refers to the study of generalization to unseen object
categories in image classification [23], we follow prior work
SAM [21, 22, 34] and rather employ the term in a broader
sense and explore generalization to unseen datasets.

The Segment Anything Model (SAM) [22] is a novel
vision foundation model designed for promptable image
segmentation. SAM is trained on the large-scale SA-1B
dataset, which contains 11 million images and over 1 billion
masks. SA-1B has 400 times more masks than any prior
segmentation dataset. This extensive data facilitates SAM’s
impressive zero-shot generalization capabilities. SAM has
showcased its ability to produce high-quality masks from a
single foreground point and has demonstrated robust gen-
eralization capacity on a variety of downstream tasks un-
der a zero-shot transfer protocol using prompt engineering.
These tasks include, but are not limited to, edge detection,
object proposal generation, and instance segmentation.

SAM comprises three main components: an image en-
coder, a flexible prompt encoder, and a fast mask decoder.
The image encoder is a Vision Transformer (ViT) backbone
and processes high-resolution 1024 × 1024 images to gen-
erate an image embedding of 64 × 64 spatial size. The

prompt encoder takes sparse prompts as input, including
points, boxes, and text, or dense prompts such as masks,
and translates these prompts into c-dimensional tokens. The
lightweight mask decoder then integrates the image and
prompt embeddings to predict segmentation masks in real
time, allowing SAM to adapt to diverse prompts with mini-
mal computational overhead.

3.2. Ours: SAM-PT

While SAM shows impressive capabilities in image seg-
mentation, it is inherently limited in handling video seg-
mentation tasks. Our Segment Anything Meets Point Track-
ing (SAM-PT) approach effectively extends SAM to videos,
offering robust video segmentation without requiring train-
ing on video segmentation data.

SAM-PT is illustrated in Fig. 2 and is primarily com-
posed of four steps: 1) selecting query points for the first
frame; 2) propagating these points to all video frames using
point trackers; 3) using SAM to generate per-frame segmen-
tation masks based on the propagated points; 4) optionally
reinitializing the tracking by sampling query points from the
predicted masks. We next elaborate on these four steps.
1) Query Points Selection. The process begins with
defining query points in the first video frame, which either
denote the target object (positive points) or designate the
background and non-target objects (negative points). Users
can manually and interactively provide query points, or they
may be derived from a ground truth mask. For example, in
the case of semi-supervised VOS, ground truth mask is pro-
vided for the first frame where the object appears. We derive
the query points from ground truth masks using different
point sampling techniques depicted in Fig. 3 by considering
their geometrical locations or feature dissimilarities:

• Random Sampling: Randomly selects query points
from the ground truth mask.

• K-Medoids Sampling: Uses cluster centers from K-
Medoids clustering [32] as query points, ensuring good
object coverage and robustness to noise.

• Shi-Tomasi Sampling: Extracts Shi-Tomasi corner
points from the image under the mask, known to be
good tracking features [36].

• Mixed Sampling: Combines the above techniques to
leverage the unique strengths of each.

While each method contributes distinct characteristics influ-
encing performance, K-Medoids performed best in our ab-
lation due to its coverage of various object segments, which
helps disambiguate the target object when prompting SAM.
2) Point Tracking. Initiated with the query points, we
employ robust point trackers to propagate the points across
all frames in the video, resulting in point trajectories and oc-
clusion scores. We adopt point trackers such as PIPS [15]
and the state-of-the-art CoTracker [20] to propagate the
points as they show moderate robustness toward long-
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Figure 2. Segment Anything Meets Point Tracking (SAM-PT) overview. The essence of SAM-PT is to extend image segmentation
foundation models to effectively operate on videos. SAM-PT has four steps: 1) Query Points Selection. It starts with first-frame query
points which denote the target object (positive points) or designate non-target segments (negative points). These points are provided by
the user or derived from a ground truth mask. 2) Point Tracking. Initiated with the query points, our approach leverages point trackers
to propagate the points across video frames, predicting point trajectories and occlusion scores. 3) Segmentation. The trajectories are
then used to prompt the Segment Anything Model (SAM) and output per-frame mask predictions. 4) Point Tracking Reinitialization.
Optionally, the predicted masks are used to reinitialize the query points and restart the process when reaching a prediction horizon h.
Reinitialization helps by getting rid of unreliable points and adding points to object segments that become visible in later frames.

RandomRGB Mask

K-Medoids Shi-Tomasi Mixed

Figure 3. Positive Point Sampling. For an image paired with
either a ground truth or predicted segmentation mask, positive
points are sampled from within the mask area using one of the
following point sampling methods: Random, K-Medoids [32],
Shi-Tomasi [36], or Mixed. Notably, Random Sampling and K-
Medoids Sampling only require the segmentation mask for input,
not the corresponding input image. For negative points, we always
use Mixed Sampling on the target object’s background mask.

term tracking challenges such as object occlusion and re-
appearance. Long-term point trackers are also shown more
effective than methods such as chained optical flow propa-
gation or first-frame correspondences in our experiments.
3) Segmentation. In the predicted trajectories, the non-
occluded points serve as indicators of where the target ob-
ject is throughout the video. This allows us to use the non-

occluded points to prompt SAM, as illustrated in Fig. 4,
and leverage its inherent generalization ability to output
per-frame segmentation mask predictions. Unlike conven-
tional tracking methods that require training or fine-tuning
on video segmentation data, our approach excels in zero-
shot video segmentation tasks.

We combine positive and negative points by calling SAM
in two passes. In the initial pass, we prompt SAM exclu-
sively with positive points to define the object’s initial lo-
calization. Subsequently, in the second pass, we prompt
SAM with both positive and negative points along with the
previous mask prediction. Negative points provide a more
nuanced distinction between the object and the background
and help by removing wrongly segmented areas.

Lastly, we execute a variable number of mask refine-
ment iterations by repeating the second pass. This utilizes
SAM’s capacity to refine vague masks into more precise
ones. Based on our ablation study, this step notably im-
proves video object segmentation performance.
4) Point Tracking Reinitialization. We optionally exe-
cute a reinitialization of the query points using the predicted
masks once a prediction horizon of h = 8 frames is reached.
Upon reaching this horizon, we have h predicted masks and
will take the last one to sample new points. At this stage,
all previous points are discarded and substituted with the
newly sampled points. Following this, steps 1) through 4)
are repeated with the new points, starting from the horizon
timestep where reinitialization occurs. The steps are iter-
atively executed until the entire video is processed. The
reinitialization process serves to enhance tracking accuracy
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Figure 4. Interacting with SAM in SAM-PT. In the first pass, SAM
is prompted exclusively with positive points to define the object’s
initial localization. In the second pass, both positive and negative
points along with the previous mask prediction are fed to the same
mask decoder for further mask refinement. The negative points re-
move segments from the background and neighboring objects and
notably help in cases when the point tracker mistakenly predicts
positive points off the target object. The second pass is repeated
iteratively to get a refined segmentation mask.

over time by discarding unreliable or occluded points while
incorporating points from object segments that become vis-
ible later in the video. Other reinitialization variants are
discussed in our Supplementary Material.

3.3. SAM-PT vs. Object-centric Mask Propagation

By combining sparse point tracking with prompting
SAM, SAM-PT distinguishes itself from traditional video
segmentation methods that depend on dense object mask
propagation, as noted in Tab. 1. To propagate the first-frame
GT label to the remaining video frames, traditional tech-
niques commonly use feature matching with masks cached
to a mask memory [8, 10, 51, 52], frame-by-frame feature
matching [5,18], optical flow [50], and, recently, in-context
visual prompting [43, 44]. In contrast, SAM-PT introduces
a unique approach to video object segmentation, employing
the robust combination of point tracking with SAM, which
is inherently designed to operate on sparse point prompts.

The point propagation strategy of SAM-PT offers several
advantages over traditional object-centric tracking meth-
ods. First, point propagation exploits local structure con-
text that is agnostic to global object semantics. This en-
hances our model’s capability for zero-shot generalization,
an advantage that, coupled with SAM’s inherent general-
ization power, allows for tracking diverse objects in diverse
environments, such as on the UVO benchmark. Second,
SAM-PT allows for a more compact object representation
with sparse points, capturing enough information to char-
acterize the object’s segments/parts effectively. Finally, the
use of points is naturally compatible with SAM, an image
segmentation foundation model trained to operate on sparse
point prompts, offering an integrated solution that aligns
well with the intrinsic capacities of the underlying model.

SAM-PT stands out as the best-performing method
among those not using video segmentation data during
training, as outlined in Tab. 1. Although there is a dis-
cernible performance gap compared to methods such as

Table 1. Comparative analysis of semi-supervised VOS methods.
SAM-PT, introduces sparse point propagation, a compact mask
representation that uses local structure information agnostic to ob-
ject semantics. It outperforms other non-video-data-dependent
methods, achieving top J&F scores on DAVIS 2016 and 2017,
and the highest G score on YouTube-VOS 2018. The compari-
son considers the reliance on video mask data during training, the
zero-shot learning setting, the initial frame label requirements, and
the label propagation techniques used.

Method Video
Mask

Zero-
Shot

Frame
Init. Propagation DAVIS

2016
DAVIS
2017

YTVOS
2018

SiamMask [41] ✓ ✗ Box Feature Correlation 69.8 56.4 -
QMRA [25] ✓ ✗ Box Feature Correlation 85.9 71.9 -
TAM [51] ✓ ✗ Points Feature Matching 88.4 - -
SAM-Track [10] ✓ ✗ Points Feature Matching 92.0 - -
DEVA [7] ✓ ✗ Mask Feature Matching - 87.6 -
XMem [8] ✓ ✗ Mask Feature Matching 92.0 87.7 86.1
DeAOT [52] ✓ ✗ Mask Feature Matching 92.9 86.2 86.2

Painter [43] ✗ ✓ Mask Mask Prompting - 34.6 24.1
STC [18] ✗ ✓ Mask Feature Matching - 67.6 -
DINO [5] ✗ ✓ Mask Feature Matching - 71.4 -
SegGPT [44] ✗ ✓ Mask Mask Prompting 82.3 75.6 74.7
HODOR [1] ✗ ✓ Mask Feature Matching - 77.5 71.7
SAM-PT (ours) ✗ ✓ Points Points Prompting 84.3 79.4 76.2

XMem [8] that leverage video segmentation training data,
our results on zero-shot driving data (Sec. 4.4) and open-
world data (Sec. 4.5) show that these methods underper-
form on unseen data. Furthermore, our method’s flexibility
extends beyond video object segmentation to tasks such as
VIS and interactive point-based video segmentation.

4. Experiments
4.1. Datasets

We evaluate our method on four VOS datasets: DAVIS
2016, DAVIS 2017 [33], YouTube-VOS 2018 [48], and
MOSE 2023 [12]. Our interactive point-based video
segmentation study also uses DAVIS 2017 and MOSE
2023. We additionally devise a VOS dataset from the
BDD100K [56] open driving video dataset. For VIS, we
evaluate our method on the class-agnostic dense video in-
stance segmentation task of UVO v1.0 [42]. UVO v1.0 is
a VIS dataset aiming for open-world segmentation where
objects of arbitrary category are identified and segmented.

4.2. Implementation Details

Training Data. We use pre-trained checkpoints provided
by the respective authors for CoTracker [20] and SAM.
CoTracker has been trained exclusively on the TAP-Vid-
Kubric [13] synthetic data. SAM has been trained on the
large-scale SA-1B dataset, the largest image segmentation
dataset to date, made up of 11M initially unlabeled images
that have been licensed from photographers. HQ-SAM is
further trained on the HQ-Seg-44k [21]. Noteworthy, none
of these datasets contain video segmentation data, nor do
they intersect with any datasets we use for evaluation.
Interactive Point-Based Video Segmentation. To assess
the interactive capabilities of SAM-PT, we simulate user
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refinement of video segmentation results through point in-
teractions. The simulation performs one pass through the
video and performs point addition or point removal until
a target IoU quality is reached, or a maximum interaction
budget is used up. We detail the simulation procedure in the
Supplementary Material, including its pseudocode.

4.3. Ablation Study

Our ablation experiments on the DAVIS 2017 valida-
tion subset assess different aspects of SAM-PT’s design and
suggest the following optimal choice of hyperparameters:
CoTracker as the point tracker, HQ-SAM variant of SAM,
16 positive and 1 negative point per mask, and 12 refine-
ment iterations. Extended ablation experiments and discus-
sions can be found in the Supplementary Material.

In Tab. 2, we tested SAM-PT with different configura-
tions. We found that using 8 positive points per object
instead of just one improved our scores significantly by
33.4 points because one point often was not enough for
unambiguously prompting SAM. Selecting points with K-
Medoids was slightly better than random and matched Shi-
Tomasi, giving a boost of 1.8 points. Incorporating neg-
ative points besides positive points helped when trackers
made mistakes, such as losing track of an object, and im-
proved scores by another 1.8 points. Adding iterative refine-
ment smoothed out mask quality and fixed some segmenta-
tion errors, adding another 2.2 points to the performance.
Finally, although reinitialization did not help significantly
in the initial tests, it showed benefits on more challenging
datasets such as MOSE and UVO, helping in the recovery
from tracker errors by discarding incorrect and adding fresh
points as well as detecting that the object has disappeared.

The choice of SAM’s backbone is important in deter-
mining the final performance and inference speed as indi-
cated by Tab. 3. Using the HQ-SAM [21] variant results in
the highest performance of 79.4 points, whereas Mobile-
SAM has the highest inference speed of 5.5 FPS. Using
lightweight variants doesn’t achieve real-time performance
as the bottleneck is moved to the point tracker.

4.4. Zero-shot Video Object Segmentation

Performance Overview. SAM-PT sets a new standard in
zero-shot VOS on the DAVIS 2017 dataset with a mean
J&F score of 79.4, outperforming HODOR’s 77.5, Seg-
GPT’s 75.6, DINO’s 71.4, and Painter’s 34.6, as shown
in Tab. 4. On the easier DAVIS 2016 validation set, our
method achieves 84.3, surpassing SegGPT’s 82.3, show-
casing the strength of our approach even in less complex
scenarios, as detailed in the Supplementary Material.

However, there is a gap of 8.3 points between SAM-PT
and the state-of-the-art fully-supervised XMem, which had
been trained on the training data of DAVIS. Despite this
gap with in-distribution methods, XMem performs worse

Table 2. Ablation study on the DAVIS 2017 validation subset of
different SAM-PT configurations when using PIPS [15]. We re-
port the mean and std. dev. across eight runs. PSM: point selec-
tion method. PP: positive points per mask. NP: negative points per
mask. IRI: iterative refinement iterations. R: reinitialization used.

SAM-PT Configuration DAVIS [33]

PSM PP NP IRI R J&F ↑ Gain

Random 1 0 0 ✗ 37.1±21.7 (baseline)
Random 8 0 0 ✗ 70.5±1.4 +33.4
Random 16 0 0 ✗ 70.0±1.1

Random 72 0 0 ✗ 62.6±0.4

Shi-Tomasi 8 0 0 ✗ 72.0±0.3

K-Medoids 8 0 0 ✗ 72.3±1.2 +1.8
Mixed 8 0 0 ✗ 70.6±0.8

K-Medoids 8 1 0 ✗ 74.1±0.7 +1.8
K-Medoids 8 8 0 ✗ 74.0±0.8

K-Medoids 8 16 0 ✗ 73.4±0.6

K-Medoids 8 72 0 ✗ 72.2±0.4

K-Medoids 8 1 1 ✗ 75.7±0.7

K-Medoids 8 1 3 ✗ 76.0±0.6

K-Medoids 8 1 12 ✗ 76.3±0.6 +2.2

K-Medoids 8 72 12 ✓ 76.8±0.7 +0.5

Table 3. Ablation of SAM variants and inference speed when us-
ing CoTracker [20] on the DAVIS 2017 validation subset.

SAM Variant Backbone J&F ↑ FPS ↑

MobileSAM [58] ViT-Tiny 71.4±0.6 4.6±0.2

Light HQ-SAM [21] ViT-Tiny 72.2±0.6 4.1±0.2

SAM [22] ViT-Base 73.7±0.7 2.2±0.1

SAM [22] ViT-Large 77.5±0.4 1.6±0.1

SAM [22] ViT-Huge 77.6±0.7 1.2±0.1

HQ-SAM [21] ViT-Huge 79.4±0.6 1.1±0.1

Table 4. DAVIS 2017 validation subset results for semi-supervised
VOS. SAM-PT outperforms other zero-shot methods.

Method DAVIS 2017 Validation [33]

J&F ↑ J ↑ F ↑

(a) trained on video segmentation data

AGAME [19] 70.0 67.2 72.7
STM [31] 81.8 79.2 84.3
DeAOT [52] 86.2 83.1 89.2
DEVA [7] 87.6 84.2 91.0
XMem [8] 87.7 84.0 91.4

(b)
not trained on any video
segmentation data (zero-shot)

Painter [43] 34.6 28.5 40.8
DINO [5] 71.4 67.9 74.9
SegGPT [44] 75.6 72.5 78.6
HODOR [1] 77.5 74.7 80.2
SAM-PT (ours) 79.4±0.6 76.5±0.6 82.3±0.5

compared to SAM-PT when evaluated on zero-shot driving
data in Tab. 6 and open-world data in Tab. 7.

In the semi-supervised VOS on YouTube-VOS 2018, we
achieve the highest performance among zero-shot meth-
ods with 76.2 against SegGPT’s 74.7, HODOR’s 71.7,
and Painter’s 24.1, indicating robust generalizability across
various video segmentation benchmarks (Tab. 5). On
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Table 5. YouTube-VOS 2018 validation subset results for semi-
supervised VOS. Metrics are reported separately for “seen” and
“unseen” classes, with G being their overall average score.

Method YouTube-VOS 2018 Validation [48]

G Js Fs Ju Fu

(a) trained on video segmentation data

AGAME [19] 66.0 66.9 - 61.2 -
STM [31] 79.4 79.7 84.2 72.8 80.9
RDE [24] 83.3 81.9 86.3 78.0 86.9
XMem [8] 86.1 85.1 89.8 80.3 89.2
DeAOT [52] 86.2 85.6 90.6 80.0 88.4

(b) not trained on video segmentation data (zero-shot)

Painter [43] 24.1 27.6 35.8 14.3 18.7
HODOR [1] 71.7 73.7 76.0 65.5 71.4
SegGPT [44] 74.7 75.1 80.2 67.4 75.9
SAM-PT (ours) 76.2±0.1 75.3±0.1 78.4±0.2 72.1±0.2 79.0±0.2

Table 6. BDD100K val. subset results for semi-supervised VOS.
Metrics include the J&F measure for object visibility durations
categorized as short (1-5 frames), medium (6-30 frames), and long
(31+ frames). SAM-PT performs better than SegGPT for non-
transient objects and than XMem across all except long visibility.

BDD100K VOS Val. [56]

Method J&F J F J&F
Short

J&F
Med.

J&F
Long

(a)
trained on video segmentation data
but not on BDD100K

XMem [8] 76.6 74.5 78.7 79.3 78.6 63.7
HODOR [1] 78.1 77.5 78.7 90.1 76.1 52.6

(b)
not trained on any video
segmentation data (zero-shot)

HODOR [1] 67.5 66.9 68.2 78.0 65.4 46.6
SegGPT [44] 81.5 81.2 81.8 96.1 78.6 52.0
SAM-PT (ours) 81.0 80.1 81.8 91.8 79.9 55.8

BDD100K’s, our method outperforms SegGPT for non-
transient objects but also surpasses the fully-supervised
XMem across nearly all object visibility durations. The de-
tailed breakdown is provided in Tab. 6. On MOSE 2023, our
performance remains competitive with SegGPT, with exact
figures available in the Supplementary Material.

Qualitative Analysis. Fig. 6a shows successful segmen-
tation on DAVIS 2017. Our method’s ability to perform
zero-shot on unseen data is underscored on clips from the
anime-influenced series “Avatar: The Last Airbender” in
Fig. 7. This highlights its the versatility and adaptability.

Limitations and Challenges. Our method excels in zero-
shot VOS but faces challenges with point tracker reliability
in complex scenarios, such as occlusions and fast-moving
objects, as shown in Fig. 6b. While our point reinitializa-
tion and negative point strategies offer improvement, point-
based user interactions will quickly recover from point
tracking failure cases as suggested by our study in Sec. 4.6.

Table 7. UVO VideoDenseSet v1.0 validation set results. SAM-
PT outperforms TAM [51] despite not being trained on any video
segmentation data. TAM is a concurrent approach combining
SAM and XMem, where XMem was pre-trained on BL30K and
trained on DAVIS and YouTube-VOS, but not on UVO.

Method AR100 ARs ARm ARl AP

(a)
trained on video segmentation data,
including UVO’s training subset

Mask2Former
for VIS [57] 35.4 − − − 27.3

ROVIS [57] 41.2 − − − 32.7

(b) trained on video segmentation data

TAM [51] 24.1 21.1 32.9 31.1 1.7

(c)
not trained on any video
segmentation data (zero-shot)

SAM-PT (ours) 29.5 25.3 39.0 44.1 5.8

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Interaction per Object Mask

30

40

50

60

70

80

90

100

J&
F

-M
ea

n 
(%

)

SAM
SAM-PT
MiVOS

(a) DAVIS 2017 validation split
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(b) MOSE 2023 training split

Figure 5. Interactive point-based video segmentation results on
(a) DAVIS 2017 and (b) MOSE 2023, normalized by video
length. While SAM and SAM-PT operate in a zero-shot setting,
MiVOS [9] was trained on DAVIS 2017. SAM-PT shows more
efficient annotation with less user interaction.

4.5. Open-World Video Instance Segmentation

Tab. 7 suggests that SAM-PT outperforms TAM [51] by
5.4 points given the same mask proposals, despite not be-
ing trained on any video segmentation data while TAM was
trained on manually annotated DAVIS and YouTube-VOS.

4.6. Interactive Point-Based Video Segmentation

Building upon our SAM-PT’s strengths observed in stan-
dard benchmarks, this study evaluates the performance of
SAM-PT for interactive video annotation tasks. Given that
existing brush- and scribble-based benchmarks do not allow
for a fair evaluation of point-based interactions, we set up a
new benchmark for interactive point-based video segmenta-
tion on the DAVIS 2017 [33] and MOSE 2023 [12] datasets.

We benchmarked SAM-PT’s interactive performance
against a naive SAM approach, which annotates each frame
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(a) Successful segmentation cases.

(b) Failure cases with heavy occlusion and thin object structures that lead to point tracking errors.

Figure 6. Visualization of SAM-PT on DAVIS 2017 [33]. Our method segments and tracks objects using the initial object masks from the
first frame, with circles denoting positive points and crosses negative points. Red symbols indicate occlusion prediction.

Figure 7. Successful segmentation using SAM-PT on short clips from “Avatar: The Last Airbender”. Although our method has never seen
data from Avatar, an anime-influenced animated television series, it segments and tracks various objects in short clips.

independently without point tracking, and MiVOS [9], a
state-of-the-art method for interactive scribble-based video
segmentation. MiVOS supports point interactions but uses
mask propagation to propagate interactions to other frames.

Our results are visualized in Fig. 5 and indicate that
SAM-PT outperforms baselines, especially on unseen data,
reducing the effort required to attain SAM’s high-quality
masks for videos and highlighting its practical utility.

5. Conclusion
Foundation models have made significant progress to-

ward better generalizability. While SAM shows impressive
zero-shot generalization across image segmentation tasks,
existing methods for video segmentation still struggle in

zero-shot settings and rely on expensive labels for fine-
tuning. In this work, we introduce SAM-PT to show how
foundation models for image segmentation make a step to-
ward enhancing domain generalizability in video segmen-
tation. Surprisingly, point trackers generalize to domains
beyond their synthetic pre-training. SAM-PT achieves
strong performance across video segmentation tasks in-
cluding semi-supervised, open-world, and fully interactive
video segmentation. While our method has limitations such
as difficulty handling occlusions, small objects, motion blur,
and inconsistencies in mask predictions, it contributes a new
perspective to video object segmentation research.
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