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Abstract

Generated video scenes for action-centric sequence de-
scriptions, such as recipe instructions and do-it-yourself
projects, often include non-linear patterns, where the next
video may need to be visually consistent not with the im-
mediately preceding video but with earlier ones. Current
multi-scene video synthesis approaches fail to meet these
consistency requirements. To address this, we propose a
contrastive sequential video diffusion method that selects the
most suitable previously generated scene to guide and condi-
tion the denoising process of the next scene. The result is a
multi-scene video that is grounded in the scene descriptions
and coherent w.r.t. the scenes that require visual consistency.
Experiments with action-centered data from the real world
demonstrate the practicality and improved consistency of
our model compared to previous work. Code and examples
available at https://github.com/novasearch/CoSeD

1. Introduction

When people perform tasks involving numerous intricate
steps, complementing textual instructions with visual illustra-
tions enhances the user experience [11, 24]. For this reason,
various platforms and tools provide multi-scene videos to
convey instructional content, such as recipe instructions and
do-it-yourself (DIY) projects [15].

State-of-the-art video synthesis methods demonstrate re-
markable performance in generating single-scene videos [3,
4,12,25,28]. Yet, only a few works address multi-scene video
generation [16, 17, 30]. These methods focus on domains
where a single character is central to all scenes, achieving
coherence by reusing and combining visual elements across
frames. However, multi-scene instructional video synthesis
raises a number of challenges. First, the input is a strict
sequence of actions, for which it is necessary to generate the
full sequence of videos. A model should not generate just the
last scene, like GILL [14], and one cannot provide the topic

Figure 1. CoSeD is grounded on an input sequence of step actions
to synthesize non-linear, multi-scene instructional videos.

and let the model generate a random sequence of text-video
pairs similarly to VideoDrafter [17]. Second, similar to story
generation [9, 18, 20, 22], the generative model needs to de-
termine which previous step in the sequence to use as the
basis for grounding each new scene. Third, while existing
methods are focused on video generation where a single
(typically human) character is the center of all scenes [17],
instructional videos typically incorporate multiple objects
instead of central characters. Hence, we argue that multi-
scene instructional video synthesis requires an approach that
is sequence-grounded by design, (see Figure 1).

To this end, we propose CoSeD (Contrastive Sequential
Diffusion learning), a novel approach to instructional video
generation. Our method generates candidate images for each
step based on the textual description and latent information
from previous steps. We then use a contrastive selection
approach to choose the best image by evaluating it against
prior step descriptions and images. Finally, we use these
images to produce a video for each step, ensuring an accurate
and consistent representation of the entire task sequence.

CoSeD was able to generate coherent video sequences
across diverse instructional content, maintaining high fidelity
and relevance in aligning language with vision. CoSeD
showed a 20% improvement in human evaluations com-
pared to existing multi-scene methods and was preferred
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68% of the time in side-by-side comparisons. Additionally,
the compact size of our model enables efficient training and
fine-tuning. To summarize our contributions:

• To the best of our knowledge, we are the first to address
multi-scene instructional video generation.

• We introduce contrastive diffusion learning over latents
sampled from previous generations.

• We contribute to a better understanding of the role of
seeds and the conditioning of the reverse diffusion pro-
cess in prior latent representations.

2. Related Work

Various approaches have been explored to address co-
herence in image generation. AR-LDM [20] introduces
a history-aware autoregressive latent diffusion model that
incorporates information from previous steps into the diffu-
sion model’s cross-attention mechanism to guide generation.
However, achieving the reported results requires intensive
training of the entire pipeline for each dataset, which in-
cludes 650 million parameters. Make-a-Story [22] incor-
porates the complete history of intermediate image repre-
sentations (latent vectors), which may introduce noise and
potentially lead to content generation based on less relevant
past information. GILL [14] fuses frozen text-only large
language models (LLMs) with pre-trained image encoder
and decoder models through a mapping network, enabling
multimodal capabilities like image retrieval and generation.
However, this can break coherence if retrieved images do
not align with the context. SEED-LLaMA [10] integrates a
visual tokenizer with a multimodal LLM to process text and
images, excelling in multi-turn generation, but struggles with
maintaining narrative coherence in story generation tasks.

To generate long single-scene videos Blattmann [4] and
Yin [29] generate sparse key frames and interpolate inter-
mediary frames recursively to enhance the frame rate. Ex-
tending this idea, Stable Video Diffusion [3] creates a large
dataset of annotated video clips by filtering out those with
low motion or excessive text, resulting in the generation of
higher quality videos. In contrast, Lumiere [2] generates the
entire video in a single pass, eliminating the need for sparse
key frames and interpolation.

Improvements have also been made in generating coher-
ent multi-scene videos. Video Drafter [17] employs brute-
force LLM prompting to create distinct scenes and detailed
descriptions for each element. Then it generates image tem-
plates that are combined with scene descriptions to produce
the final video. Similarly, VideoDirectorGPT [16] employs a
two-stage process in which GPT-4 [19] expands text prompts
into detailed descriptions and ensures visual continuity by
generating textual descriptions and entity layouts. Mora [30]

introduces a multiagent framework, breaking tasks into sub-
tasks like refining prompts [26], and generating images to
create small video segments, which are then assembled [7]
into a coherent final video, achieving performance compara-
ble to closed-source models such as SORA [6]. However, it
relies on using only the last frame of each video segment to
start the generation of the next one, which can be problem-
atic if the current step is not directly related to the previous
one. StoryDiffusion [31] maintains coherence across frames
using a self-attention mechanism and a module for smooth
transitions, ensuring that videos faithfully depict the input
prompt. Lastly, TALC [1] enhances text-to-video (T2V)
models by improving the temporal alignment between video
scenes and text segments, improving visual fidelity and nar-
rative coherence.

Building on these advancements, we develop a method
that addresses the challenge of maintaining scene coherence
while respecting text descriptions, while keeping the model
compact to facilitate fine-tuning across multiple domains.

3. Problem Setting
This section outlines our methodology for generating

scene sequences that align with each instruction while pre-
serving continuity with preceding scenes. By enhancing
Latent Diffusion Models, we can effectively learn the inter-
dependencies across scenes and guarantee a cohesive visual
progression, even when step relations are non-linear.

3.1. Sequential Scene Dependency

Given a set of tasks, D = {T1, T2, ...}, where each task
Tj comprises a sequence of step-by-step text instructions
Tj = {sj1 , . . . , sjn}, our goal is to generate the sequence
of scenes Vj = {vj1 , . . . , vjn} that are best aligned with the
corresponding step instruction and all previous visual scenes.
The result is a multi-scene video that depicts the steps of the
task consistently across all scenes. For simplicity, we will
omit the task index j from our notation.

In our setting, we depart from the linear dependency
assumption used in previous works [30] and acknowledge
the possibility of a more complex and non-linear sequential
structure [8]. To address this assumption, the model needs
to consider not only the current step description and visual
scene pair (sn, vn), but also the pairs from the previous
steps and visual scenes, {(s1, v1), . . . , (sn−1, vn−1)}. This
ensures coherence in the visual elements generated, main-
taining consistency, and reflecting the progression of the task,
even when individual steps are vague or missing details.

3.2. Sequential Multi-Scene Diffusion

Latent Diffusion Models are designed to synthesize one
single image or video at a time. Our goal is to move beyond
this limitation and propose a sequential-diffusion model that
learns how semantic and visual dependencies should exist in
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Figure 2. The proposed contrastive denoising diffusion learning architecture. The contrastive learning component captures the temporal
relationships between conditioned scenes and preceding scenes, ensuring coherent transitions throughout the video.

a sequence of multiple scenes. Using the Latent Diffusion
Models formulation proposed by [23], the independent de-
noising process for each isolated step sn of a sequence is the
direct application of the model,

LLDM = Ezn
t ,sn,ϵ,t

[
∥ϵ− ϵθ(z

n
t , t, τθ(sn))∥22

]
(1)

where znt corresponds to the denoising iteration t of the
visual scene vn, hence zn0 = E(vn). Formally, we wish to
learn a sequence model that iteratively estimates the vn scene
that maximizes the likelihood given the entire sequence of
all previous n− 1 steps. Formally, we have,

N∑
n=2

p(vn|sn, (sn−1, vn−1), . . . (s1, v1)), (2)

where N is the total number of steps in a given sequence.
We propose to ensure sequential consistency through the
text conditioning encoder τθ(si) and the visual denoising
seed znT . The proposed contrastive sequential diffusion learn-
ing, Figure 2, incorporates these two methods and will be
discussed in the next section.

4. CoSeD: Contrastive Sequential Diffusion
Our approach aims to find the most accurate image for

generating a video that depicts a step of a task. We begin by
using a text decoder model to better align the step descrip-
tion with a visual caption/prompt (Section 4.1). Then we
generate candidate images based on the information from
previous images and the visual caption of the current step

(Section 4.2). Next, we use a contrastive selection method
to choose the most suitable candidate image for video gen-
eration (Section 4.3). This involves encoding both the step
description and the visual scene (Section 4.3). Finally, we
use the sequential information of the tasks to train our model
to accurately select the most coherent image (Section 4.3).

4.1. Sequential Language Conditioning

Following the work of Bordalo et al. [5], we use an LLM
to transform the sequence of text descriptions of each step
into visual captions. This has been shown to produce text-
to-image prompts that are visually richer, leading to better
results [5,13]. Hence, we train a decoder model φ to convert
the entire context into one self-contained description,

φ(sn|{sn−1, . . . s1}), (3)

whose output is used to condition the denoising process on
the entire sequence of actions, leading to the loss function

LCoSeD = Ezn
t ,sn,ϵ,t

[
∥ϵ− ϵθ(z

n
t , t, cn)∥22

]
, (4)

where cn = τθ(φ(si|s<i)) is the conditioning embedding
vector that is passed to the cross-attention of the U-Net ϵθ.

4.2. Sequential Denoising Conditioning

Previously, we discussed the sequential dependency as-
sumption (sn|sn−1, . . . s1) for the input of the denoising
process. However, achieving sequential dependency within
the denoising process itself poses a challenge. Although
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aligning the input description with the desired output en-
hances the final result, it does not inherently enforce the
generation of visually consistent images. This can lead to
accurate depictions of steps but without visual coherence.
Therefore, guiding the denoising process is essential to en-
sure visual coherence across sequential outputs.

We propose a contrastive method to select the image that
best represents sn in terms of its description and the pre-
ceding scenes. This selective approach strikes a balance
between conditioning in all pairs [20], which provides com-
prehensive information but can be slow and difficult to train,
and conditioning on only a single preceding step [5], which
offers a faster but less detailed approximation. Our method
effectively captures the non-linear nature of the steps in the
task that we aim to model. Formally, the denoising iterations
follow equation 4, except for the starting iteration T of the
reverse diffusion process,

LCoSeD = Ezn
T ,sn,ϵ,t=T

[
∥ϵ− ϵθ(z

n
T , cn)∥22

]
, (5)

where instead of initializing the latent variable znT with a
random sample from zT ∼ N (µ, σ2), we propose to sam-
ple denoised latents from prior steps s<n in the sequence.
Formally, for each step n, we consider the set of latents pro-
duced in previous denoising iterations of earlier steps, i.e.

{ziT , ziT−1, . . . , z
i
T−w}i∈(1,...,n−1), (6)

where i indexes all steps from 1 to (n − 1) and w is the
window size over the first denoising latents of each step.
Finally, all candidate visual scene vin are generated with the
set of latents. By conditioning the generation of step n on
latents from all previous steps in this complex non-linear
way, the coherence of the generated sequence is improved.

This method allows for the selection of the most suitable
latent representations for each step, ensuring coherence and
continuity throughout the entire generation process.

4.3. Multi-Scene Contrastive Selection

Text and Vision Scene Embeddings. To effectively han-
dle the text and visual modalities of a scene scn = (sn, vn)
in a sequence, we encode both modalities using CLIP [21],
see Figure 2. Subsequently, the output of each encoder, is
linearly projected to reduce its dimension to half the original
size. For the projection, we use four distinct weight matrices:
WIT and WOT for the text embedding, and WIV and WOV

for the visual embedding. WIT and WIV project the em-
beddings of past scenes, while WOT and WOV project the
embeddings of the current scene. The projected embeddings
are then concatenated into one single vector.

The resulting embedding projections scin of all candidate
scenes (sn, vin) and all past scenes sc<n allow us to represent
all scenes within a unified embedding space.

Figure 3. Multi-scene V&L contrastive learning uses multiple
sequences. This multi sequence information serves as both positive
and negative pairs helping the model to learn the best next scene
according to the ground-truth scenes.

Contrastive Selection. We prioritize the visual representa-
tion that achieves the best overall consistency throughout the
sequence. This selection is achieved by comparing the con-
ditioned scenes with the previous scenes, ensuring that the
final output maintains visual coherence. To achieve this, we
first represent a scene scn = (sn, vn) as the concatenation
of its text and visual embeddings, and then calculate the dot
product between each conditioned scene and the previous
scenes, Figure 3. This allows us to measure the similarity
between the conditioned scene in step n, denoted as scn, and
all preceding scenes sc<n. We define this similarity as

n−1∑
k=1

scn · sck. (7)

Next, we apply the softmax function to these similarity
scores to convert them into probabilities, making it easier
to compare how each conditioned scene is related to the
previous scenes. Finally, we select the conditioned scene
scin with the highest probability of generating the video for
the next step. This corresponds to computing the

argmax
vi
n

σCoSeD(sc
i
n, sc<n), (8)

where σCoSeD is the softmax function applied over all con-
ditioned scenes, and vin is the image associated with the
selected conditioned scene scin = (sn, v

i
n).

By following this process, we ensure that each step in
the video is generated based on the conditioned scene that
has the strongest visual and contextual relationship to the
previous steps, optimizing the flow of the overall sequence.

Contrastive Training. During the contrastive selection
training phase, we fine-tune a 600K-parameter model to learn

4648



the relationships between sequential steps across multiple
tasks simultaneously. The model processes a set of N steps
(both descriptions and images) from a pool of M tasks. For
each task, the model is given a step to be processed in the
’next scenes’, while all preceding steps of that task, located
in the ’past scenes’, serve as context. This setup allows
the model to effectively leverage sequential dependencies
and learn how each future step relates to its corresponding
past steps within the same task, thus improving coherence
(see Figure 3). Formally, we adopted the cross-entropy loss
function,

argmin
w∗

M∑
t

N∑
k=1

lt,k log σCoSeD(vjn, sn) (9)

to guide the learning process, by comparing the model’s
predictions σCoSeD(·) with one-hot encoded ground truth
labels lt,k for each task t and step k. These ground truth
labels indicate whether a specific step belonged to a task
represented in the context. More details can be found in the
appendix file.

5. Experimental Setting
In this section, we describe the experimental setup used

to evaluate the performance of CoSeD in generating multi-
scene video and image sequences for manual tasks. We
provide details on the dataset used, the backbone models,
and the baselines chosen for comparison. The aim is to
demonstrate CoSeD’s ability to generalize across different
models and generate coherent task-oriented outputs.

Dataset. We used a dataset [5] consisting of publicly avail-
able manual tasks in recipes and DIY domains. Each manual
task has a title, a description, a list of ingredients, resources,
and tools, and a sequence of step-by-step instructions, which
may or may not be illustrated. Details about the dataset can
be found in the appendix file.

Video Diffusion Backbone Models. Since CoSeD is inde-
pendent of the video generation method, we experimented
with both Stable Video Diffusion [3] and Lumiere [2] models
for multi-scene video generation. Stable Video Diffusion
was selected for its public availability, while Lumiere was
chosen for its enhanced capability to represent complex mo-
tion effectively.

Baselines. To evaluate the effectiveness of CoSeD in gen-
erating coherent image and video sequences for real-world
manual tasks, we compared its performance against exist-
ing approaches: TALC [1] with ModelScope [27] and with
Lumiere [2], SD 2.1 [23] with Stable Video Diffusion [3],
stand-alone Lumiere [2], and for image sequences we tested

Methods
Video

Length
Semantic
Consist.

Sequence
Consist.

CoSeD + Lumiere 20.8 s 85.0 74.2
CoSeD + SVD 14.9 s 78.3 69.2
TALC + ModelScope 7.4 s 38.3 50.8
TALC + Lumiere 5.0 s 30.0 50.8
SD + SVD 14.9 s 80.0 66.3
Lumiere 20.8 s 81.7 72.9

Table 1. Manual evaluation of multi-scene video generation models
based on two key criteria: Semantic Consistency, which measures
the alignment of generated content with the described task steps,
and Sequence Consistency, which assesses the visual coherence,
text alignment, and overall quality of the video.

Gill [14] and Seed-LLama [10]. During the evaluation, we
prompted all models to generate a complete task.

6. Results and Discussion
This section presents the evaluation results and discussion

of our model’s performance, with both human and automatic
evaluations. We first examine the results of the human evalu-
ation, followed by the automatic evaluation metrics. Finally,
we discuss qualitative results and present ablation studies.

6.1. Human evaluation

The human evaluation was conducted with a focus on two
primary criteria. Annotators were asked to assess Semantic
Consistency, which measures how well the video matches
the instructional text, and Sequence Consistency, which in-
volves rating the video on text alignment, visual consistency
and video quality. See the appendix file for details.

Multi-Scene Consistency Assessment. The results in Ta-
ble 1 show that CoSeD combined with Lumiere achieves the
highest Sequence Consistency at 74.2% and leads in Seman-
tic Consistency with 85.0%, highlighting its effectiveness.
This shows that the combination of CoSeD and Lumiere is
particularly effective for multi-scene generation tasks.

In contrast, methods such as TALC + ModelScope and
TALC + Lumiere show significantly lower Semantic Con-
sistency scores (38.3% and 30.0%, respectively) and a Se-
quence Consistency of 50.8%. Although SD + SVD and
Lumiere alone perform better, they still do not match the
performance of CoSeD + Lumiere, underscoring the advan-
tages of our approach in achieving better coherence and text
adherence in the generated videos.

Videos Length. We also report the length of the videos
generated in Table 1. CoSeD-based methods (CoSeD + SVD
and CoSeD + Lumiere) achieve an average video length of
around 15 and 21 seconds, respectively. This is substantially
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Figure 4. Example of an illustration for the recipe domain. Figure 5. Example of an illustration for the DIY domain.

Figure 6. Example of an illustration for the recipe domain. Figure 7. Example of an illustration for the DIY domain.

longer than TALC-based methods (TALC + ModelScope and
TALC + Lumiere) which generate shorter videos, around 7
and 5 seconds on average.

A visual inspection of the generated videos (Figure 4)
clearly indicates that CoSeD successfully depicts all steps in
the task, whereas TALC, despite being a multi-scene model,
cannot achieve it. Even when TALC successfully depicts all
steps, each scene typically lasts no more than 1.5 seconds,
considering the average task length of 4.9 scenes (as detailed
in the appendix file). In contrast, our model consistently
achieves at least 3 seconds per scene, effectively providing
double the duration for each step.

Side-by-Side Evaluation. To assess models prioritizing
coherence against our best model, we conduct a side-by-side
evaluation. Annotators choose which videos better repre-
sent task steps, directly comparing each model’s coherence

across scenes. See the appendix file for details. This evalua-
tion focuses on our best model, CoSeD + Lumiere, against
coherence-focused models such as TALC + ModelScope,
TALC + Lumiere, CoSeD + SVD, and the second-best model
from Table 1, Lumiere.

According to the side-by-side evaluation results, Figure 8,
CoSeD + Lumiere consistently outperforms all other models,
with annotators repeatedly selecting it over competitors. For
example, CoSeD + Lumiere achieves a selection rate 87%
compared to just 13% for TALC + ModelScope, demon-
strating its superior ability to maintain coherence. It is also
chosen 68% of the time over TALC + Lumiere, which has a
selection rate of 32%, reflecting its better task consistency.

Compared to other CoSeD variations, CoSeD + Lumiere
maintains its advantage. It is selected 61% of the time over
CoSeD + SVD and outperforms Lumiere with a selection rate
of 65% versus 35%. These results highlight its exceptional
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Figure 8. Annotators choice of coherent video generation models
in a side-by-side comparison.

coherence in multi-scene tasks.
This evaluation clearly demonstrates that annotators con-

sistently prefer CoSeD + Lumiere over other models, high-
lighting its superior ability to maintain coherence across
scenes and establishing it as the most effective model for
managing multi-scene tasks.

CoSeD vs Groundtruth. To evaluate the absolute quality
of the generated video sequences, human annotators rated
each sequence on a scale of 1 to 5, comparing them to ground-
truth sequences. Deviations like hallucinated visual artifacts
or inconsistent actions affect perceived quality. As shown in
Table 2, our method achieves more than 64% of the ground
truth score, with ground truth sequences scoring just 0.5
points below the maximum.

Method Average Rating

CoSeD +Lumiere 2.9 ± 0.99
Ground-truth 4.5 ± 0.55

Table 2. Human annotation for the comparison of the proposed
method with ground-truth scenes.

6.2. Automatic evaluation

We employ CLIP [21] to evaluate the sequence similarity
of each task (V 7→ V ) and to assess the adherence of the
generated image to the given textual descriptions (T 7→ V ).
This provides a comprehensive evaluation of the alignment of
the generated images with the intended textual descriptions
and their visual coherence throughout the sequence.

CoSeD Performance. CoSeD achieves a sequence simi-
larity score (V 7→ V ) of 84.8 and a description adherence
score (T 7→ V ) of approximately 27.1 (see Table 3), out-
performing the image and video baselines in textual adher-
ence. These results highlight CoSeD’s ability to generate
sequences that are both visually coherent and semantically
aligned with the text, demonstrating its significant potential
for practical applications.

Method V 7→ V T 7→ V

Im
ag

e CoSeD 84.8 27.1
Seed-Llama 88.0 16.5
GILL 88.2 22.3

V
id

eo

CoSeD + SVD 84.8 27.1
CoSeD + Lumiere 84.8 27.1
TALC + ModelScope 81.8 12.4
TALC + Lumiere 90.7 15.3
SD + SVD 82.1 26.4
Lumiere 83.4 14.9

Table 3. Automatic evaluation in terms of CLIP visual similarity
(V 7→ V ) and CLIP semantic similarity (T 7→ V ).

Comparison with Baseline Models. In a comparison to
other sequence-generating models (see Table 3), CoSeD
with both Video Stable Diffusion and Lumiere consistently
achieves the highest description adherence (T 7→ V ) without
discarding sequence similarity (V 7→ V ).

When comparing CoSeD with the best model in sequence
similarity, our model lags only 5.9% while it gains 11.8% in
description adherence. Although TALC + Lumiere excels in
maintaining high sequence similarity, CoSeD demonstrates
superior adherence to descriptions without compromising
sequence similarity. This strong description adherence score
highlights the effectiveness of our model in aligning gen-
erated content with text descriptions, which is crucial for
tasks such as accurately converting textual descriptions into
videos. Compared to vanilla video-only models, our ap-
proach surpasses both metrics, leading to improved results.

6.3. Qualitative Analysis

Figure 4 and 6 provide a closer look at how different
methods influence the quality of generated videos and image
sequences for a certain recipe. Our model excels in main-
taining a consistent background, keeping the same pan, and
ensuring that the ingredients evolve seamlessly from raw to
final recipe. This clear depiction of the sequence provides
viewers with a visually stable and easy-to-follow video.

For the out-of-scope DIY tasks shown in Figures 5 and 7,
our model effectively handles broader actions, such as show-
ing a room without furniture or a cleaning process, with
good text adherence. However, it struggles with depicting
complex tools such as vacuum cleaners. Other methods often
generate very similar images, failing to accurately represent
the task or omitting steps entirely, as demonstrated by TALC.

6.4. Ablation Studies

This section analysis CoSeD contrastive selection of la-
tents and steps along with its role in ensuring alignment with
(possibly non-linear) sequences of instructions.
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Figure 9. Impact of denoising latents in
the performance of CoSeD’s visual and
semantic similarity.

Figure 10. The average number of times that
CoSeD selected each task step for generating the
next scene.

Figure 11. The average number of times
that CoSeD selected a given latent to gen-
erate the next scene.

Denoising Latents. Understanding how latent variables
affect sequence coherence and adherence is key to refining
our model. Figure 9 shows a correlation between latent
settings and the model’s ability to produce coherent, textually
aligned sequences. The analysis in Figure 9 identifies four
key latent configuration areas. The ideal zone balances high
sequence similarity (CLIP Image Score) and description
adherence (CLIP Text Score). Latent 5 shows moderate text
adherence, but lacks visual coherence. Latents 20 and 40
produce coherent images but deviate from task steps, leading
to weak text adherence. Latent 10 performs poorly overall.

Figure 12. Impact of later latents on sequence generation coherence
and text adherence.

Figure 12 provides examples from these key latent areas:
Latent 5 generates images that adhere to the prompt but
lack coherence, Latent 10 starts with good coherence and
text alignment but loses coherence over time, and Latent 20
produces overly similar images with low text adherence.

Ultimately, CoSeD (top right mark in Figure 9) achieves
superior performance by leveraging early denoising latents,
using contrastive selection to enhance results compared to
using individual latents.

Non-linear Video Scene Generation. A key feature of
CoSeD is its ability to evaluate denoising iterations across
previous steps. As shown in Figure 10, CoSeD exploits this
non-linearity by selecting latents from various steps, rather
than focusing solely on the immediately preceding one.

Similarly, Figure 11 indicates that the model does not

always select the same latent. This variability suggests that
different latents contribute with different information to the
final generation, which is why CoSeD chooses the most
suitable latent rather than opting for the most recent one.

7. Conclusion
Generating multi-scene instructional videos for complex

tasks, such as DIY projects and recipes, all while maintain-
ing sequence coherence and accurate scene representation,
is not a trivial feat. The proposed method addresses these
challenges with key contributions. First, we employ a de-
coder model to generate visual prompts from the sequence of
instructions to ground the generation in a common context,
thus ensuring better scene accuracy. Second, by condition-
ing the diffusion process on images from previous scenes,
the method maintains coherence across scenes. Third, and
more importantly, the CoSeD’s contrastive selection of the
most consistent image enables the assessment of all previous
steps. The result is the selection of the image that is most
related to the overall sequence rather than just the preceding
step. Additionally, the contrastive nature of CoSeD enables
the generation of non-linear sequences of video scenes, an
exclusive feature of CoSeD.

In addition, the compact design of the model helps to
achieve efficient training and easy domain-specific fine-
tuning, while its flexibility supports ensembles of diffusion
models for optimal performance.

Evaluations confirm that our method effectively main-
tains scene coherence and accurately represents textual de-
scriptions, as demonstrated by both manual and automatic
evaluations. Importantly, side-by-side human annotation
shows that annotators prefer our model over 65% of the time,
highlighting the effectiveness of our sequence-grounded ap-
proach. This preference underscores the value of our method
in producing coherent and high-quality instructional videos.
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Köhn, Fangzhou Zhai, and Alexander Koller. Aligning actions
across recipe graphs. In Marie-Francine Moens, Xuanjing
Huang, Lucia Specia, and Scott Wen-tau Yih, editors, Pro-
ceedings of the 2021 Conference on Empirical Methods in
Natural Language Processing, pages 6930–6942, Online and
Punta Cana, Dominican Republic, Nov. 2021. Association for
Computational Linguistics. 2

[9] Zhangyin Feng, Yuchen Ren, Xinmiao Yu, Xiaocheng Feng,
Duyu Tang, Shuming Shi, and Bing Qin. Improved visual
story generation with adaptive context modeling. In Findings
of the Association for Computational Linguistics: ACL 2023,
pages 4939–4955, Toronto, Canada, July 2023. Association
for Computational Linguistics. 1

[10] Yuying Ge, Sijie Zhao, Ziyun Zeng, Yixiao Ge, Chen Li,
Xintao Wang, and Ying Shan. Making llama SEE and draw
with SEED tokenizer. CoRR, abs/2310.01218, 2023. 2, 5

[11] Patrizia Grifoni. Multimodal human computer interaction
and pervasive services. IGI Global, 2009. 1

[12] Jonathan Ho, William Chan, Chitwan Saharia, Jay Whang,
Ruiqi Gao, Alexey A. Gritsenko, Diederik P. Kingma, Ben
Poole, Mohammad Norouzi, David J. Fleet, and Tim Salimans.
Imagen video: High definition video generation with diffusion
models. CoRR, abs/2210.02303, 2022. 1

[13] Xiwei Hu, Rui Wang, Yixiao Fang, Bin Fu, Pei Cheng, and
Gang Yu. ELLA: equip diffusion models with LLM for
enhanced semantic alignment. CoRR, abs/2403.05135, 2024.
3

[14] Jing Yu Koh, Daniel Fried, and Russ Salakhutdinov. Gen-
erating images with multimodal language models. In Alice
Oh, Tristan Naumann, Amir Globerson, Kate Saenko, Moritz
Hardt, and Sergey Levine, editors, Advances in Neural Infor-
mation Processing Systems 36: Annual Conference on Neural
Information Processing Systems 2023, NeurIPS 2023, New
Orleans, LA, USA, December 10 - 16, 2023, 2023. 1, 2, 5

[15] Angela Lin, Sudha Rao, Asli Celikyilmaz, Elnaz Nouri, Chris
Brockett, Debadeepta Dey, and Bill Dolan. A recipe for cre-
ating multimodal aligned datasets for sequential tasks. In
Dan Jurafsky, Joyce Chai, Natalie Schluter, and Joel Tetreault,
editors, Proceedings of the 58th Annual Meeting of the As-
sociation for Computational Linguistics, pages 4871–4884,
Online, July 2020. Association for Computational Linguistics.
1

[16] Han Lin, Abhay Zala, Jaemin Cho, and Mohit Bansal.
Videodirectorgpt: Consistent multi-scene video generation
via llm-guided planning. CoRR, abs/2309.15091, 2023. 1, 2

[17] Fuchen Long, Zhaofan Qiu, Ting Yao, and Tao Mei. Video-
drafter: Content-consistent multi-scene video generation with
LLM. CoRR, abs/2401.01256, 2024. 1, 2

[18] Adyasha Maharana, Darryl Hannan, and Mohit Bansal.
Storydall-e: Adapting pretrained text-to-image transformers
for story continuation. In Computer Vision – ECCV 2022:
17th European Conference, Tel Aviv, Israel, October 23–27,
2022, Proceedings, Part XXXVII, page 70–87, Berlin, Heidel-
berg, 2022. Springer-Verlag. 1

[19] OpenAI. GPT-4 technical report. CoRR, abs/2303.08774,
2023. 2

[20] Xichen Pan, Pengda Qin, Yuhong Li, Hui Xue, and Wenhu
Chen. Synthesizing coherent story with auto-regressive latent
diffusion models. CoRR, abs/2211.10950, 2022. 1, 2, 4

[21] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen
Krueger, and Ilya Sutskever. Learning transferable visual
models from natural language supervision, 2021. 4, 7

[22] Tanzila Rahman, Hsin-Ying Lee, Jian Ren, Sergey Tulyakov,
Shweta Mahajan, and Leonid Sigal. Make-a-story: Vi-
sual memory conditioned consistent story generation. In
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, CVPR 2023, Vancouver, BC, Canada, June 17-
24, 2023, pages 2493–2502. IEEE, 2023. 1, 2

[23] Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Björn Ommer. High-resolution image
synthesis with latent diffusion models. In IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, CVPR
2022, New Orleans, LA, USA, June 18-24, 2022, pages 10674–
10685. IEEE, 2022. 3, 5

4653



[24] Frank Serafini. Reading the visual: An introduction to teach-
ing multimodal literacy. Teachers College Press, 2014. 1

[25] Uriel Singer, Adam Polyak, Thomas Hayes, Xi Yin, Jie An,
Songyang Zhang, Qiyuan Hu, Harry Yang, Oron Ashual,
Oran Gafni, Devi Parikh, Sonal Gupta, and Yaniv Taigman.
Make-a-video: Text-to-video generation without text-video
data. In The Eleventh International Conference on Learning
Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023.
OpenReview.net, 2023. 1

[26] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Mar-
tinet, Marie-Anne Lachaux, Timothée Lacroix, Baptiste
Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurélien
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