
PALO: A Polyglot Large Multimodal Model for 5B People

Hanoona Rasheed1, Muhammad Maaz1, Abdelrahman Shaker1, Salman Khan1,2

Hisham Cholakal1, Rao M. Anwer1,3, Tim Baldwin1,4, Michael Felsberg5, Fahad S. Khan1,5

1Mohamed bin Zayed University of AI, 2Australian National University, 3Aalto University
4The University of Melbourne, 5Linköping University

Abstract

In pursuit of more inclusive Vision-Language Models
(VLMs), this study introduces a Large Multilingual Mul-
timodal Model called PALO. PALO offers visual reason-
ing capabilities in 10 major languages, including English,
Chinese, Hindi, Spanish, French, Arabic, Bengali, Russian,
Urdu, and Japanese, that span a total of ∼5B people (65%
of the world population). Our approach involves a semi-
automated translation approach to adapt the multimodal
instruction dataset from English to the target languages us-
ing a fine-tuned Large Language Model, thereby ensuring
high linguistic fidelity while allowing scalability due to min-
imal manual effort. The incorporation of diverse instruc-
tion sets helps us boost overall performance across multiple
languages especially those that are underrepresented like
Hindi, Arabic, Bengali, and Urdu. The resulting models are
trained across three scales (1.7B, 7B and 13B parameters)
to show the generalization and scalability where we observe
substantial improvements compared to strong baselines. We
also propose the first multilingual multimodal benchmark
for the forthcoming approaches to evaluate their vision-
language reasoning capabilities across languages. Code:
https://github.com/mbzuai-oryx/PALO.

1. Introduction

Propelled by advancements in generative AI, Large Mul-
timodal Models (LMMs) [9, 18, 29] have emerged as a piv-
otal advancement in the field, seamlessly bridging the gap
between vision and language tasks. While initial efforts
such as LLaVA [18] and miniGPT4 [29] have demonstrated
intriguing performance in synthesizing effective textual re-
sponses based on visual inputs, they have predominantly fo-
cused on English, leaving a significant gap in multimodal
understanding for non-English languages. As a result, the
existing LMMs generally overlook the linguistic diversity
of the global population, particularly languages spoken by

Figure 1. PALO vs. English-VLMs. The plot compares PALO

with corresponding Vision-Language Models (VLMs) across 10
different languages. These languages include English, Chinese,
Hindi, Spanish, French, Arabic, Bengali, Russian, Urdu, and
Japanese, collectively covering approximately 5B people and 65%
of the global population. English-trained VLMs, such as LLaVA
and MobileVLM, exhibit poor performance on low-resource lan-
guages including Hindi, Arabic, Bengali, and Urdu, due to
the under-representation of these languages during their training
phases. PALO, in contrast, is a unified model that can hold con-
versations simultaneously in all the ten languages, demonstrating
consistent performance across the board.

large groups, such as Chinese, Hindi, Spanish, French, Ara-
bic, Bengali, Russian, Urdu, and Japanese, which collec-
tively account for billions of native speakers. Our work
addresses this disparity by developing the first fully open-
source multilingual LMM called PALO, which encompasses
ten major languages covering 65% of the global population,
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with a special focus on languages underrepresented in the
current multimodal models.

The challenge lies in the scarcity of high-quality multi-
lingual multimodal data compared to English. Addressing
the challenge of limited high-quality data, especially for
under-represented languages such as Hindi, Arabic, Ben-
gali, and Urdu, our approach involves careful analysis and
subsequent refinement of translations produced by a state-
of-the-art Large Language Model (LLM) [4] for each tar-
get language. By identifying and correcting translation
inaccuracies through human intervention, we generate a
high-quality multilingual dataset. This curated dataset then
serves as the foundation for refining the target language an-
notations, ensuring a more accurate and nuanced represen-
tation of the target language in training.

Leveraging our high-quality multilingual vision-
language instruction dataset and the recent advances in
large multimodal modeling, we develop PALO as a unified
model that can simultaneously answer questions in ten
different languages. Our training pipeline offers substantial
gains in low-resource languages (underrepresented in
the LLM training datasets) while maintaining (or further
improving) performance on high-resource languages. The
contributions of this work are as follows,

• We develop PALO: the first multilingual Large
Multimodal Model (LMM) covering ten major lan-
guages, facilitating vision-language reasoning through
a generic model capable of generating responses in any
of the ten languages.

• We assemble an extensive multilingual (10 languages)
instruction-tuning dataset, through a critical analysis
and subsequent refinement of a state-of-the-art Large
Language Model’s target language translations. This
dataset is pivotal in improving proficiency in process-
ing and generating content that is linguistically precise
across multiple languages.

• We enhance the multilingual performance of state-of-
the-art LMMs [6, 18] across three distinct scales i.e.,
1.7B, 7B, and 13B parameters to demonstrate the scal-
ability of our training pipeline. The resulting polyglot
LMMs demonstrate performance gains on diverse lan-
guage tasks with substantial improvements in under-
standing and generating content for low-resource lan-
guages, e.g., Hindi, Arabic, Bengali, and Urdu, with-
out compromising its performance on high-resource
languages e.g., English, Chinese, French, and Spanish.

2. Related Works
The introduction of Large Language Models (LLMs) has

significantly advanced the field of natural language process-
ing. However, the development of multilingual LLMs has

faced considerable challenges, primarily due to the skewed
distribution of language data [8]. English and European lan-
guages dominate existing datasets, leaving widely spoken
languages such as Mandarin Chinese and Hindi underrepre-
sented [10]. Moreover, integrating multiple languages into
LLMs often leads to a decline in English language perfor-
mance [24], highlighting a major challenge in maintaining
cross-lingual performance.

Recent efforts have aimed to address these challenges
by developing multilingual LLMs with enhanced capabil-
ities [2, 15, 25, 26]. BLOOM [15], trained on the ROOTS
corpus [14] that comprises sources in 46 languages, marks a
substantial step forward in making LLMs accessible across
a wide range of languages, including those with fewer re-
sources. PolyLM [26] introduces bilingual data integra-
tion, curriculum learning, and a multilingual self-instruct
method, outperforming other open-source models in multi-
lingual tasks without compromising English performance.
PaLM [5] showcases the advantages of scaling, achieving
improved results in both monolingual and multilingual tasks
through sophisticated training techniques and a novel path-
ways architecture.

Advancements in Large Multimodal Models (LMMs)
have evolved from basic image-level interactions [6, 18]
to offering flexibility by focusing on region-specific anal-
ysis [23] and spatio-temporal conversations [16, 20], high-
lighting the significant progress in this domain. However,
the exploration of multilingual capabilities has been limited.
Qwen [3] and mPLUG-Owl [27] extend LMM functionali-
ties to process visual inputs in both English and Chinese,
showcasing its adaptability in processing bilingual visual
information. Ziya-Visual [19] demonstrates the translation
of English image-text datasets into Chinese, employing in-
context learning for instruction-response generation. How-
ever, these LMMs remain limited to two languages.

We introduce PALO, the first fully open-source LMM,
offering visual reasoning capabilities across ten major lan-
guages, addressing the gap in multilingual LMMs. In con-
trast to GPT-4 [1] which is closed-source and only acces-
sible via APIs, ours is the largest effort in the open-source
domain to extend LMM capabilities to multiple languages.

3. PALO: A Polyglot LMM
Towards more globally accessible Vision-Language

Models (VLMs), our model PALO (Polyglot Large
Multimodal Model) is designed to comprehend and gener-
ate content in ten major languages, serving an audience that
spans nearly two-thirds of the global population. The archi-
tecture of PALO is derived from LLaVA (Large Language
and Vision Assistant) [17, 18] for our larger-scale mod-
els (7/13B), and from MobileVLM for our mobile-efficient
model (1.7B), ensuring that PALO remains versatile across
different computational settings.
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Figure 2. Architecture overview of PALO. (left) The model consists of a vision encoder that encodes the image, followed by a projector
that projects the vision features into the input embedding space of the language model. The user’s text query is tokenized, and the tokens are
concatenated with the vision tokens before being input into the causal language model to generate the response. For the PALO 7B and 13B
variants, Vicuna is used as the Large Language Model while MobileLLaMA [6] is used as the Small Language Model in our MobilePALO-
1.7B variant. CLIP ViT-L/336px is used as the vision encoder in all variants. (right) Projectors used in different variants of PALO are
shown. For the PALO 7B and 13B, following [18], we use a two-layer MLP projector with GELU activation. For our mobile version of
PALO (MobilePALO-1.7B), we use a Lightweight Downsample Projector (LDP) from [6]. It utilizes depth-wise separable convolutions to
downsample the image tokens, making it faster than a standard MLP projector.

The architecture seamlessly integrates a vision encoder
with a language model (see Figure 2). Given an input image
and user text query, the model generates an accurate natural
language response.

PALO uses CLIP ViT-L/14 [22] as the vision encoder
followed by a projector to transform vision tokens to the
input embedding space of the language model. Following
LLaVA [18], we use a two-layer MLP with GELU acti-
vation as the projector for our 7/13B models. However,
a lightweight downsample projector (LDP) [6] is used for
MobilePALO-1.7B model. LDP utilizes depth-wise separa-
ble convolutions to downsample the vision tokens, largely
reducing the input tokens to the language model and hence
significantly reducing the training and inference time. Fur-
ther, convolutions in LDP have fewer parameters as com-
pared to MLP, making our mobile model both parameter
and compute-efficient. The projector used in the different
PALO versions are shown in Figure 2.

The projected vision tokens are then concatenated with
the tokenized user text query and passed to the language
model for generating the response. As PALO trains on ten
languages using an extensive multi-modal instruction tun-
ing dataset, this not only enables more effective utiliza-
tion of the tokenizer’s capacity but also expands the search
space, providing a richer context and more challenging ex-
amples for training. the language model. This approach
significantly enhances the ability of the model to understand
and generate responses across a diverse set of languages.

We use Vicuna [28] as the large language model (LLM)
in our 7/13B models and MobileLLaMA [6] as the small
language model (SLM) in MobilePALO-1.7B model. Vi-
cuna fine-tunes LLaMA-2 on user-shared conversations col-
lected from ShareGPT, while LLaMA-2 is pre-trained on 2T
tokens collected from different public sources [25]. On the
other hand, MobileLLaMA performs pretraining on 1.3T
tokens from RedPajama-v1 [7] followed by fine-tuning on
a publicly available version of ShareGPT data [13].

3.1. Dataset

The primary contribution of our work lies in the metic-
ulous preparation of a comprehensive multilingual vision-
language instruction-tuning dataset. We begin by selecting
a state-of-the-art LMM model [18] for our focus. To tai-
lor the instruction-tuning dataset more effectively for mul-
tiple languages in a scalable way, we leverage an LLM
model [4] to develop a semi-automated translation pipeline.
This approach involves translating the English dataset into
the target languages, thereby creating a robust multilingual
dataset, which significantly broadens the linguistic scope
and applicability of the model.
Translation Process and Challenges: A naive translation
approach from English to the target languages using an
LLM model [4] effectively conveys the basic meanings but
introduces several linguistic challenges specific to each lan-
guage. Issues such as punctuation, grammatical nuances,
translation consistencies, and gender usage errors are ob-
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Model Eng. Chinese French Spanish Russ. Japan. Arabic Hindi Bengali Urdu Avg.H Avg.L Avg.

LLaVA-7B 67.9 55.7 62.4 64.5 55.3 59.2 38.9 29.4 13.9 21.8 60.8 26.0 46.9
PALO-7B 64.2 55.7 58.3 61.0 57.4 57.5 57.8 57.6 51.7 55.3 59.0 55.6 57.7

-3.7 0.0 -4.1 -3.5 +2.1 -1.7 +18.9 +28.2 +37.8 +33.5 -1.8 +29.6 +10.8

LLaVA-13B 69.5 62.9 67.5 64.6 62.3 65.3 37.2 27.8 20.4 22.1 65.4 26.9 49.9
PALO-13B 65.5 62.1 66.4 65.9 62.4 60.6 56.9 66.8 53.5 59.6 63.8 59.2 61.9

PALO-Phi-3-3.8B 65.3 63.9 65.7 64.9 62.3 61.6 56.2 66.1 52.8 58.1 63.9 58.3 61.7
PALO-LLaMA-3-8B 64.9 64.1 66.9 66.3 63.4 61.5 58.2 68.3 55.4 61.0 64.5 60.7 62.6

-4.0 -0.8 -1.1 +1.3 +0.1 -4.7 +19.7 +39.0 +33.1 +37.5 -1.5 +32.3 +12.0

MobileVLM-1.7B 46.6 23.2 28.1 29.1 28.1 26.4 12.4 13.7 15.6 15.6 30.3 14.3 23.9
MobilePALO-1.7B 48.2 34.0 42.6 40.1 38.2 32.5 32.8 26.8 19.9 24.1 39.3 25.9 33.9

+1.6 +10.8 +14.5 +11.0 +10.1 +6.1 +20.4 +13.1 +4.3 +8.5 +9.0 +11.6 +10.0

Table 1. Standard VLMs vs PALO on multi-lingual multimodal evaluation. The table shows the comparison of LLaVA and MobileVLM
with PALO on ten languages on the specially adapted multilingual version of LLaVA-Bench (In-the-Wild). LLaVA 7/13B and MobileVLM-
1.7B are fine-tuned on LLaVA-Instruct-665K, and PALO is fine-tuned on LLaVA-Instruct-665K plus the LLaVA-Instruct-150K translated
in all ten languages. All models are pretrained on CC-595K [18] dataset. Avg.H and Avg.L represent the average over high-resource
(English, Chinese, French, Spanish, Russian and Japanese) and low-resource (Arabic, Hindi, Bengali and Urdu) languages respectively.
Avg. represents the average over all the languages.

served via a direct LLM-based translation (refer Figure.3).
These challenges vary greatly due to the linguistic diver-
sity of the languages involved, from the tonal complexities
of Chinese to the script variances in Hindi and the gender-
specific intricacies of languages like Spanish, Arabic and
Russian. For instance, in the case of Arabic, common punc-
tuation mistakes involve incorrect spacing around commas
and periods. Nunnation, vital in Arabic grammar, is some-
times omitted or wrongly applied. Additionally, certain En-
glish words remain untranslated in the translated text, and
there are instances where verbs are incorrectly converted to
nouns alongside incorrect gender alignment in translations
that pose significant concerns, given the gender-specific na-
ture of grammar in some target languages.
Addressing the Challenges: To improve the quality of the
translated dataset, we employ a combination of automated
and manual verification steps. In this semi-automated
pipeline, a team of native speakers for each language pro-
vides detailed review and correction of a small subset
from initial translations, addressing language-specific is-
sues, gender accuracy, and overall linguistic integrity. Auto-
mated scripts are tailored for each language to correct com-
mon punctuation mistakes and optimize the verification pro-
cess.
Fine-tuning of the LLM: Acknowledging the limitations
of the LLM for multilingual translations, we leverage man-
ually verified and corrected translations (1K conversations
per language) as a high-quality dataset for fine-tuning the
LLM. This fine-tuning is focused not only on improving
translation accuracy but also on aligning the outputs with
the specific attributes of each language, such as tone and
orthography. The enhanced and fine-tuned LLM is then
employed to translate the extensive VLM instruction tun-

Figure 3. Qualitative results showing the impact of fine-
tuning. Comparative visualization of English to Arabic transla-
tions before and after fine-tuning the LLM. The figure shows
improvements in language-specific issues such as accurate vo-
cabulary usage, gender agreement, and grammatical correctness,
highlighting the enhanced performance of the fine-tuned model.

ing dataset [18] comprising approximately 150K instruc-
tions (i.e. LLaVA-Instruct-150K from [18]) from English
into the respective languages. We use GPT3.5-Turbo as the
translation model and finetune it using OpenAI finetuning
platform.
Impact of the Refined Dataset: This process results in a
comprehensive and high-quality multilingual dataset, cru-
cial for the effective fine-tuning of PALO. The improved
dataset not only addresses specific aspects of each language
but also markedly improves the ability of the model to pro-
cess and generate contextually relevant and grammatically
accurate content in all included languages. For instance,
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Figure 3 highlights two key improvements in English to
Arabic translation, the first example shows enhanced lexi-
cal precision, and the second shows improved grammatical
concordance. Integrating this dataset into the LMM’s train-
ing process is the key to expanding its capabilities to include
both English and nine other languages effectively.

4. Experiments
4.1. Implementation Details

Similar to the LLaVA and MobileVLM baselines, we
pretrain our models on a subset of CC3M dataset called CC-
595K [18]. During pretraining, only the projector is learned
and the rest of the model components are kept frozen. We
train the model for 1 epoch with an overall batch size of 256
with 32 batch size per GPU on eight A-100 40GB GPUs.
The model is optimized using Adam optimizer and cosine
LR scheduler with a learning rate of 2e-3. The pertaining
takes around 1.5 hours for 1.7B, 5 hours for 7B and almost
9 hours for the 13B model.

We fine-tune our model on a diverse instruction dataset
comprising conversations from ten languages. Specifically,
665K instructions from LLaVA-Instruct-665K [17] are used
for English, and approximately 150K conversations from
LLaVA-Instruct-150K [18] for Chinese, French, Spanish,
Russian, Japanese, Arabic, Hindi, Bengali and Urdu, sum-
ming up to almost 2.1M instructions in total. During fine-
tuning, only the vision encoder is kept froze and the rest of
the model is trained. Projector is fully trained while lan-
guage model is LORA [11] fine-tuned with α = 128. We
train the model for 1 epoch with an overall batch size of
128 with 16 batch size per GPU on eight A-100 GPUs. We
use 40GB A-100 GPUs for 1.7/7B variants and 80GB A-
100 GPUs for 13B variants. The model is optimized using
Adam optimizer and cosine LR scheduler with 2e-5 base
learning rate for the projector and 2e-4 for the language
model. The finetuning takes around 12 hours for 1.7B, 42
hours for 7B and almost 76 hours for the 13B model.

4.2. High-resource vs Low-resource Languages

Our work trains and evaluates on ten languages divided
into two groups, high-resource and low-resource languages.
English, Chinese, French, Spanish, Russian and Japanese
are considered high-resource languages as the language
model training data contains a reasonable number of sam-
ples from these languages. On the other hand, Arabic,
Hindi, Bengali and Urdu are categorized as low-resource
languages as they are under-represented in the language
model training data.

For example, LLaMA-2 [25] pretraining data contains
almost 2 trillion tokens, out of which 89.7% are of English
and almost 1.92% is for Chinese, French, Spanish, Russian,
Japanese, and 21 more similar languages. While the rep-

resentation of Arabic, Hindi, Bengali and Urdu is negligi-
ble. Similarly, MobileLLaMA [6] pretrains on RedPajama-
v1 [7] dataset which consist of almost 1.3 trillion tokens,
predominantly English tokens.

4.3. Results

In evaluating the multilingual capabilities of VLMs, we
conduct a comprehensive evaluation across various lan-
guages, utilizing a high-quality evaluation set. This set
is constructed by translating the LLaVA-Bench (In-the-
Wild) [18] into all target languages using GPT-4-Turbo [1],
with particular attention to preserving linguistic authentic-
ity and mitigating common issues of automated translations
through careful human correction. The benchmark com-
prises 24 diverse and challenging images from different do-
mains, such as indoor and outdoor scenes, memes, and art-
work, each with detailed descriptions and a set of 60 ques-
tions designed to test the understanding and generalization
abilities of the model.

The results in Table 1 show that PALO obtains robust
performance in high-resource languages, as shown by the
7/13B models scoring an average of 59.0 and 63.8 respec-
tively across these languages. This demonstrates that our
multilingual extension has been effectively integrated with-
out compromising the original capabilities of the model.
Further, the model shows good performance improvements
in low-resource languages, with average scores rising from
26.0 and 26.9 to 55.6 and 59.2 points, for the 7B and 13B
models, respectively.

The overall performance across all ten languages also
improves, with the 7B model achieving an average score
of 57.65, and the 13B model reaching 61.97.

The data reflects that our approach successfully creates
a more inclusive, diverse, and high-performing VLM, capa-
ble of handling the complex landscape of global languages
in vision-language tasks (see Figures 4 and 5 for qualitative
results).

Our mobile model demonstrates consistent improve-
ments across both high-resource and low-resource lan-
guages, with an overall average gain of 33.9 points com-
pared to the MobileVLM baseline of 23.9 points. Con-
trary to the trend observed in the 7/13B model, our mo-
bile version also shows improvements in high-resource lan-
guages such as English and Chinese. This performance
difference is attributed to the language model pretraining
data. LLaMA-2 is trained on 2 trillion tokens with a better
representation of high-resource languages compared to Mo-
bileLLaMA, which is predominantly trained on 1.3 trillion
English tokens.

4.4. Ablations

Table 2 shows an ablation where we trained our 7B
model on 150K translated instructions from each language
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Data English Chinese French Spanish Russian Japanese Arabic Hindi Bengali Urdu Avg.

665K-English 67.9 55.7 62.4 64.5 55.3 59.2 38.9 29.4 13.9 21.8 46.9
150K-Chinese 59.3 55.0 60.0 57.0 32.9 40.5 21.2 20.3 21.7 19.3 38.7
150K-French 51.0 41.0 57.8 54.4 35.4 54.6 17.6 23.2 13.1 16.7 36.5
150K-Spanish 61.1 52.2 54.8 61.6 50.1 51.7 27.8 24.4 15.4 18.5 41.8
150K-Russian 55.2 51.1 62.2 60.6 57.8 50.9 25.3 28.2 13.6 16.7 42.2
150K-Japanese 54.5 41.1 59.2 57.6 36.1 57.6 18.0 23.6 13.3 18.4 37.9
150K-Arabic 67.8 42.9 56.4 54.7 38.4 44.7 56.0 25.7 19.4 33.4 43.9
150K-Hindi 52.2 39.1 56.8 54.0 35.0 33.4 18.4 54.1 12.8 23.8 37.9
150K-Bengali 26.4 40.2 56.0 54.5 37.3 26.0 12.8 16.3 34.8 14.0 31.8
150K-Urdu 28.9 30.6 44.6 50.1 22.5 16.0 22.1 25.5 20.9 47.7 30.9
Combined 64.2 55.7 58.3 61.0 57.4 57.5 57.8 57.6 51.7 55.3 57.7

Table 2. Ablation on multi-lingual fine-tuning dataset. The table shows an effect of performance on ten languages when using fine-
tuning data from different languages. Models with 7B parameters are used for this ablation. The Data column mentions the training data.
Combined refers to the the combination of data from all the langauges. All the models are evaluated on all the languages.

and evaluated all models across all languages. The results
show that the baseline performs better than the language-
specific fine-tuned models for high-resource languages, in-
cluding Chinese, French, Spanish, and Japanese. This is
because these languages have less multi-modal data com-
pared to the baseline (i.e., the English model is trained
on 665K instructions, while language-specific models are
trained on 150K instructions), and due to the noisy semi-
automatic translation process. Conversely, the language-
specific fine-tuned models perform better in the case of
Arabic, Hindi, Bengali, and Urdu, as these languages are
under-represented in the LLM pretraining data. Lastly,
combined training further improves performance on low-
resource languages. Further, we found that increasing the
quantity of translated multi-modal training data enhances
performance. For instance, translating an additional 72K
instructions from the GQA dataset [12] into Bengali and
training with a total of 222K instructions improves Bengali
results from 34.8 to 38.3. This study is limited to 150K
instructions for each language due to resource constraints.

5. Conclusion
We introduce PALO, a polyglot LLM for 5B people, cov-

ering almost two-thirds of the world’s population. It takes
image and user text query as input and effectively converse
in both high-resource languages such as English, Chinese,
French, Spanish, Russian and Japanese, and low-resource
languages such as Arabic, Hindi, Bengali and Urdu. To
train our model on ten languages, we translate 150K instruc-
tions into each language using custom-tailored LLMs. To
fine-tune an LLM on a language-translation task, we use 1K
human-annotated conversations for each targeted language.
Our final model simultaneously provides competency in ten
languages and provides an overall performance improve-
ment on vision-language evaluation. We train PALO across
three scales (1.7B, 7B, and 13B) to demonstrate its gener-

alization and scalability across ten languages. Our codes,
models, and datasets will be publicly released.

6. Limitations
The semi-automated translation process, while efficient,

might not fully grasp the deep contextual and cultural nu-
ances inherent to each language. This could impact the ca-
pability of the model to comprehend and generate content
with the necessary cultural depth, accuracy and precision.
Additionally, our selection of ten languages, though it spans
two-thirds of the global population, still leaves out a consid-
erable number of the world’s languages.

7. Potential Risks
The use of semi-automated translations could bring for-

ward potential risks tied to biases inherent in LLMs, par-
ticularly for low-resource languages. The model must ac-
count for nuances in visual data, such as the interpretation
of cultural symbols or gestures, to prevent any misrepre-
sentations. The interpretations of the model, influenced by
these biases, could lead to inaccuracies in contexts that are
culturally sensitive. There is a need to evaluate and adopt
necessary training to mitigate such risks.

8. Use of Data and AI Assistant
We use LLaVA-Instruct [18] dataset, licensed under Cre-

ative Commons Attribution (CCA) 4.0 International, avail-
able for use in research. Further, the use of GPT models
abides by [21]. Respecting source license information, we
release all datasets under CCA 4.0 International license.

9. Human Annotations
The LLaVA-Bench [18] evaluation set for each language

is verified and corrected by human annotators selected to
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Figure 4. Qualitative results demonstrating the multilingual capabilities of PALO. The model generates accurate textual responses
related to the visual content and the relevant language. The figure highlights its ability to bridge vision and language understanding across
diverse languages. In this illustration, we explore dialogues in two high-resource languages—Spanish and Chinese—and two low-resource
languages—Hindi and Arabic. PALO accurately interprets the unusual aspects of an image featuring two individuals in medieval attire
within a contemporary supermarket setting. The model exhibits its creative imagination in Chinese, proposing a backstory where these
characters might be a king and queen from a storybook. In Hindi, PALO demonstrates scenario-building by describing a possible situation
that brought the medieval couple into the current day as time travellers. At the bottom, PALO displays a touch of humour in Arabic,
conjuring up a playful dialogue that a king might say, showcasing its subtle understanding of context and culture-specific humour.

represent a diverse mix of genders and demographics. An-
notators are provided with the English version alongside the
translated version. They received detailed instructions to
neutralize tone and biases during the correction process, en-
suring that the translated content retained the original mean-
ing without introducing cultural or linguistic biases. This
process was crucial in maintaining the integrity and fair-
ness of the evaluation set across different languages. Fur-
ther, meta annotators cross check the translations to further
improved the quality and reduce the bias. We will release
all the datasets created in this work publicly to reproduce
our work and for further research.
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Figure 5. Qualitative results demonstrating the visual reasoning of PALO and its adeptness in multiple languages. PALO responds
accurately to visual content in a contextually appropriate manner for each language. We illustrate a conversation in three high-resource
languages—French, Russian and Japanese and one low-resource language—Urdu. In the French segment, the model shows practical
reasoning by suggesting a recipe that utilizes the available ingredients in the fridge, connecting visual perception to culinary suggestions.
In Russian, PALO identifies items rich in Vitamin C and in the Urdu example, the model organizes the fridge contents into food groups,
demonstrating its ability to classify items and apply nutritional knowledge. This effectively highlights its ability to switch between lan-
guages while maintaining the context of the conversation, reflecting its capacity to generate relevant and culturally aware content in both
high-resource and low-resource languages.
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Alexandra Sasha Luccioni, François Yvon, Matthias Gallé,
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