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Abstract

Visual recognition in a low-data regime is challenging
and often prone to overfitting. To mitigate this issue, several
data augmentation strategies have been proposed. However,
standard transformations, e.g., rotation, cropping, and flip-
ping provide limited semantic variations. To this end, we
propose Cap2Aug, an image-to-image diffusion model-based
data augmentation strategy using image captions to condi-
tion the image synthesis step. We generate a caption for an
image and use this caption as an additional input for an
image-to-image diffusion model. This increases the semantic
diversity of the augmented images due to caption condition-
ing compared to the usual data augmentation techniques.
We show that Cap2Aug is particularly effective where only
a few samples are available for an object class. However,
naively generating the synthetic images is not adequate due
to the domain gap between real and synthetic images. Thus,
we employ a maximum mean discrepancy loss to align the
synthetic images to the real images to minimize the domain
gap. We evaluate our method on few-shot classification
and image classification with long-tail class distribution
tasks. Cap2Aug achieves state-of-the-art performance on
both tasks while evaluated on eleven benchmarks. Code:
https://github.com/aniket004/Cap 2 Aug.git

1. Introduction

Supervised image classification approaches have achieved
near-human performance [19, 26] by leveraging large-scale
datasets [8, 12]. However, learning from limited data re-
mains challenging, such as in few-shot setups, where only
1-5 samples could be available for each class. To address
this challenge, existing approaches consider various data
augmentation approaches to expand the training set. For
example, [23] generates pseudo labels for the base class sam-
ples and uses these samples to increase the number of novel
class samples. Assoalign [2] uses base-class samples in ad-
dition to the novel class samples to generate new samples in

*denotes equal contribution.

A red electric guitar with 
a white background. A man with a guitar.

Image 1 (I1)

Caption 1 (C1)

Image 2 (I2)

Caption 2 (C2)

Image 1

Caption 2

Image 1

Caption 1

Image 2

Caption 1

Image 2

Caption 2

I2I DM I2I DM

I2I DM I2I DM

I1C1 I2C1

I1C2 I2C2

Cap2Aug images

Original images (and extracted captions)

Figure 1. Idea of Cap2Aug: real images I1 (guitar) and I2 (person
playing guitar) are fed to a captioning model to generate “a red
electric guitar with a white background” (C1) and “a man with
a guitar” (C2) as captions, respectively. Image I1 and caption
C1 when fed to an image-to-image diffusion model generates a
synthetic image I1C1 - the image of a guitar similar to I1 with
minor changes (fine changes in guitar head, body). On the other
hand, when image I1 and caption C2 are fed to the image-to-image
diffusion model, it generates a man with a guitar in his hand (I1C2).
This is replicated using image I2 for generating synthetic images
I2C1 and I2C2 respectively using captions C1 and C2.

an adversarial framework. [40] use hard-mixup to combine
existing samples to generate additional samples.

Recently, generative models, such as DALL-E [38] and
stable diffusion [39], are shown to be successful in generat-
ing realistic images. The vision and language models, such
as CLIP [37] and BLIP [27], can effectively capture detailed
visual cues from images in the form of captions. In this con-
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text, we investigate the following question: “Can these large
vision language models be leveraged to generate semanti-
cally diverse augmented images?” Inspired by the efficacy
of these generative models, we develop Cap2Aug - a data
augmentation strategy that provides semantic variations in
the augmented samples aided by generative models. We first
generate a set of captions from an image using a caption-
ing model. Then we use text-conditioned image-to-image
diffusion models with these captions as prompts to create
additional images. This results in a semantically diverse set
of augmented images that can be used for training. The idea
is also motivated by “back-translation” [14], an effective
data augmentation strategy used in natural language process-
ing, where a sentence is translated to a different language,
and then back-translated to the same language providing an
augmented version of the sentence itself. Cap2Aug performs
back-translation across image-text modalities, which is sim-
ple yet effective. Finally, the classifier can be trained with
the augmented dataset. We present the Cap2Aug framework
in Fig. 1. While the generated images can be directly used
to augment the training set, we notice that this is suboptimal
due to the domain gap between real and generated images.
Thus, we propose a maximum mean discrepancy (MMD)
loss [28] to align the features of the synthetic images to real
images for better performance.

Cap2Aug leverages generative models that are trained
on large-scale datasets. Thus, our approach is not directly
comparable to few-shot approaches [3, 4, 23, 40] that do not
consider external sources of supervision. Our goal is to de-
velop a data-augmentation framework that leverages existing
generative models. Thus, Cap2Aug can be compared to
existing approaches [55, 57] that use additional datasets or
models to improve classification performance. We primarily
consider image classification in a few-shot setup to evaluate
our approach. Cap2Aug is also shown to be effective for im-
age classification with long-tail distribution over the classes.
Thus, our contributions include:

• We propose Cap2Aug - a simple, training-free, plug-
and-play data augmentation strategy leveraging image-
to-image generative models with image captions as text
prompts. We validate this approach for long-tail and
few-shot classification tasks. Cap2Aug is particularly
effective for few-shot setups where only a few training
images are available.

• We use an MMD-based loss function to align synthetic
images to real images to reduce the domain gap between
real and synthetic images.

• We validate our approach on standard long-tail classi-
fication on ImageNet-LT and eleven few-shot classifi-
cation benchmarks and achieve improvements over the
state-of-the-art.

2. Related Work

Multi-modal few-shot learning. Semantic information
is useful for few-shot classification [1]. Padhe et al. [33] use
multi-modal prototypical networks for few-shot classifica-
tion and Yang et al. [50] utilize semantic guided attention to
integrate the rich semantics into few-shot classification. [49]
generates representative samples for few-shot learning using
text-guided variational autoencoder. Wang et al. [47] uses
multi-directional knowledge transfer for multi-modal few-
shot learning. Text-guided prototype completion [52] also
helps few-shot classification.

Vision-language models. Recent advancements in large-
scale vision language pretrained models enable significant
improvements in multi-modal learning with CLIP [37], GPT-
3 [7], DALLE [38], stable diffusion [39] etc. Diffusion
models are state-of-the-art text-to-image generative mod-
els [22, 31, 38, 39, 41], which are trained on large-scale im-
age and text corpus and produce surprisingly high-quality
images just from texts. The vision-language pretraining
model CLIP [37] helps to improve zero-shot performance
across several datasets. Prompt tuning method CoOp [57]
optimizes learnable prompts for better few-shot adaptation.
CoCoOp [56] and VT-CLIP [54] used a text-conditioned
intermediate network for joint image-text training. The
CLIP-adapter [17] uses the powerful CLIP features with a
lightweight residual style network adapter for few-shot adap-
tation. The Tip-Adapter [55] extends this using a training
free key-value based cache model and obtained a perfor-
mance boost. CALIP [18] uses parameter-free attention to
elevate CLIP performance in both zero-shot and few-shot
settings. SuS-X [46] extends the Tip-adapter using image-
text distance and dynamic support set. Recently, several
methods [5, 13, 15, 20, 34, 36, 43, 53, 58] have been proposed
to use synthetic data to improve visual recognition tasks. In
contrast to these works, we use an effective way of using
the pretrained vision-language model for effective data aug-
mentation and also investigate the real to synthetic domain
adaptation issue.

3. Proposed Approach

In this section, we describe a simple, training-free, plug-
and-play data augmentation strategy (Fig. 2). Cap2Aug
provides semantic diversity through the collaboration of pre-
trained captioning and image-to-image diffusion models.
The steps of the augmentation scheme are: 1) Generate cap-
tions from the images using a pretrained caption model, 2)
Generate synthetic augmentations of the images using pre-
trained text-guided image-to-image diffusion model, where
captions from previous step are provided as text prompts.
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Figure 2. Overview of Cap2Aug. We generate captions from the
real images using the BLIP caption model [27]. The generated
captions and real images are fed to the image-to-image diffusion
model [39] to generate plenty of synthetic images. The combined
set of limited real images and abundant synthetic images are used
to learn a classifier for the novel class. We also align the synthetic
images with the real images to reduce the domain gap using MMD.

3.1. Image-to-text generation using Captioning

Captions capture the semantic information of images with
succinct texts. Current large-scale vision and language meth-
ods, e.g., CLIP-based [37], BLIP [27] achieve impressive
performance in image captioning. We capture the diversity
and class-specific information residing in the few training
examples by captioning the images using off-the-shelf BLIP
caption model [27]. Now, using the BLIP caption model, we
generate captions Ci for each image Ii in the training set.

Ci = Caption model(Ii) (1)

Captions provide diverse class-dependent semantic informa-
tion across samples. For example, in Sun397 dataset [48],
there exists a class “youth hostel”, which contains images
of a group of people sitting on a bed and a couple of bunk
beds as shown in Fig. 3. These are typical characteristics of
the “youth hostel” class. We see that the generated captions
capture the semantic characteristics of the class information
as shown in Fig. 3.

3.2. Text-to-image generation with caption guid-
ance

Traditional image augmentation methods rely on fixed
transformations e.g., translation, rotation, etc. To the con-
trary, we generate an augmented version of images using
an image-to-image diffusion model by editing these images
using captions.

Stable diffusion [39] is a diffusion model conditioned
on text embedding of CLIP ViT-L/14 [37] text encoder and
trained on LAION-400M dataset [39] of image-text pairs.

Prior works have leveraged this model to generate realistic
images from textual descriptions. In this work, the stable
diffusion model is conditioned on the text prompts that are
based on the diffusion-denoising mechanism proposed by
SDEdit [30]. The method generates images by iterative de-
noising through a stochastic differential equation conditioned
on the encoded version of the text prompt. Examples of the
input image and caption pairs and corresponding generated
images are shown in Fig. 1.

Now, the augmented versions of the images are generated
by,

IiCj = I2I(Ii, Cj) for i, j = 1, ..,K (2)

where I2I is the pretrained image-to-image diffusion
model, Ii is the i-th image and the corresponding caption
is denoted by Ci. In an N-way K-shot classification prob-
lem, for each class, we have K training images I1, I2,... IK .
The corresponding captions generated by the BLIP-caption
model are C1, C2, ... CK , respectively. Now, we can gen-
erate diverse images pairing (Ii, Cj) denoted by IiCj for
i, j = 1, ..,K as shown in Fig. 1.

3.2.1 Cross image-caption pair generation

The generated images with self-captions i.e., using image-
caption pairs (Ii, Ci) are denoted by IiCi. These images
IiCi generated using captions from the image itself would
still result in some style or content difference in the image.
In Fig. 1 (I1C1), image-to-image translation of the “guitar
image” with its own caption (i.e., “a red electric guitar with a
white background”), still generates an image with a different
semantic content (i.e., the difference in the guitar head).
Hence, this can also be considered as a useful augmentation.

More interesting and diverse images are generated by
cross image-caption pairs (Ii, Cj) (i ̸= j), where the style
of image captionCj is translated to generated images from Ii
through image-to-image stable diffusion model. For instance,
an image of a guitar is translated to a person playing a guitar
using the caption “a man with a guitar” as shown in Fig. 1
(I1C2).

We generate augmented versions of the training images
conditioned on the class information captured by captions.
Our objective is to provide semantic variations of the ex-
isting training images, not generating new samples using
the off-the-shelf generative models. Note that, we are not
explicitly using the class labels for generating the images.
Since the diffusion models are trained on large-scale datasets,
therefore generating images using class labels might violate
the inherent problem of low-data regime e.g., long-tail or
few-shot setting.
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3.3. Domain alignment of real and synthetic images
using MMD.

Despite the high-quality of synthetic images, there exists
a domain gap between real and synthetic images in terms of
the background, color, and intensity distribution as shown
in Fig. 4. The average color histograms of the real and
synthetic images are shown in Fig. 5, which exhibits a dis-
tinction between these sets of images. To reduce the domain
gap, we use a multi-kernel Maximum Mean Discrepancy
(MMD) [28] loss, which minimizes the domain gap by re-
ducing the distance of the mean feature embeddings of the
real and synthetic images.

Let’s assume, given a source domain (Ds) and the tar-
get domain (Dt), samples are drawn from these domains
with distributions P and Q, respectively over a set X . The
features of the samples from these domains are denoted
as {zsi } and {zti}, respectively. A multi-kernel MMD
(Dk(P,Q)) between probability distributions P and Q is
defined as [28]: Dk(P,Q) = ∥Ep[ψ(z

s)]− Eq[ψ(z
t)]∥2Hk

where k is the kernel function in the functional space, i.e.,
k =

∑P
p=1 αpkp, where kp is a single kernel. The feature

map ψ : X → Hk maps into a reproducing kernel Hilbert
space. k = {N (0, 0.5),N (0, 1),N (0, 2)}. If the kernel
is k(x, y) =< ψ(x), ψ(y) >Hk

, then using the kernel trick,
MMD can be estimated without directly learning ψ(·) as:

D̄k(P,Q) =
1

n2s

ns∑
i=1

ns∑
j=1

k(zsi , z
s
j )+

1

n2t

nt∑
i=1

nt∑
j=1

k(zti , z
t
j)

− 2

nsnt

ns∑
i=1

nt∑
j=1

k(zsi , z
t
j) (3)

Therefore, the MMD-loss between the real examples
(INK) and synthetic examples (INK′ ) will be,

LMMD = D̄k(INK , INK′) (4)

Finally, the model will be learned based on the task-
specific classification loss (i.e, cross-entropy loss LCE) and
the MMD loss (LMMD).

L = LCE + α ∗ LMMD (5)

The scaling parameter α is set experimentally and abla-
tion on this parameter is shown in the experiments section.

4. Experiments
We evaluate the proposed approach on two tasks: 1) few-

shot classification and 2) long-tail classification.

4.1. Few-shot classification

Data augmentation is crucial in a data scarce regime.
Hence, we validate our augmentation strategy for the few-
shot classification task. We perform few-shot experiments

(a) Caption: a group of people
are sitting in a room with bunks.  

(b) Caption: A room with bunks
 and table.

(c) Caption: a room with two beds
 and a small bed in the middle

in bronx, ny

(d) Caption: a woman in a room
 with a bunk and a bed

Figure 3. Illustration of image captioning using BLIP model: Im-
ages from the class “youth hostel”. Several images capture the
characteristics of the class “youth hostel”. For example, images
contain a bunk bed and a group of people sitting as shown in the
captions generated from the images.

Figure 4. Real images from the original dataset (left) and synthetic
images generated using Cap2Aug (right) have different color, in-
tensity and background distributions.

on eleven benchmark datasets - ImageNet-1K [12], Stanford-
Cars [25], UCF101 [44], Flowers102 [32], SUN397 [48],
DTD [9], EuroSAT [21], FGVCAircraft [29], Oxford-
Pets [35], Food-101 [6] and Caltech-101 [16]. We follow
the protocol of Tip-Adapter [55] to train models with 2,
4, 8, and 16 shots and test on the full test set. Following
standard practice, we consider classification accuracy as the
metric. For a fair comparison with Tip-Adapter [55], we use
CLIP [37] with ResNet-50 as the visual encoder. On top of
the feature extractor, an adapter is initialized as a 2-layer
MLP with cache keys as learnable parameters. We train the
adapter using an AdamW optimizer with an initial learning
rate of 0.001 with a cosine scheduler. For generating image
captions, we use the open-source implementation of BLIP-
caption generator [27] provided in diffusers library from
HuggingFace. We also use the same library for generating
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images from image-to-image stable diffusion model with the
“stable-diffusion-v1-5” model. For image-to-imag diffusion
model, we use SDEdit [30]. More details are provided in the
supplementary material. For the N-way K-shot setup (i.e.,
N classes and K shots), Tip-Adapter uses NK images. In
Cap2Aug, we augment K images of each class with p (p ≤
K) different captions, therefore, generating NKp synthetic
images. In total, NK(p+1) images are used for training (i.e.,
NK real, NKp synthetic). To ensure the same number of
images seen during training in both approaches, we train
Tip-Adapter (p+ 1)× E epochs, while training Cap2Aug
for E epochs.

We compare our method with state-of-the-art Tip-
Adapter [55] and CoOp [57], in Table. 3, Table. 6, Table. 13,
Table. 7, and Table. 8 for few-shot classification tasks on
eleven different benchmarks. We also compare with naive
data augmentation methods e.g., random crop, resize, flip,
color saturation, and observe the generative model guided
augmentations perform significantly better. We perform
experiments with three random seeds and the mean and
standard deviation are reported. Our method consistently
outperforms state-of-the-art in most cases including the chal-
lenging fine-grained classification datasets.

The two recent and relevant baselines are - SuS-X [46],
TaskRes [51]. In Table. 1, we have compared with the 16-
shot classification performance with respect to SuS-X [46],
in various datasets, e.g., ImageNet, Food-101, OxfordPets,
Caltech-101, Flowers-102, FGVC. Our approach outper-
forms the baselines across the datasets. We have also
compared TaskRes [51] against our approach on different
datasets and different settings in Table. 2. Our approach
outperforms TaskRes across dataset and settings as evident
from Table. 2.

Table 1. Comparison with SuS-X (16-shot)
Dataset SuS-X-LC [46] TIP-X [46] Ours

ImageNet 61.89 62.16 66.43
Food-101 77.62 75.96 79.32
OxfordPets 86.59 87.52 90.11
Caltech-101 89.65 90.39 92.93
Flowers-102 67.97 90.54 95.21
FGVC 21.09 29.61 34.92

4.1.1 Complexity analysis

We have performed the comparison of the number of pa-
rameters and time complexity in Tab. 5. In Tab. 5, we
present the results on ImageNet 16-shot experiment and com-
pare them with ZeroShot CLIP [37], Zero-Shot CALIP [18],
CoOp [57], CLIP-Adapter [17], Tip-Adapter [55] and ob-
serve that our method improves performance with a small
increase in model training time.

Table 2. Comparison with TaskRes [51]
Approach Dataset 2-shot 4-shot 8-shot 16-shot

TaskRes ImageNet 62.17 62.93 64.03 64.75
Ours ImageNet 62.83 63.74 64.98 66.43

TaskRes OxfordPets 84.43 86.27 87.07 88.10
Ours OxfordPets 87.67 88.12 88.60 90.11

TaskRes Food-101 75.30 76.23 76.90 78.23
Ours Food-101 77.86 78.05 78.62 79.32

TaskRes FGVC 23.07 24.83 29.50 33.73
Ours FGVC 23.88 25.11 29.86 34.92

TaskRes SUN 64.33 66.67 68.70 70.30
Ours SUN 64.72 67.39 69.10 71.20

TaskRes EuroSAT 65.77 72.97 77.07 82.57
Ours EuroSAT 67.35 77.27 77.82 83.77

Table 3. Comparison on ImageNet (best results in bold, second best
in underline, improvement in ∆), DA means data augmentation.

Method 2-shot 4-shot 8-shot 16-shot

Tip [55] 60.96 60.98 61.45 62.03
CoOp [57] 50.88 56.22 59.93 62.95
Tip-F [55] 61.69 62.52 64.00 65.51
Tip-F [55] + Naive DA 61.73 62.56 64.06 65.61
TaskRes [51] 62.17 62.93 64.03 64.75
Ours 62.83 ± 0.3 63.74 ± 0.2 64.98 ± 0.2 66.43 ± 0.3
∆ +0.66 +0.81 +0.95 +0.82

Table 4. Ablation of Number of Synthetic images (K) on ImageNet
K 4 16 40 80

2-shot 62.7 63.1 63.6 64.2
4-shot 63.0 63.5 63.9 64.5
8-shot 63.4 64.1 64.9 65.6
16-shot 64.1 64.6 65.7 66.3

Table 5. Training parameter and complexity analysis
Method #Param (million) Train time Acc.

ZS CLIP [37] 0 0 60.33
ZS CALIP [18] 0 0 60.57
CoOp [57] 0.02 14h 40 min 62.95
CLIP-Adapter [17] 0.52 50 min 63.59
Tip-Adapter-F [55] 6.2 13 min 64.59
Ours 6.2 15 min 66.43

4.1.2 Ablation studies

We conduct an ablation study on the novel components of
our method in Table. 14. As expected, adding synthetic im-
ages generated by the diffusion model and MMD improves
the performance of EuroSAT, and Oxford-flowers datasets
in low-data settings. MMD seems to be particularly helpful
in extremely low data cases (e.g., 2 shot) as evident from
Table. 14. We also provide the ablation of the MMD loss
coefficient α in Table. 15. It appears that for low-shot cases,
higher α works better. Ablation on different backbones and
the number of generated synthetic images for few-shot clas-
sification on ImageNet have been provided in Tab. 12 and
Tab. 4 respectively. Additionally, we also perform ablation
studies on diffusion and caption models (Tab. 9), and diffu-
sion guidance scale (Tab. 10).
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Figure 5. Color histogram of real (left) and synthetic samples
(right)

4.1.3 Why MMD?

Diffusion model generated images have prominent domain
differences, e.g., color, saturation (as shown in Fig. 4) w.r.t
the real images. We improve the classification performance
by minimizing the domain discrepancy using MMD loss.
MMD is simple, effective and easy to integrate to any train-
ing pipeline. In addition to the generated synthetic images,
using MMD further improves performance especially in few-
shot settings for EuroSAT images as shown in Tab. 14 (Eu-
roSAT). For EuroSAT 4-shot classification, the class-wise
accuracy for “forest” class was 72%, adding synthetic sam-
ples improves the accuracy to 74%, but there is significant
domain gap w.r.t color (Fig. 4). Adding MMD improves the
accuracy of that class to 78%.

4.1.4 Is generated caption needed?

Generic text as “class names” can be used, but is not suffi-
cient to capture the diversity in the images. For EuroSAT 4-
shot classification, only generating images from class names
provide an accuracy of 75.00%, while generating images
from captions improves the accuracy to 77.37% (+2.37%).

4.2. Long-tail classification

Long-tail classification has both data-scarce and data-
abundant classes, therefore is a good test case for validating
our data augmentation strategy. We conduct experiments on
large-scale long-tailed ImageNet-LT benchmark and obtain
performance improvements over SOTA [45] using Cap2Aug
data augmentation as shown in Tab. 11. We provide results
for overall accuracy, many-shot (100 samples), medium-shot
(20-100 samples), and few-shot (20 samples) cases. In this
experiment, 40 images are generated for all the classes and
used those as augmented data. We observe the performance
gain is higher for few-shot classes in Tab. 11. Approach
specific details are provided in the supplementary material.

4.3. Qualitative results

We show examples where image-to-image generation
using caption provides diverse training examples and thus
helps provide generalization. E.g., in Fig. 6 the real image,
showing a person playing guitar, and the caption “person

Figure 6. Image to image generation using captions.

playing guitar” generates images of different people playing
guitar, which helps the model to focus more on “playing
guitar” (actual class label), than people or background. Sim-
ilarly, diverse examples for “bee-hive” and “pizza” classes
are generated by the image and the corresponding captions
in Fig. 6.

4.4. Discussions

Our method attempts to capture the variations within the
class through captions and translate that to generate diverse
augmented samples from the training samples using image-
to-image diffusion model. For instance, in Fig. 8 (first row)
the training image is a picture of a man having his haircut
and the corresponding classname is “haircut” (from UCF101
dataset). If we provide a caption “a woman is getting her
haircut” to this image and fed it to the image-to-image diffu-
sion model, it indeed generates an image of a woman having
a haircut (second row, right figure). Therefore, such cross-
caption-based image generation provides diversity in the
training set and help generalization. Similarly, in the last
row (Fig. 8) using caption as “a person in a arcade” to an im-
age of arcade generates image of an arcade with a person in
it, providing more diverse and natural augmented instances.

4.5. Analyzing Bias of diffusion model

Our method is more effective where the caption model
generates diverse captions across classes, e.g., in EuroSAT
dataset, the classes are quite distinctive, e.g., forest, high-
way, etc., and therefore the caption model is able to generate
descriptive captions and diffusion model generates appropri-
ate images, and the overall performance improves (Fig. 4,
Table. 6). However, in the case of FGVC dataset, where the
classes are different fine-grained airplane classes denoted
by their names, with fine difference in details. In that case,
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Table 6. Comparison on EuroSAT, SUN397 and UCF101 (best results in bold, second best in underline, DA means data augmentation)
EuroSAT SUN397 UCF101

Shots 2 4 8 16 2 4 8 16 2 4 8 16

Tip [55] 61.68 65.32 67.95 70.50 62.70 64.15 65.62 66.85 64.74 66.46 68.68 70.58
CoOp [57] 61.50 70.18 76.73 82.53 59.48 63.47 65.52 69.26 64.09 67.03 71.92 75.71
Tip-F [55] 66.15 74.12 77.30 82.54 63.64 66.21 68.87 70.47 66.43 70.55 74.01 77.03
Tip-F [55] + Naive DA 66.21 74.32 77.53 82.71 63.82 66.29 68.94 70.53 66.55 70.68 74.25 77.22
Ours 67.35±0.2 77.27 ± 0.3 77.82 ± 0.2 83.77 ± 0.3 64.72 ± 0.2 67.39 ± 0.3 69.10 ± 0.3 71.20 ± 0.2 68.77 ± 0.3 71.68 ± 0.2 74.72 ± 0.2 77.63 ± 0.3

∆ +1.14 +2.95 +0.29 +1.06 +0.90 +1.10 +0.16 +0.67 +2.22 +1.00 +0.47 +0.41

Table 7. Comparison on OxfordPets, OxfordFlowers and FGVC (best results in bold, second best in underline, DA means data augmentation)
OxfordPets OxfordFlowers FGVC

Shots 2 4 8 16 2 4 8 16 2 4 8 16

Tip [55] 87.03 86.45 87.03 88.14 79.13 83.80 87.98 89.89 21.21 22.41 25.59 29.76
CoOp [57] 82.64 86.70 85.32 87.01 77.50 85.20 90.18 94.51 18.68 21.87 26.13 31.26
Tip-F [55] 87.03 87.54 88.09 89.70 82.30 85.83 90.51 94.80 23.19 24.80 29.21 34.55
Tip-F [55] + Naive DA 87.22 87.73 88.26 89.88 82.51 85.98 90.69 94.97 23.42 24.95 29.39 34.76
Ours 87.67 ± 0.3 88.12 ± 0.2 88.60 ± 0.2 90.11 ± 0.2 83.23 ± 0.3 86.83 ± 0.4 91.37 ± 0.3 95.21 ± 0.2 23.88 ± 0.2 25.11 ± 0.3 29.86 ± 0.2 34.92 ± 0.3

∆ +0.45 +0.39 +0.34 +0.33 +0.72 +0.85 +0.68 +0.24 +0.46 +0.16 +0.47 +0.16

Table 8. Comparison on Caltech101
Caltech101

Method 2-shot 4-shot 8-shot 16-shot

Tip [55] 88.44 89.39 89.83 90.18
CoOp [57] 87.93 89.55 90.21 91.83
Tip-F [55] 89.74 90.56 91.00 91.86
Tip-F [55] + Naive DA 89.82 90.63 91.12 91.93

Ours 90.11 ± 0.2 90.97 ± 0.2 91.54 ± 0.2 92.93 ± 0.3

Table 9. Ablation on diffusion and caption model
EuroSAT

Method 2-shot 4-shot 8-shot 16-shot

SD1.5 + BLIP-2 67.35 72.27 77.82 83.77
SD1.5 + LLaVA 69.18 78.56 79.33 85.22
SDXL + BLIP-2 72.53 80.11 82.45 88.67
SDXL + LLaVA 75.31 83.12 84.96 90.23

Table 10. Ablation on guidance scale of diffusion model
EuroSAT

Guidance scale 2-shot 4-shot 8-shot 16-shot

5 65.11 75.88 76.15 81.82
7.5 67.35 77.27 77.82 83.77
10 66.73 76.32 76.92 82.17

Table 11. Comparison on ImageNet-LT (best results in bold, second
best in underline, improvement in ∆)

Method Overall Acc. Many-shot Medium-shot Few-shot

ResLT [10] 55.1 63.3 53.3 40.3
PaCo [11] 60.0 68.2 58.7 41.0
LWS [24] 51.5 62.2 48.6 31.8
DRO-LT [42] 53.5 64.0 49.8 33.1
VL-LTR [45] 70.1 77.8 67.0 50.8
Ours 70.9 78.5 67.7 51.9
∆ +0.8 +0.7 +0.7 +1.1

Table 12. Various backbones for ImageNet 16-shot classification
Method RN50 RN101 ViT/32 ViT/16

Tip-F [55] 65.51 68.56 68.65 73.69
Ours 66.32 69.20 69.70 74.70

the caption model is unable to capture diverse class informa-
tion, and therefore, diffusion model generates similar images
across classes and hence the overall performance doesn’t
improve much (Fig. 7, Table. 7).

4.6. Limitations

While we see improvements over prior works on classi-
fication tasks, our results indicate that this approach might
not be suitable for fine-grained classification, e.g., FGVC,
Food101 datasets. One potential reason could be that cap-
tions are unable to extract the fine-grained details which
could be important for fine-grained recognition. E.g., in
Fig. 7 top row, the airplane is E-195, which has more fine-
grained characteristics (e.g., the shape of the plane and
wings), than what the caption captures (i.e., “a white and blue
jet”). The synthetic images might confuse with other fine-
grained airplane categories and thus degrade performance.
Similarly, in the Food101 dataset, the class “samosa” (Fig. 7
(second row) is miscaptioned as “plate of chicken wings”,
therefore the generated images are not semantically helpful
for classifying food items. For the fine-grained pet recogni-
tion task, captions are unable to distinguish pet categories,
i.e., “a small dog” does not differentiate across pet species
and therefore our model fails in these cases. We would like
to address these limitations in future work.

5. Conclusion
We have proposed Cap2Aug - a data augmentation ap-

proach exploiting the image-to-image generative model us-
ing captions. Compared to traditional data augmentation
strategies, our proposed augmentation method utilizes se-
mantic information in the images, captured by image cap-
tions. Our study has shown that the domain gap between
real and synthetic images can pose additional challenges. To
mitigate this, we have proposed a multi-kernel MMD-based
loss function to align synthetic images to real images. We
have validated our approach for long-tail and few-shot clas-
sification tasks. For long-tail classification on the standard
ImageNet-LT benchmark, Cap2Aug improves over SOTA
methods. Our method outperforms the state-of-the-art ap-
proaches on few-shot classification on eleven benchmarks.
We have performed ablation studies to justify the contribu-
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Table 13. Comparison on StanfordCars, Food101 and DTD (best results in bold, second best in underline, DA means data augmentation)
StanfordCars Food101 DTD

Shots 2 4 8 16 2 4 8 16 2 4 8 16

Tip [55] 57.93 61.45 62.90 66.77 77.52 77.54 77.76 77.83 49.47 53.96 58.63 60.93
CoOp [57] 58.28 62.62 68.43 73.36 72.49 73.33 71.82 74.67 45.15 53.49 59.97 63.58
Tip-F [55] 61.10 64.50 68.25 74.15 77.60 77.80 78.10 79.00 53.72 57.39 62.70 65.50
Tip-F [55] + Naive DA 61.18 64.60 68.32 74.21 77.68 77.87 78.19 79.06 53.79 57.44 62.75 65.57
Ours 61.45 ± 0.2 65.00 ± 0.3 69.25 ± 0.2 74.85 ± 0.2 77.86 ± 0.2 78.05 ± 0.2 78.62 ± 0.2 79.32 ± 0.1 54.55 ± 0.2 59.38 ± 0.2 63.49 ± 0.2 66.33 ± 0.3

∆ +0.15 +0.20 +0.90 +0.65 +0.06 +0.09 +0.37 +0.05 +0.78 +1.89 +0.77 +0.63

Table 14. Ablation Study on contributions
EuroSAT OxfordFlowers

Shots 2 4 8 2 4 8

Tip-F [55] 66.15 74.12 77.30 82.30 85.83 90.51
Tip-F + Syn 66.80 (+0.65) 75.93 (+1.81) 77.30 (+0.0) 82.86 (+0.56) 86.19 (+ 0.36) 90.89 (+ 0.38)
Tip-F + Syn + MMD 67.03 (+0.23) 77.37 (+1.44) 77.50 (+0.20) 83.06 (+0.20) 86.64 (+0.45) 91.44 (+0.55)

Table 15. Ablation on MMD coefficient α
EuroSAT SUN397 UCF101

α 2 4 8 16 2 4 8 16 2 4 8 16

0 66.08 75.93 76.45 83.64 64.46 67.45 68.91 70.88 67.90 71.76 73.56 73.77
0.01 65.86 73.50 77.08 83.02 64.30 67.45 68.90 70.90 68.27 71.76 73.51 77.21
0.1 65.29 76.64 77.38 82.75 64.31 67.45 68.63 70.61 67.93 71.76 74.12 77.24
1 67.03 77.37 77.50 83.01 64.60 67.39 68.93 70.61 68.57 71.76 73.88 77.08

Figure 7. Failure cases: captions for the images are not specific to
a particular fine-grained class of images(top row, bottom row) or
are not correctly generated (middle row). Hence, synthetic images
are not helpful in classification.

tion of various components of our approach. Finally, we
investigate the failure cases and discuss the limitations of
our approach.
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Figure 8. Diverse caption generation. The real image of a man
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when fed to the image-to-image diffusion model produces another
image of a man getting a haircut. A real image of a man getting a
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woman getting a haircut. Therefore, we can do image editing using
captions and generate diverse images.
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