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Abstract

Unsupervised intrinsic image decomposition (IID) is the
task of separating a natural image into albedo and shade
without ground truth during training. Although a recent
model employing light detection and ranging (LiDAR) in-
tensity demonstrated impressive performance, the necessity
of LiDAR intensity during inference restricts its practical-
ity. To expand the usage scenario while maintaining the
IID quality achieved by using both an image and its cor-
responding LiDAR intensity, we propose a novel approach
that utilizes an image without LiDAR intensity during in-
ference while utilizing both an image and LiDAR intensity
during training. Specifically, our proposed model processes
an image and LiDAR intensity individually using distinct
encoder paths during training, but utilizes only an image-
encoder path during inference. Additionally, we introduce
an albedo-alignment loss aligning the gray-scale albedo
from an image to that from its corresponding LiDAR inten-
sity. LiDAR intensity is not affected by illumination effects
including cast shadows, thus albedo-alignment loss trans-
fers the illumination-invariant property of LiDAR intensity
to the image-encoder path. Furthermore, we also propose
image-LiDAR conversion (ILC) paths that mutually trans-
lates the style of an image and LiDAR intensity. IID mod-
els translate an image into albedo and shade styles while
keeping the image contents, thus it is important to sepa-
rate the image into contents and style. Trained with pairs
of an image and its corresponding LiDAR intensity which
share contents but differ in style, the mutual translation in
ILC paths improve the accuracy of the separation. Conse-
quently, our model achieves comparable IID quality to the
existing model with LiDAR intensity, while utilizing only an
image without LiDAR intensity during inference.

1. Introduction

Intrinsic image decomposition (IID) is the process of
separating a natural image into an illumination-invariant

Figure 1. Train/infer schemes and examples of inferred albedos
from (a) USI3D [42], (b) IID-LI [54], and (c) LIET (ours). USI3D,
utilizing only a single image during training and inference, leaves
cast shadows on the inferred albedo. On the other hand, IID-LI
utilizes LiDAR intensity during training and inference, making
shadows further less noticeable. However, IID-LI has restricted
applicability due to the requirement of LiDAR intensity even dur-
ing inference. LIET utilizes only an image during inference to
expand its usage scenarios, and utilizes both an image and LiDAR
intensity during training to make shadows less noticeable.

components (albedo, reflectance) and an illumination-
variant components (shade, illumination) within Lamber-
tian scenes. IID provides benefits for various high-level
computer vision tasks, such as texture editing [3, 46] and
semantic segmentation [2, 60, 61]. The origins of IID
can be traced back to early work in computer vision dur-
ing the 1970s [1, 32], where researchers grappled with
the challenge of recovering albedos from shaded images.
Since IID is an ill-posed problem that separates a natu-
ral image into its albedo and shade, researchers have tra-
ditionally addressed this challenge by incorporating a va-
riety of priors, including albedo flatness, shade smooth-
ness [4,5,19,32,63,69] and dependence between shade and
geometry [11, 27, 35] as energy optimization models. Re-
cently, a notable development has been the emergence of
supervised learning models [16, 31, 43, 49, 50, 70, 71, 74],
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trained on the ground-truth albedo and shade corresponding
to an input image with sparsely-annotated datasets [4] or
synthetic datasets [9, 10, 39]. However, supervised learning
models are not ideal since it is difficult to prepare ground
truths by eliminating illumination from images within gen-
eral scenes. On the other hand, unsupervised learning mod-
els [40, 42, 44, 55], that do not utilize ground-truth albedo
and shade corresponding to the input image, encountered
IID-quality limitations as shown in Fig. 1 (a), particularly
in their capacity to reduce cast shadows. More recently,
an unsupervised learning model that utilizes light detection
and ranging (LiDAR) intensity, called intrinsic image de-
composition with LiDAR intensity (IID-LI) [54], has no-
tably enhanced IID quality as shown in Fig. 1 (b). LiDAR
intensity refers to the reflected-light strength from object
surfaces, and is equivalent to albedo in infrared wavelength.
While the LiDAR intensity is effective for IID tasks, the
applicability of IID-LI is limited due to its requirement of
LiDAR intensity even during inference.

This paper aims to employ only a single image without
LiDAR intensity during inference to expand usage scenar-
ios while keeping the high IID quality demonstrated by IID-
LI as shown in Fig. 1 (c). To accomplish this objective, we
propose unsupervised single-image intrinsic image decom-
position with LiDAR intensity enhanced training (LIET). In
IID-LI framework, completely-shared model accepts both
an image and its corresponding LiDAR intensity as input
and processes them simultaneously during both training and
inference. On the other hand, LIET is implemented with a
partially-shared model that processes an image and its cor-
responding LiDAR intensity individually using an image-
encoder path and LiDAR-encoder path, but processes them
together during training. The inference from a single image
is achieved by utilizing only image-encoder path during in-
ference. Additionally, to enhance the IID quality, we intro-
duce an albedo-alignment (AA) loss aligning the gray-scale
albedo from an image to that from its corresponding LiDAR
intensity. LiDAR intensity reflects the object-surface prop-
erties independent from illumination effects including cast
shadows, hence AA loss transfers the illumination-invariant
property of LiDAR intensity to the image-encoder path.
Due to the lack of hue information in LiDAR intensity, we
compare these albedos in gray scale. Furthermore, we also
propose image-LiDAR conversion (ILC) paths that mutu-
ally translates the style of an image and LiDAR intensity.
IID models translate an image into albedo and shade styles
while keeping the image contents, thus it is important to
separate the image into content and style codes1. Due to the
shared content but differing styles between an image and its
corresponding LiDAR intensity, the ILC paths that mutually
translate them facilitate separating the image into content

1Style and contents denote domain-variant component like illumina-
tions, and domain-invariant components like object edges, respectively.

and style codes, enhancing the IID quality.
The performance of LIET is investigated by comparing

it with existing IID models including energy optimization
models [4, 5, 19], weakly supervised model [16], and unsu-
pervised models [36, 40, 42, 54] in IID quality metrics and
image quality assessment (IQA) [17, 30, 58, 64, 67] on in-
ferred albedos. The main contributions of this study are
summarized as follows.

• We propose unsupervised single-image intrinsic image
decomposition with LiDAR intensity enhanced training
(LIET) with a partially-shared model that processes
an image and its corresponding LiDAR intensity in-
dividually using an image-encoder path and LiDAR-
encoder path, but processes them together during train-
ing. The inference from a single image without LiDAR
intensity is achieved by utilizing only image-encoder
path during inference.

• To enhance the effective utilization of LiDAR inten-
sity, we introduce albedo-alignment loss to align the
albedo inferred from an image to that from its corre-
sponding LiDAR intensity, and image-LiDAR conver-
sion (ILC) paths to translate an image into albedo and
shade style while keeping the image contents.

• In terms of IID quality, LIET, which employs only an
image during inference demonstrates comparable per-
formance to the existing model, which employs both
an image and LiDAR intensity during inference. Ad-
ditionally, the ablation study demonstrates the effec-
tiveness of each proposed architecture and loss.

2. Related work
This section initially introduces general image-to-image

translation (I2I) models that translate an input image from
their source domain to the target domain, since IID repre-
sents a specific form of I2I that translates an input image
from the image domain into albedo and shade domains. Fur-
thermore, we describe the existing unsupervised IID models
and examples of LiDAR intensity utilization in this section.
Image-to-image translation. I2I models are designed to
translate an input image from their source domain to the
target domain. Most of the I2I models rely on generative
models include generative adversarial networks (GAN) [18]
such as pix2pix [26]. Due to the challenge of acquiring
paired images for each domain, CycleGAN [73] was pro-
posed as an I2I model that does not require paired im-
ages. Additionally, unsupervised image-to-image transla-
tion networks (UNIT) [41] achieved unsupervised I2I by
implementing weight sharing within the latent space. Con-
versely, UNIT and CycleGAN require training as many
models as the number of domains to be translated, lead-
ing to high computational costs. Thus, StarGAN [14]
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and multimodal unsupervised image-to-image translation
(MUNIT) [25] were introduced to translate images into
multiple domains using a single model. Additionally, di-
verse image-to-image translation via disentangled represen-
tations (DRIT) [34], which amalgamates the advantages of
UNIT and MUNIT, was presented. More recently, diffusion
model [23, 52] began to be applied for I2I [13, 37].

Unsupervised IID models. Acquiring ground-truth albedo
and shade corresponding to an input image in general scenes
presents a considerable challenge, thus necessitating the
use of unsupervised learning models that do not depend
on such ground truths. To facilitate IID in the absence of
ground truths, two primary strategies are employed, one
using multiple images captured under different conditions
and the other using a single image and synthetic data for
albedo and shade domains that do not correspond to the im-
age. As the first strategy, models have been trained using
pairs of images under varying illumination conditions [44],
as well as sequences of related images [65]. More recent
models [6, 7, 21, 48, 57, 66, 68, 72] leveraging the neural ra-
diance field (NeRF) [47] framework from multi-view im-
ages have been proposed. Conversely, as the second strat-
egy, USI3D [42] employs an image for IID and the synthetic
albedo and shade domain data for ensuring albedo or shade
domain likelihood, resulting in the enhancement of the de-
composition quality without direct ground truth. In addi-
tion, IID-LI [54] has incorporated LiDAR intensity based
on USI3D to reduce cast shadows and demonstrated im-
pressive IID performance. However, IID-LI has restricted
applicability due to the requirement for LiDAR intensity
even during inference. Thus, IID models employing only
a single image during inference while keeping as high IID
quality as IID-LI are highly desired.

LiDAR intensity utilization. LiDAR is a device for mea-
suring the distance to the object surfaces based on the time
of flight from infrared laser irradiation to the reception of
reflected light. In addition, LiDAR also captures the in-
tensity of the reflected light from the object surfaces, com-
monly referred to LiDAR intensity. This LiDAR intensity
is unaffected by variations in sunlight conditions or shad-
ing while preserving the texture of object surfaces as illus-
trated in Fig. 2. Thus, LiDAR intensity has the potential for
effective utilization in the context of IID tasks. Also, Li-
DAR intensity is widely applied due to its ability to depict
surface properties, for instance, shadow detection [20, 53],
hyper-spectral data correction [8, 51], and object recogni-
tion [29,33,38,45]. Note that LiDAR and a camera typically
operate in distinct wavelength bands; the near-infrared band
and the visible light band, respectively. Hence, LiDAR in-
tensity is not to be used directly as for ground-truth albedo.
LIET approaches the difference in wavelength by calculat-
ing loss with albedo inferred from LiDAR intensity, rather
than direct utilization.

(c) LiDAR intensity(a) Image (b) Gray₋scale image

Figure 2. Examples of (a) input image, (b) gray-scale image, and
(c) its corresponding LiDAR intensity. The red circle indicates
the regions with cast shadows and white arrows. The shadow and
the white arrow are visible in gray-scale image. LiDAR intensity
has no cast shadows while maintaining white arrows, since LiDAR
intensity is calculated from the intensity ratio of irradiated and re-
flected lights, equivalent to an albedo at infrared wavelength.

3. Proposed model (LIET)
3.1. Problem formulation

This section describes the problem formulation ad-
dressed by LIET framework. Firstly, the inference process
employs only a real-world image xI to infer albedo xRI and
shade xSI. Meanwhile the training process employs a set of
a real-world image xI and its corresponding LiDAR inten-
sity xL to infer albedo xRI and shade xSI. The ground-truth
albedo and shade corresponding to the image are not uti-
lized due the difficulty of obtaining ground truths in the real
world. Instead of these ground truths, albedo xR and shade
xS derived from synthetic dataset that do not corresponding
to the image xI are utilized, thereby enabling calculation of
the distributions for albedo and shade.

3.2. USI3D architecture

Before introducing the details of LIET, we describe
USI3D, which is the baseline of LIET.

Overview. USI3D [42] consists of within-domain recon-
struction and cross-domain translation as illustrated in light-
blue regions of Fig. 3. The within-domain reconstruction
aims to extract features for each domain of image xI, albedo
xR, and shade xS by encoders and decoders. The cross-
domain translation infers albedo xRI and shade xSI from an
input image xI. Simultaneously inferring multiple domains
helps extract contents common across domains, hence in-
ferring both albedo and shade leads to enhance IID quality
compared to inferring only albedo.

Within-domain reconstruction. As illustrated in Fig. 3
(a), for each domain including image I, albedo R, and shade
S, an input xX is fed into style encoder Ep

X and content
encoder Ec

X to derive style code pX and content code cX,
respectively, for X ∈ {I,R,S}. These codes are input to
domain-specific generators GX, reconstructing the inputs
within their respective domains xXX. For example, for an
image xI, the image-style encoder Ep

I and image-content
encoder Ec

I are utilized to extract image-style code pI and
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USI3D LIET original

Figure 3. LIET architecture including (a) within-domain reconstruction and (b) cross-domain translation. (a) For each domain (image I,
LiDAR intensity L, albedo R, shade S), an input xX is fed into style Ep

X and content Ec
X encoders to calculate style pX and content cX

codes for domain X ∈ {I,L,R, S}. These codes are used at generators GX to reconstruct the inputs within their domains. (b) The image-
encoder path accepts an image xI and infers albedo xRI, shade xSI, and LiDAR xLI through image encoders (Ep

I , E
c
I ), a style mapping

function fI, and generators (GR, GS, GL). Similarly, the LiDAR-encoder path uses xL to infer albedo xRL, shade xSL, and image xIL.
The AA loss LAA aligns the gray-scaled albedo from an image to that inferred from the LiDAR intensity to reduce cast shadows.

image-content code cI, respectively. The reconstructed im-
age xII is inferred by image generator GI(cI, pI). Analo-
gous processes apply for albedo and shade reconstructions.

Cross-domain translation. For cross-domain translation,
an input image xI is processed to infer albedo xRI and shade
xSI. First, an input xI is fed into image-style encoder Ep

I

and image-content encoder Ec
I to derive image-style code

pI and image-content code cI, respectively. A style mapping
function fI then adjusts pI to generate domain-specific style
codes for albedo pRI and shade pSI. Subsequently, these
style codes, alongside cI, are input into their respective gen-
erators (GR(cI, pRI), GS(cI, pSI)) to infer the albedo xRI

and shade xSI, respectively. Note that all encoders and
decoders are shared between within-domain reconstruction
and cross-domain translation.

Adversarial training. To improve the translation quality
from the source domain into the target domain, the trans-
lated images are input into discriminators. Discriminators
for albedo DR and shade DS are implemented for adversar-
ial training. For instance, the albedo inferred from image
xRI and the albedo domain data xR are provided into the
albedo discriminator DR to evaluate the domain likelihood.

3.3. LIET architectures

Overview. LIET is based on USI3D and consists of within-
domain reconstruction and cross-domain translation as il-
lustrated in Fig. 3. In the same manner as USI3D, LIET
infers albedo xRI and shade xSI from an image xI in image-
encoder path. To support the image-encoder path, we intro-
duce LiDAR-encoder path inferring albedo xRL and shade
xSL from LiDAR intensity xL. In addition, to transfer the
illumination-invariant property of LiDAR intensity to the
image-encoder path, we introduce an AA loss LAA align-
ing the albedo inferred from an image xRI to that from its
corresponding LiDAR intensity xRL. Since an image and its
corresponding LiDAR intensity share the contents but differ
in style, we also introduce ILC paths that mutually trans-
late the style of image and LiDAR intensity to support the
separation of an image into contents and style. The infer-
ence from an image is achieved by utilizing only the image-
encoder path during inference, while both paths are utilized
during training. Note that all encoders and decoders are
shared in within-domain reconstruction, the image-encoder
path, and the LiDAR-encoder path. For comparing an im-
age linearly with LiDAR intensity, we convert a sRGB im-
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age to linear RGB before inputting it into LIET, and revert
the inferred albedo and shade back to sRGB for better hu-
man visibility.

Within-domain reconstruction. In the same manner as
USI3D, within-domain reconstructions for image, albedo,
and shade are implemented. In addition, reconstruction for
LiDAR intensity xL is also implemented in LIET as shown
in Fig. 3 (a), to extract features of LiDAR intensity. The Li-
DAR intensity xL is input into LiDAR-style encoder Ep

L and
LiDAR-content encoder Ec

L to calculate the LiDAR-style
code pL and LiDAR-content code cL, respectively. Subse-
quently, LiDAR generator GL(cL, pL) is utilized to recon-
struct the LiDAR intensity xLL.

Cross-domain translation. As illustrated in the light-blue
region of Fig. 3 (b), USI3D infers albedo xRI and shade
xSI from an image xI. Within the LIET framework, the
objective is to maintain the use of solely an image xI as in-
puts during inference, while simultaneously leveraging both
the image xI and LiDAR intensity xL during training. To
this end, alongside the conventional image-encoder path, a
LiDAR-encoder path employs LiDAR intensity xL to infer
albedo xRL and shade xSL. The LiDAR intensity xL is fed
into LiDAR-style encoder Ep

L and LiDAR-content encoder
Ec

L to calculate the LiDAR-style pL and LiDAR-content cL
codes, respectively. The LiDAR-style pL is input into the
style mapping function fL to infer style codes for albedo
pRL and shade pSL. Finally, these style and content codes
are fed into generators (GR(cL, pRL), GS(cL, pSL)) to in-
fer albedo xRL and shade xSL. This partially-shared model
supports the concurrent objectives of effectively leveraging
LiDAR intensity during training and maintaining exclusive
reliance on an image input during inference.

Image-LiDAR conversion (ILC) paths. As illustrated in
the light-blue region of Fig. 3 (b), USI3D separates an im-
age xI into content code cI and style code pI to infer albedo
xRI and shade xSI, and this separation process is critical as
it directly impacts the IID quality. Since USI3D utilizes the
independence datasets for image xI, albedo xR and shade
xS without shared content, this separation relies solely on
the style information unique to each domain. On the other
hand, in this problem formulation, LiDAR intensity xL cor-
responding to the image xI is also available. This helps us
separate an image into content and style codes (cI, pI) ac-
curately since the image and LiDAR intensity should share
the content. LIET incorporates the decoder GL(cI, pLI) for
inferring the LiDAR intensity in the image-encoder path,
thereby, the content code cI and style code pI of the input
image are effortlessly separated. Furthermore, to enhance
the inference quality of albedo xRL and shade xSL from the
LiDAR intensity xL, the image inference path is also added
to the LiDAR-encoder path in the same manner as the im-
age to LiDAR intensity path.

Adversarial training. Similar to USI3D, inferred albedo
xRI and shade xSI from an image xI is input into albedo
discriminator DR and shade discriminator DS, respectively,
to improve the translation quality from the source domain
into the target domain. In LIET, due to the incorporation of
the LiDAR-encoder path, the albedo xRL and shade xSL in-
ferred from LiDAR intensity xL are also input into their re-
spective discriminators (DR, DS). Furthermore, along with
the ILC paths, inferred LiDAR intensity xLI and image xIL

are also evaluated by LiDAR-intensity discriminator DL

and image discriminator DI, respectively.

3.4. Losses

In this section, we describe the loss functions computed
during within-domain reconstruction and cross-domain
translation.

Image reconstruction loss Limg. Initially, the input images
should be reconstructed after passing through the within-
domain reconstruction process; hence image reconstruction
loss Limg is defined in Eq. (1).

Limg =
∑

X∈{I,L,R,S}

|xXX − xX|, (1)

where xII, xLL, xRR, and xSS are reconstructed images by
within-domain reconstruction for image, LiDAR intensity,
albedo, and shade, respectively.

Style reconstruction loss Lsty and content code recon-
struction loss Lcnt. Since the reconstructed images should
maintain their styles and contents, the style reconstruction
loss Lsty and content code reconstruction loss Lcnt are de-
fined in Eq. (2) and Eq. (3), respectively.

Lsty =
∑

X∈{L,R,S}

|Ep
X(xXI)−pXI|+

∑
X∈{I,R,S}

|Ep
X(xXL)−pXL|, (2)

Lcnt =
∑

X∈{L,R,S}

|Ec
X(xXI)− cXI|+

∑
X∈{I,R,S}

|Ec
X(xXL)− cXL|. (3)

Adversarial loss Ladv. Moreover, the adversarial loss
Ladv [18] is defined as Eq. (4) to ensure that the image in-
ferred through cross-domain translation aligns with the dis-
tribution of the target domain.

Ladv =
∑

X∈{L,R,S}

log(1−DX(xXI))

+
∑

X∈{I,R,S}

log(1−DX(xXL)) +
∑

X∈{I,L,R,S}

log(DX(xX)) (4)

VGG loss LVGG. To preserve the object edges and colors of
the input image, the distance between the input image and
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the inferred albedo within the VGG feature space is com-
puted [12, 56, 62] for the VGG loss LVGG [28] in Eq. (5).

LVGG = |V (xI)− V (xRI)|, (5)

where V is pre-trained visual-perception network such as
VGG-19 [56].

KLD loss LKLD. Additionally, the Kullback-Leibler diver-
gence (KLD) loss LKLD is formulated as Eq. (6) to align
the distributions of inferred albedo style pRI and shade style
pSI from an image with those calculated from synthetic data
(pR, pS) facilitated by a style mapping function.

LKLD = pR · log pR
pRI

+ pS · log pS
pSI

. (6)

Physical loss Lphy. Given the assumption of a Lambertian
surface in the IID task, the product of albedo and shade is
expected to match the input image. Thus physical loss Lphy

is defined in Eq. (7).

Lphy = |xI − xRI · xSI|+ |xL − xRL · xSL|. (7)

Albedo-alignment loss LAA. To improve the IID quality,
we propose AA loss LAA as depicted in Fig. 4, aligning the
gray-scale albedo from an image to that inferred from its
corresponding LiDAR intensity. Since the albedo inferred
from LiDAR intensity xRL is independent of daylight con-
ditions and cast shadows, the IID quality is expected to im-
prove by aligning the albedo inferred from an image xRI

to that inferred from LiDAR intensity xRL. Additionally,
these albedos are required to compare in gray scale due to
the lack of hue in LiDAR intensity. Thus, AA loss LAA is
defined in Eq. (8) to compute the distance between xRI and
xRL in gray scale.

LAA = |In(xRI ·mL)− In(xRL ·mL)|, (8)

where mL represents the mask denoting the presence of
LiDAR intensity values. In(·) is an instance normaliza-
tion [59] and gray-scale function. The instance normaliza-
tion is used to align the scales of xRI and xRL. In addition, a
stop gradient is performed on the LiDAR-encoder path side
to align xRI to xRL.

In summary, LIET optimizes the loss function in Eq. (9).

LLIET = Ladv + λimgLimg + λstyLsty + λcntLcnt

+ λKLDLKLD + λVGGLVGG + λphyLphy + λAALAA.
(9)

λimg, λsty, λcnt, λKLD, λVGG, λphy, and λAA are hyper pa-
rameters for balancing the losses. The effects of each hyper
parameter are detailed in the supplementary materials.

Figure 4. Calculation process of AA loss LAA. First, albedo from
an image xRI and that from LiDAR intensity xRL are computed.
Subsequently, these albedos are masked to the points with LiDAR
values and then gray scaled. Next, instance normalization (inst.
norm.) is performed to align the scales of these albedos, and the
distance between these scaled albedos is calculated. A stop gra-
dient is performed on the LiDAR-encoder path side to align xRI

to xRL since the LiDAR intensity is independent of sunlight con-
ditions. LiDAR intensity, scaled albedo from the image, and that
from LiDAR intensity are represented in a cividis color map due
to their gray scale.

4. Experiments

4.1. Experimental setting

Dataset. To facilitate IID using LiDAR intensity dur-
ing training, we employ the NTT-IID dataset [54], which
consists of images, LiDAR intensities, and annotations de-
signed for evaluating IID quality. The NTT-IID dataset pre-
pares 10,000 pairs of images measuring outdoor scenes and
LiDAR intensity mapped to these images. Among these
pairs, 110 samples have been annotated, yielding a total
of 12,626 human judgments. Additionally, we utilized the
FSVG dataset [31] as the target domain for albedo and
shade. In this paper, we employ the same albedo and shade
samples as those used in IID-LI [54]. Note that, the shade
samples in FSVG dataset represent in grayscale, shades in
this paper do not consider illumination color as following to
previous papers [42, 54].

Evaluation metrics. For quantitative evaluation, we em-
ploy the following metrics: the weighted human disagree-
ment rate (WHDR), precision, recall, and F-score for all and
random sampled annotation2, following the same method-
ology as IID-LI [54]. In addition, we evaluate the image
quality using five IQA models: MANIQA [64], TReS [17],
MUSIQ [30], HyperIQA [58], and DBCNN [67].

Implementation details. In LIET, the style code encoder
Ep

X, content code encoder Ec
X, generator GX, and discrim-

inator DX, (X ∈ {I, L,R, S}), are implemented with the

2NTT-IID dataset [54] also provides random sampled annotations to
eliminate bias in the number of annotations.
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Model Learning Random sampled annotation All annotation

F-score(↑) WHDR(↓) Precision(↑) Recall(↑) F-score(↑) WHDR(↓) Precision(↑) Recall(↑)

Baseline-R [4] No 0.350 0.527 0.375 0.440 0.306 0.531 0.393 0.445
Baseline-S [4] No 0.227 0.529 0.361 0.340 0.314 0.185 0.431 0.340
Retinex [19] No 0.420 0.452 0.523 0.445 0.469 0.187 0.496 0.455

Color Retinex [19] No 0.420 0.452 0.531 0.445 0.470 0.187 0.496 0.455
Bell et al. [4] No 0.414 0.446 0.504 0.453 0.457 0.213 0.467 0.463
Bi et al. [5] No 0.490 0.406 0.561 0.522 0.466 0.283 0.462 0.522

IIDWW [40] Unsup. 0.417 0.464 0.489 0.475 0.397 0.375 0.418 0.483
UidSequence [36] Unsup. 0.419 0.483 0.453 0.450 0.395 0.372 0.405 0.453

USI3D [42] Unsup. 0.454 0.422 0.539 0.500 0.446 0.287 0.444 0.504
IID-LI [54] Unsup. 0.602 0.353 0.625 0.596 0.521 0.227 0.517 0.591
LIET (ours) Unsup. 0.607 0.340 0.649 0.601 0.525 0.245 0.500 0.598

Revisiting* [16] Sup. 0.442 0.428 0.635 0.470 0.499 0.181 0.575 0.485

Table 1. Numerical comparison in IID quality with NTT-IID dataset [54]. Along with the existing paper [54], we evaluated (i) randomly
sampled annotation and (ii) all annotations. Red and blue fonts indicate the best and second-best results, respectively. For both randomly
sampled annotation and all annotations, LIET (ours) achieves comparable IID quality to IID-LI. In addition, Revisiting* [16] demonstrates
the better IID quality in two indices of all annotations. Due to biases in the distribution of all annotations, models that infers flatter albedos
are at an advantage in these metrics. Revisiting* [16], assuming local flatness of albedo in its training, demonstrates superior results by
aligning with this bias.

Figure 5. Examples of inferred albedos from various existing models and LIET (ours) with NTT-IID dataset [54]. The compared models
include Revisiting* [16], IIDWW [40], UidSequence [36], USI3D [42], and IID-LI [54]. Shadows are less noticeable on the IID-LI and
LIET, while cast shadows are visibly retained on the existing models without LiDAR intensity utilization as marked by red square.

same model structures and parameters as USI3D [42]3 and
IID-LI. The style encoders Ep

X, the content code encoders
Ec

X, the decoders GX, and the discriminators DX consist of
convolutional layers, down-sampling layers, global average
pooling layers, dense layers, and residual blocks. Notably,
the residual blocks incorporate adaptive instance normaliza-
tion (AdaIN) [24], and the AdaIN parameters are dynami-
cally determined using a multi-layer perceptron (MLP). To
assess images from both global and local perspectives, a
multi-scale discriminator [62] is employed in discriminator
DX. Given a style code, style mapping functions fI and
fL are constructed by MLP. We empirically set the follow-
ing values for the hyper parameters: λimg = 100.0, λsty =

3LIET is implemented based on USI3D
(https://github.com/DreamtaleCore/USI3D.git)

10.0, λcnt = 1.0, λKLD = 1.0, λV GG = 1.0, λphy = 10.0,
and λAA = 100.0 as detailed in supplementary materials.

4.2. Intrinsic image decomposition quality

LIET is compared with energy optimization models in-
cluding baseline-R [4], baseline-S [4], Retinex [19], Color
Retinex [19], Bell et al. [4], and Bi et al. [5]. Addition-
ally, IIDWW [40], UidSequence [36], USI3D [42], and IID-
LI [54] are implemented as unsupervised learning models.
Furthermore, Revisiting* [16] is also evaluated as a super-
vised model. As shown in Tab. 1, LIET demonstrates a
comparable performance to that of IID-LI which utilizes
a single image and LiDAR intensity during inference, de-
spite inputting only a single image in LIET. With all anno-
tation, Revisiting* [16] performed better on the two met-
rics. This model incorporates an albedo flattening module,
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Model MANIQA(↑) TReS(↑) MUSIQ(↑) HYPERIQA(↑) DBCNN(↑)

Input 0.664 81.1 59.2 0.595 58.1

USI3D [42] 0.488 53.1 40.1 0.298 35.3
IID-LI [54] 0.460 55.5 43.5 0.285 37.5
LIET (ours) 0.570 75.1 56.3 0.414 46.3

Revisiting* [16] 0.395 55.4 44.9 0.389 38.1

Table 2. Numerical comparison in IQA between LIET and
the top three models in IID quality including Revisiting* [16],
USI3D [42], and IID-LI [54]. Our findings demonstrate that the
images inferred by LIET consistently exhibited the highest image
quality across all metrics. This comparable performance can be
attributed to the absence of image blurring and collapse.

and these metrics are more favorable for inferring flat albe-
dos due to the annotation bias. Additionally, Revisiting* is
difficult to train due to the requirement for a large amount
of WHDR annotations. Subsequently, the qualitative re-
sults of existing models and LIET are illustrated in Fig. 5.
Compared to other IID models, both IID-LI and LIET yield
inferred albedos with less noticeable shadows due to the
LiDAR intensity utilization. Though Revisiting* [16] ex-
hibits a flattened appearance, leading to favorable quantita-
tive outcomes, cast shadows within the images still remain.
On the other hand, inferred shades are depicted in supple-
mentary materials. In unsupervised IID models, treating
albedo and shade as styles achieves reasonable performance
without supervision. However, these are not strictly styles.
Thus, incorporating physical constraints from illumination
models and geometry components, to bridge the gap caused
by treating reflectance and illumination as styles, could en-
hance inference performance.

4.3. Image quality

Subsequently, we conducted an IQA comparison be-
tween LIET and the top three models for their IID qual-
ity: Revisiting* [16], USI3D [42], and IID-LI [54]. As
shown in Tab. 2, LIET achieves the highest quality across
all five evaluation metrics. Revisiting* [16] is trained with
relative gray-scaled albedo between nearby points. Thus
the model output tends to reduce saturation and leads to re-
ducing IQA ratings. Additionally, both USI3D and IID-LI
enhance IID quality through a smoothing process that as-
sumes local albedo flatness. As a result, the images inferred
by these models tend to exhibit blurriness, leading to lower
IQA ratings. Conversely, in LIET, since fine shadows de-
rived from cast shadows are absent in LiDAR intensity, the
albedo inferred from LiDAR intensity has less variation in
luminance. LIET achieves albedo local flatness without us-
ing smoothing loss due to the alignment of the albedo in-
ferred from LiDAR intensity with the albedo inferred from
the image by AA loss. The effect of smooth loss is de-
scribed in the next section.

Model F-score(↑) WHDR(↓) Precision(↑) Recall(↑)

Ours 0.607 0.340 0.649 0.601
w/o LAA 0.437 0.473 0.497 0.476
w/o inst. 0.489 0.447 0.520 0.505
w/o gray 0.601 0.359 0.623 0.596

w/o ILC paths 0.589 0.361 0.641 0.581

Table 3. Effect of AA loss LAA. ”w/o inst.” describes the loss
LAA calculated without instance normalization in AA loss. ”w/o
gray” refers to delete the gray scaling from AA loss.

4.4. Ablation study

This section describes an ablation study for the contri-
bution of AA loss and ILC paths. Tab. 3 demonstrates
the effect of AA loss due to the direct connection between
the image-encoder path and the LiDAR-encoder path dur-
ing training. Since the distribution of LiDAR intensity
varies across samples, features are well-trained by apply-
ing instance normalization rather than by scaling uniformly
across all samples. The inference quality is slightly im-
proved by aligning these albedos in gray scale, due to the
lack of hue in LiDAR intensity. Additionally, the ILC paths
contributes separating an image into content and style codes
by mutually translating the image and LiDAR intensity,
which share the contents but differ styles. Thus, the IID
quality is improved by ILC paths. Without the stop gradi-
ent in LAA, XRI and XRL tend to converge to flat images
to simply minimize LAA, resulting in unstable training and
undesirable outputs. The ablation study of the model archi-
tecture is described in supplementary material.

5. Conclusion

In this paper, we proposed unsupervised single-image in-
trinsic image decomposition with LiDAR intensity enhanced
training (LIET). We proposed a novel approach in which
an image and LiDAR intensity are individually fed into the
model during training, while the inference process only em-
ploys a single image. To calculate the relationship between
the image-encoder path and the LiDAR-encoder path, we
introduced AA loss to align the albedo inferred from a sin-
gle image to that from LiDAR intensity, and ILC paths to
enhance the separation of contents and styles. As a re-
sult, LIET achieved performance comparable to state-of-
the-art in IID quality metrics while only employing a sin-
gle image as input during inference. Furthermore, LIET
demonstrated improvements in image quality supported by
the five most recent IQA metrics. While this study focused
on Lambertian surfaces for IID, utilizing additional domain
data (hyperspectral image/ multi-bounce LiDAR) could ex-
tend the applicability of LIET to diffuse-specular mixed sur-
faces [15, 22].

2375



References
[1] Harry Barrow, J Tenenbaum, A Hanson, and E Riseman. Re-

covering Intrinsic Scene Characteristics from Images. Com-
puter Vision Systems, 2(3-26):2, 1978. 1

[2] Anil S Baslamisli, Thomas T Groenestege, Partha Das,
Hoang-An Le, Sezer Karaoglu, and Theo Gevers. Joint
Learning of Intrinsic Images and Semantic Segmentation. In
ECCV, pages 286–302, 2018. 1

[3] Shida Beigpour and Joost Van De Weijer. Object recoloring
based on intrinsic image estimation. In ICCV, pages 327–
334, 2011. 1

[4] Sean Bell, Kavita Bala, and Noah Snavely. Intrinsic Images
in the Wild. ACM TOG, 33(4):1–12, 2014. 1, 2, 7

[5] Sai Bi, Xiaoguang Han, and Yizhou Yu. An L1 image trans-
form for edge-preserving smoothing and scene-level intrinsic
decomposition. ACM TOG, 34(4):1–12, 2015. 1, 2, 7

[6] Mark Boss, Raphael Braun, Varun Jampani, Jonathan T Bar-
ron, Ce Liu, and Hendrik Lensch. NeRD: Neural Reflectance
Decomposition from Image Collections. In ICCV, pages
12684–12694, 2021. 3

[7] Mark Boss, Varun Jampani, Raphael Braun, Ce Liu,
Jonathan Barron, and Hendrik Lensch. Neural-PIL: Neu-
ral Pre-Integrated Lighting for Reflectance Decomposition.
NeurIPS, 34:10691–10704, 2021. 3

[8] Maximilian Brell, Karl Segl, Luis Guanter, and Bodo
Bookhagen. Hyperspectral and Lidar Intensity Data Fusion:
A Framework for the Rigorous Correction of Illumination,
Anisotropic Effects, and Cross Calibration. IEEE Transac-
tions on Geoscience and Remote Sensing, 55(5):2799–2810,
2017. 3

[9] Daniel J Butler, Jonas Wulff, Garrett B Stanley, and
Michael J Black. A Naturalistic Open Source Movie for Op-
tical Flow Evaluation. In ECCV, pages 611–625, 2012. 2

[10] Angel X Chang, Thomas Funkhouser, Leonidas Guibas, Pat
Hanrahan, Qixing Huang, Zimo Li, Silvio Savarese, Mano-
lis Savva, Shuran Song, Hao Su, et al. ShapeNet: An
Information-Rich 3D Model Repository. arXiv preprint
arXiv:1512.03012, 2015. 2

[11] Qifeng Chen and Vladlen Koltun. A Simple Model for In-
trinsic Image Decomposition with Depth Cues. In ICCV,
pages 241–248, 2013. 1

[12] Qifeng Chen and Vladlen Koltun. Photographic Image Syn-
thesis with Cascaded Refinement Networks. In ICCV, pages
1511–1520, 2017. 6

[13] Bin Cheng, Zuhao Liu, Yunbo Peng, and Yue Lin. General
Image-to-Image Translation with One-Shot Image Guidance.
In ICCV, pages 22736–22746, 2023. 3

[14] Yunjey Choi, Minje Choi, Munyoung Kim, Jung-Woo Ha,
Sunghun Kim, and Jaegul Choo. StarGAN: Unified Gen-
erative Adversarial Networks for Multi-Domain Image-to-
Image Translation. In CVPR, pages 8789–8797, 2018. 2

[15] Gamal ElMasry, Pere Gou, and Salim Al-Rejaie. Effective-
ness of specularity removal from hyperspectral images on
the quality of spectral signatures of food products. Journal
of Food Engineering, 289:110148, 2021. 8

[16] Qingnan Fan, Jiaolong Yang, Gang Hua, Baoquan Chen, and
David Wipf. Revisiting Deep Intrinsic Image Decomposi-
tions. In CVPR, pages 8944–8952, 2018. 1, 2, 7, 8

[17] S Alireza Golestaneh, Saba Dadsetan, and Kris M Kitani.
No-Reference Image Quality Assessment via Transformers,
Relative Ranking, and Self-Consistency. In WACV, pages
1220–1230, 2022. 2, 6

[18] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing
Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and
Yoshua Bengio. Generative Adversarial Nets. NeurIPS,
27:139–144, 2014. 2, 5

[19] Roger Grosse, Micah K Johnson, Edward H Adelson, and
William T Freeman. Ground truth dataset and baseline eval-
uations for intrinsic image algorithms. In ICCV, pages 2335–
2342, 2009. 1, 2, 7

[20] Maximilien Guislain, Julie Digne, Raphaëlle Chaine, Dim-
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