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Abstract

Cross-View Geo-Localisation within urban regions is
challenging in part due to the lack of geo-spatial struc-
turing within current datasets and techniques. We pro-
pose utilising graph representations to model sequences
of local observations and the connectivity of the target
location. Modelling as a graph enables generating pre-
viously unseen sequences by sampling with new parame-
ter configurations. To leverage this newly available infor-
mation, we propose a GNN-based architecture, producing
spatially strong embeddings and improving discriminabil-
ity over isolated image embeddings. We outline SpaG-
BOL, introducing three novel contributions. 1) The first
graph-structured dataset for Cross-View Geo-Localisation,
containing multiple streetview images per node to improve
generalisation. 2) Introducing GNNs to the problem, we
develop the first system that exploits the correlation be-
tween node proximity and feature similarity. 3) Lever-
aging the unique properties of the graph representation -
we demonstrate a novel retrieval filtering approach based
on neighbourhood bearings. SpaGBOL achieves state-of-
the-art accuracies on the unseen test graph - with rela-
tive Top-1 retrieval improvements on previous techniques of
11%, and 50% when filtering with Bearing Vector Match-
ing on the SpaGBOL dataset. Code and dataset available:
github.com/tavisshore/SpaGBOL.

1. Introduction

Localisation is essential in many robotics applica-
tions. Techniques like Global Navigation Satellite Systems
(GNSS) provide absolute positioning data but often fail in
environments like urban canyons, where occlusions and re-
flections interfere with satellite signals. Image-based locali-
sation offers an alternative approach, enabling a machine to
determine its position by capturing images of its surround-
ings and comparing them to pre-recorded geo-referenced
images. Most modern vehicles are equipped with cameras,
simplifying the adoption of image-based localisation.

Two main retrieval-based image localisation techniques

Query

Filtered Top-K

Query

It

It-2

It-1

N

Ref Walks

N

Build

Graph

KDTree

BVM
GTPred

Bearing Vector
Matching

Top-K
[1 0 1 0]

[1 1 1 0]

GNN

Figure 1. At inference time, a KDTree is constructed from exhaus-
tive reference walks sampled from the city’s graph. A randomly
selected query walk passes through the network, retrieving cor-
responding embeddings from the KDTree ordered in descending
similarity. These are further filtered to the set of compatible nodes
with Bearing Vector Matching (BVM).

are: image-to-image localisation, where query and ref-
erence images are taken from the same perspective, and
Cross-View Geo-localisation (CVGL), where street view
query images are matched with a database of satellite im-
ages. Both with the same objective - returning the ge-
ographic coordinates of the retrieved image. Existing
CVGL techniques primarily focus on sparse streetview-
satellite image pairs - randomly sampled from across vast
regions, disregarding the geo-spatial structure and relation-
ships between neighbouring regions. Sequential CVGL ex-
tends single-image techniques, querying multiple images
to strength representations - extracting features with cross-
frame information. This provides a more practical solution,
and estimates position with higher confidence and preci-
sion. These datasets and techniques succeed in learning
related features between the viewpoints but still consider
data as sequences of separate image pairs with no spatial
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structure beyond chronology. Reference data remains un-
structured with no geo-spatial metadata, limiting real-world
representational accuracy. This can make it challenging to
recognise new sequences which partially overlap or com-
bine several existing sequences seen during training. To im-
prove the feasibility of CVGL, research should be focused
to regions most likely to experience GNSS communication
failure, dense urban city centres. The design of image lo-
calisation techniques should progress to expect any possible
sequence of images within the considered regions.

We propose structuring image localisation data as graph
networks. This adds crucial geo-spatial information, en-
abling the generation of unseen sequences of desired length.
Progressing to this data representation is relatively simple
as the target of our system, urban canyons within dense city
centres, generally have existing accurate graph representa-
tions within many Geographic Information Systems (GIS).
We therefore propose utilising GNNs to improve CVGL
within this novel representation, storing sets of streetview
images and satellite images at junctions (graph nodes), with
connecting roads represented as the graph edges between
these nodes. A brief overview of the proposed system is
displayed in Figure 1. To solidify our proposal into the
progression of CVGL towards real-world feasibility, we
release the Spatial-Graph-Based Orientated Localisation
(SpaGBOL) dataset: a dense multi-city graph-based CVGL
dataset with multiple streetview images per satellite image
- allowing for generalisation across time, weather, and
lighting. This dataset is split into training and test sets,
comprising of 9 cities and 1 city respectively. We prove
the positive impact that graph representation has on CVGL
performance due to strengthened feature representation and
filtering by neighbourhood road bearings - valid within this
city-scale due to neighbouring node’s close proximity.

In summary, our research contributions are:

• Introduce a new direction for CVGL research, moving
from sparse cross-view image retrieval and sequential
image retrieval into spatially-strong dense image re-
trieval, moving the field closer to real-world feasibility
for assisting GNSS techniques in urban environments.

• Propose an introductory GNN model utilising data
along graph walks to create strong representations,
also exploiting derived characteristics to filter re-
trievals with Bearing Vector Matching (BVM), greatly
improving performance.

• Release a dense multi-city graph-based CVGL dataset,
SpaGBOL, containing train and test set graphs with
corresponding images from a sample of the densest
city centres across the globe.

2. Related Works

2.1. Cross-View Geo-Localisation

The predominant technique for CVGL is embedding re-
trieval. Novel techniques are being proposed at an increas-
ing rate, aiming to improve performance by manipulating
extracted features, [1], [2], [3].

Deep learning was first introduced to CVGL by Work-
man and Jacobs [4], utilising CNNs for correlated feature
extraction across viewpoints, proving their suitability. Lin
et al. [5] extended this by regarding each query as unique
- using euclidean similarities for retrieving clusters. Vo
and Hays [6] then utilised aerial rotational information with
an auxiliary loss, observing the impact of image misalign-
ment - leading to our incorporating of a compass in or-
der to aid system performance. CVM-Net [7] appended
NetVLAD [8] to a siamese CNN architecture, aggregating
residuals of local features to cluster centroids - improving
accuracy though greatly increasing complexity. Zhu et al.
[9] leveraged activation maps to estimate orientation. Sun
et al. [10] created a capsule network following a ResNet
backbone, improving upon CVM-Net performance by ap-
proximately 10%. Liu and Li [11] inserted orientation in-
formation to the problem, improving the representational
robustness of their latent space. Shi et al. [12] developed
a spatial attention mechanism, improving feature alignment
between views. Regmi et al. [13] created a conditional GAN
to synthesise aerial representations of ground-level panora-
mas. Shi et al. [14], [15] proposed techniques for increasing
the similarity of features across viewpoints before applying
them to limited-Field-of-View (FOV) data. This is impor-
tant due to the ubiquity of monocular cameras compared
with panoramic cameras; essential for wide-spread feasibil-
ity and adoption. [15] computes feature correlation between
ground-level images and polar-transformed aerial images,
shifting and cropping at the strongest alignment before per-
forming image retrieval.

Toker et al. [16] proposed synthesising streetview im-
ages from aerial image queries before performing image re-
trieval. L2LTR [17] developed a CNN+Transformer net-
work, combining a ResNet backbone with a vanilla ViT
encoder. TransGeo [1] proposed a transformer that uses
an attention-guided non-uniform cropping strategy to re-
move uninformative areas. In GeoDTR [18] and their
following work GeoDTR+ [19], Zhang et al. disentan-
gle geometric information from raw features, learning spa-
tial correlations among visual features to increase perfor-
mance. Zhu et al. [2] introduce SAIG, an attention-based
backbone for CVGL, representing long-range interactions
among patches and cross-view relationships with multi-
head self-attention layers. BEV-CV [3] introduces Birds-
Eye-View (BEV) transforms, further reducing the represen-
tation difference between viewpoints to create more simi-
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Figure 2. SpaGBOL is a two-branch neural network with no weight-sharing, from left to right the network performs the following actions:
(1) Image feature extraction with ConvNext-T, (2) Depth-first walk image features → GNN embedding (red), (3) Produce neighbour
bearing vectors, (4) Perform embedding retrieval from the KDTree, (5) Filter retrievals with bearings to return final geo-coordinates.

lar embeddings. Sample4Geo [20] propose two sampling
strategies for CVGL, sampling geographically for optimal
training initialisation, and mining hard-negatives according
to visual similarities between embeddings. Generally, the
above works all focus on developing more similar embed-
dings for either sparsely sampled image pairs or relatively
limited image sequences. In contrast, we transition CVGL
to methods that more closely represent real GNSS-denied
regions, advancing the field towards practical application.

2.2. Graph-Based Localisation

Graph-networks and GNNs have not previously been
utilised in the field of CVGL. They have however been
applied to related fields, from localising objects within
scene graphs to mapping out environments for graph-based
SLAM. We outline some key related works that contributed
to our proposition of their application for CVGL.

Graph-based SLAM techniques construct a graph map-
ping of an environment while simultaneously localising an
agent within the map. Heinzle et al. [21] introduce pattern
recognition within road networks - aiming to perform auto-
matic localisation of city centres. Grisetti et al. [22] display
an overview of Graph-based SLAM methods, represent-
ing generally GNSS-denied indoor environments as graphs,
localising within the graph using probabilistic techniques.
Kümmerle et al. [23] introduces the use of aerial priors
alongside sensor data to improve map creation for graph-
based SLAM. Annaiyan et al. [24] use stereo imaging to

construct and localise UAVs within a graph-based map. He
et al. [25] combine visual-LIDAR data to construct 3D maps
of environments, merging with a pose graph optimisation
procedure. Vysotska and Stachniss [26] present a search
heuristic aiming to efficiently find matches between an im-
age sequence and a database using a data association graph.
Johnson et al. [27] introduce a framework for semantic im-
age retrieval based on scene graphs, outperforming meth-
ods that only use low-level image features. Liu et al. [28]
leverage object level semantics and spatial environment un-
derstanding for localisation, improving performance where
extreme appearance changes occur. Giuliari et al. [29] use
Spatial Commonsense Graphs to localise objects in partial
scenes where nodes represent objects, and edges represent
pairwise distances between them. Finally we outlined ex-
amples of practical applications of both graph structures and
GNNs. [30] represent water utility networks as graphs, us-
ing Graph Convolutional Networks (GCNs) to predict nodal
pressures, and localise leaks. In a similar manner, [31] in-
troduce graphs and GNNs to localise epileptic seizure onset
zones, where nodes represent different regions of the brain.
Murai et al. [32] developed a graph-based collaborative lo-
calisation system for robots, globally localising via efficient
peer-to-peer communication. Most prior graph and GNN
works have attempted to learn similarities between related
examples from the same domain. In our work we attempt to
preform cross-view graph matching between images on the
ground, and those from a satellite.
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Figure 3. Corpus graph of London City Centre. Each graph is
square with sides of length 2km. Nodes (junctions) are shown
here in blue, with black edges (roads).

3. Methodology

3.1. CVGL Graph Representation

To store geographically dense collections of images with
a strong spatial structure we propose a graph representation,
improving feasibility and extending the potential techniques
suitable for CVGL - an example graph is shown in Figure 3.
We represent cities i ∈ {London, Tokyo, ...} as separate
graphs Gi = (Ni, Ei) with nodes Ni = {n1, n2, ..., nN}
and edges Ei = {e1,2, e1,3, ..., eE}. Nodes n represent road
junctions and edges ea,b represent roads connecting nodes
a and b. Figure 5 shows how the graphs are separated into
train/validation/test sets. For each node we collect a satel-
lite image and 5 corresponding panoramic streetview im-
ages captured over an extended period. Both image types
are RGB: It ∈ R3×W×H , t ∈ {street, sat}. Each node
holds attributes - ni = {Isat, I1..5street, L,Ψ, B}, where lo-
cation L = {ϕ, λ} contains geographical latitude and lon-
gitude coordinates, Ψ ∈ R : {−180◦ ≤ Ψ ≤ 180◦} is
the north-centred camera yaw, and B = {β1, ..., βK} are
north-aligned bearings to it’s K neighbouring nodes - where
β ∈ R : {−180◦ ≤ β ≤ 180◦}.

The panoramic streetview image (I∗street) FOV is var-
ied to evaluate the feasibility of using monocular cameras.
Cameras are assumed to be fixed to the vehicle in a forward-
facing configuration. Where FOV, Θ ∈ {360◦, 180◦, 90◦}:

Istreet = fov crop (I∗street,Θ,Ψ) (1)

The proposed system takes randomly sampled query

Figure 4. Random depth-first walk sample of length 3. Image
features are extracted from each node, passing through a GNN to
produce the final node embedding.

walks (exhaustive for reference set) W j
i of length l ∈

{1, ..., 5} as input from each node nj in graph Gi

W j
i = random walk(Gi(nj)) (2)

A walk representation is shown in Figure 4, randomly
selecting one depth-first walk from the target node’s avail-
able walks. This walk is then extracted from the corpus
graph as a subgraph - passing the streetview images, satel-
lite images, and other attributes through the correspond-
ing branches within the SpaGBOL network. The train-
ing/validation/testing walks are sampled from disconnected
graphs and subgraphs, as shown in Figure 5.

3.2. SpaGBOL Neural Network

During training, corresponding streetview and satellite
image walks are passed through SpaGBOL, shown in Fig-
ure 2. The network’s upper and lower branches are identical
but do not share any weights. Streetview queries are passed
through the upper branch and corresponding satellite targets
through the lower branch. Each branch first embeds it’s in-
puts through CNN backbones:

featstreet = CNNstreet

(
I
rand(0−4)
street

)
(3)

featsat = CNNsat (Isat) . (4)

A sequence of GNN layers then process the results, as

hk+1
nj

= σ
(
Ωk ·AGG

(
{hk

nu
,∀u ∈ WF }

))
(5)
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Figure 5. Splitting corpus graphs into train/validation/test sets.
Validation graphs are unconnected subgraphs of each training
graphs. The test graph is a wholly unseen city graph.

where hk+1
nj

is the updated embedding of node, nj at layer
k + 1, σ is an activation function, Ωk is a weight matrix for
layer k, AGG is a mean-based aggregating function com-
bining features from neighbouring nodes, hk

nu
is the em-

bedding of node nu at layer k, WF is the set of walk im-
age features where F ∈ {featstreet, featsat}. The out-
put graph embedding from the final layer is then hL

nj
. For

the streetview branch these final embeddings are notated as
ηjstreet while the satellite branch embeddings are ηjsat.

The network is trained using a triplet loss function, with
the objective of producing similar GNN embeddings for
corresponding streetview and satellite walks. We select
walk triplets by deeming a walk of streetview images as the
anchor, it’s corresponding walk of satellite images as the
positive, and randomly selecting an unrelated walk of satel-
lite images as the negative. More specifically, we utilise the
Triplet Loss Function:

L=

N∑
i=1

[
∥ηastreet − ηpsat∥

2
2 − ∥ηastreet − ηnsat∥

2
2 + α

]
(6)

where ηastreet, η
p
sat, and ηnsat are the anchor, positive, and

negative embeddings, respectively, ∥·∥2 is the Euclidean
norm, and α is the margin.

3.3. Bearing Vector Matching

A significant benefit of utilising graphs for CVGL is the
ability to efficiently filter route proposals. We pre-compute
both the number of neighbours at each node, and the relative
bearings (azimuth) to each neighbour. These relative bear-
ings θ ∈ {β0, ..., βK} are calculated using the geographic

[ 0 1 0 1 0 1 0 1 ]
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Query Image Road
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Filter
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dBin
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Figure 6. Road bearings may be estimated from panoramic
streetview images into a configurable number of bins. These can
then be matched against quantised bearings for retrievals.

coordinates of the two nodes (a and b):

βb=acos(sin(ϕa)·sin(ϕb)+cos(ϕa)·cos(ϕb)·cos(∆λ)) (7)

where ∆λ is the difference in longitude and ϕ is the lat-
itude of each node. These bearings are then quantised into
V bins, in the bearings vector Q = (Q0, Q1, ..., QV ):

Qυ =

{
1 ∃θ ∈ {β0, ..., βK} such that υ

V <
θ
2π≤

υ+1
V

0 otherwise
(8)

This creates a binary code describing the arrangement of
roads at this junction. Bins of equal width are used where
bin width ω = V

360 degrees, shifted by ω
2 degrees as the

camera is expected to be forward-facing, leaving the for-
wards road appearing in the centre of the midpoint bin. All
reference bearing vectors Qsat = {Q0, ..., QN} are com-
puted prior to evaluation.

At query time, bearings Qstreet may similarly be esti-
mated from the streetview images. For example a semantic
segmentation or BEV system can recognise areas of road
in different directions. The query and reference junction
vectors are then used to filter the image retrievals, discard-
ing retrievals with incompatible bearing vectors. More for-
mally, a retrieval is compatible if any bitwise shift operation
of the query matches the retrieval. This operation results in
filtered reference retrievals Q∗

sat from the overall reference
set Qsat whose bearing vectors equal the queries at some
shift.

Q∗
sat= {Q∈Qsat|∃υ such that Qstreet=shift(Q,υ)} (9)

Performance can be further increased if the vehicle’s yaw
is known. In this case, the input to the shift operation is
defined by the yaw. Figure 6 illustrates the bearing filter-
ing technique. The right-hand side displays retrievals de-
termined from SpaGBOL along with their pre-computed
bearing vectors. These are filtered using the query bear-
ings vector, determined from the query image. In this ex-
ample, the red-outlined embeddings are discarded as their
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SpaGBOL
Region Nodes Edges Walks
Tokyo 4,815 7,942 95,044

London 3,155 4,124 30,634
Philly 2,272 3,782 47,774

Brussels 2,190 3,403 35,959
Boston 1,567 2,403 26,180

Guildford 1,472 1,773 11,247
Chicago 1,159 1,935 25,824

New York 1,103 1,983 29,668
Singapore 1,043 1,567 15,241

Hong Kong 995 1,440 13,270
Total 19,771 28,912 330,841

Streetview 98,855
Satellite 19,771

VIGOR-Graph
Region Nodes Edges Walks

New York 3,880 6,771 96,176
San Francisco 3,288 5,337 67,942

Seattle 3,039 4,697 51,370
Chicago 2,295 3,771 49,212

Total 12,502 20,576 264,700

Table 1. Graph Attributes - No. unique walk samples of length 4

vectors don’t match the queries. The orange-outlined em-
bedding is a partial match, with the correct road positions
but misaligned. The green-outlined embedding shows a per-
fect match. Once retrievals have been filtered, the poten-
tial retrievals can be greatly narrowed down, increasing the
probability of a correct localisation.

4. Results
4.1. Datasets

The most significant current CVGL datasets (CVUSA
[33] and CVACT [11]) are unsuitable for conversion to a
graph structure as the data is too sparse. We convert the
older benchmark dataset VIGOR [34] into a graph struc-
ture, enabling similar assessment. VIGOR contains densely
collected image pairs from four cities within the USA:
New York, San Francisco, Chicago, and Seattle. To con-
vert VIGOR to a graph representation, we first retrieve the
graphs for each of these cities, with the same characteristics
as SpaGBOL - nodes represent junctions and edges repre-
sent roads. Each node is then assigned the image pairs clos-
est to their geographical coordinates. This results in 10,207
training nodes and 2,295 testing nodes - the system is evalu-
ated with sampled walks in the same manner as with SpaG-
BOL. SpaGBOL’s and VIGOR-Graph’s characteristics are
displayed in Table 1, with the total number of walks (when
walk length n = 4) to demonstrate the extensive sampling
capabilities when using graph structures.

Figure 7. SpaGBOL node data: satellite image & 2/5 correspond-
ing FOV-cropped streetview images - shown at different yaws.

SpaGBOL contains 18,204 Satellite-Streetview train-
ing+validation pairs and 1,567 testing pairs from across 10
cities, covering 2km2 per city. Satellite images are north-
aligned with a resolution of 0.2metres / pixel covering 50m2

(note some of these images may have been captured from
drones and other aerial image sources). Streetview images
are yaw-aligned panoramas with a resolution of 2048×512.
When limiting the FOV, images are cropped to the desired
FOV with yaw rotated away from the previous node. We
use Boston’s graph as the test set, with the remaining cities
used for training - separating a ninth of each training graph
for validation, as shown in Figure 5. More in-depth infor-
mation about the SpaGBOL dataset is given in the Supple-
mentary Material.

4.2. Implementation Details

Image features are extracted with a ConvNext-T [35],
producing 768-dimension embeddings. The sampled walk
embeddings are passed through a GNN which outputs re-
fined 64-dimension embeddings. All image embeddings
affect network learning, but only the target node embed-
dings are retained for evaluation. A KDTree of satellite im-
age embeddings is constructed. This is then queried with
each streetview image to retrieve the K closest embeddings.
Training occurs end-to-end, randomly sampling walks of
length n for each node per epoch, also randomly select-
ing the streetview image from each node’s streetview set.
SpaGBOL is trained with walk triplets for 100 epochs us-
ing an AdamW optimiser with an initial learning rate of
1e-4 and a ReduceLROnPlateau scheduler. Graphs during
validation and testing are distinct subsets, with one random
query walk per node and exhaustive reference walks.

4.3. Evaluation

We evaluate with Top-K recall accuracy, similar to pre-
vious works [1], [3], and [20], though we enhance per-
formance with retrieval filtering. A query is deemed suc-
cessful if the correct node is within the Top-K retrievals.
Top-K uses the absolute value of K for retrievals whereas
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Figure 8. Impact on recall accuracies when SpaGBOL characteristics are varied.

Top-K% uses the K% length of the database. As we are
proposing and releasing a novel dataset, we evaluate against
previous CVGL works whose code is publicly available.
We train each approach according to the optimal configura-
tions outlined in their papers/code. As this is the first work
to propose graph-based representations and techniques for
CVGL, we performed a variety of experiments on previ-
ous works, aiming to increase fairness. One experiment av-
eraged each embedding along sampled walks, another re-
duced potential reference embeddings at each stage along
a walk by performing Top-K retrievals sequentially - aim-
ing to increase retrieval accuracy. We found empirically
that prior works achieve the greatest accuracy when treat-
ing each node as an independent retrieval. Thus we train
competing techniques in this mode, to provide the strictest
baseline possible. We also evaluate how each technique per-
forms with limited-FOV images, including those originally
designed for panoramic inputs. Table 2 outlines the perfor-
mance for each work. SpaGBOL displays the performance
of the network with simple embedding retrieval. SpaG-
BOL+B demonstrates how a system can exploit the abil-
ity to filter embeddings based on the angles and presence
of neighbouring node’s edges. For limited-FOV evaluation,
these are only extracted from visible regions of the scene,
impacting filtering capabilities. BVM is not utilised where
FOV is below 180◦ due to lack of the required visual in-
formation. SpaGBOL+YB improves BVM’s potential, dis-
playing the increase in retrieval success when the yaw of the
vehicle is also known, i.e. with access to a simple compass.

Results from both datasets show that our proposal
achieves significant improvements over previous works,
specifically when performing CVGL in densely sampled
city-scale graphs. We demonstrated in Figure 8 that the in-
clusion of multiple streetview images per node improves
generalisation - increasing test performance by approxi-
mately 10% for each metric, when increasing from one
streetview image per node to five. Also showing that when

evaluating with the SpaGBOL dataset, the optimal walk
length was four, with performance dropping when exceed-
ing this. Utilising our GNN-based network achieves perfor-
mance increases of 11.18% on Top-1 retrievals on SpaG-
BOL. Also showing that the filtered GNN embeddings are
more robust to reduced FOV inputs with our Top-1 rela-
tively decreasing by approximately 12% compared to previ-
ous state of the art (SOTA) performance’s reduction of 26%,
when reducing input FOV to 180◦. Utilising graph char-
acteristics which allow for our bearing filtering proposal,
demonstrates that this can achieve relative performance in-
creases beyond our standard retrieval system of ≈ 35%
when FOV is 360◦, and 67% when FOV is 180◦.

4.4. Ablation Study

To verify components contribute as intended within our
proposed system, we display an ablation of constituents in
Table 3. The base model is only the feature extraction,
trained for single-image retrieval as it has no graph walk ca-
pability. Adding our GNN greatly improved performance,
outputting geo-spatially strong embeddings from the more
discriminative network. We then add bearing vector filter-
ing which further boosts performance around 15% by re-
moving incompatible nodes. Finally, adding the camera
yaw to the system optimised performance by filtering with
aligned bearing vectors. We determine the optimal walk
length of our system with the SpaGBOL dataset - varying
the walk length of all sampled walks. Visible in Figure 8,
the system’s performance dramatically increases when walk
lengths are larger than two - with the optimal for this dataset
being random walks of length four. To improve generalisa-
tion of our network and future works, we include multiple
streetview panoramas for each node in the graphs. These
images were captured across a period of around a decade -
leading to varying content, weather, and lightning.
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SpaGBOL
FOV 360◦ 180◦ 90◦

Model Top-1 Top-5 Top-10 Top-1% Top-1 Top-5 Top-10 Top-1% Top-1 Top-5 Top-10 Top-1%
CVM [7] 2.87 12.96 21.51 28.33 2.68 9.83 15.12 20.23 1.02 5.87 10.15 14.81

CVFT [14] 4.02 13.02 20.29 27.19 2.49 8.74 14.61 19.91 1.21 5.74 10.02 13.53
DSM [15] 5.82 10.21 14.13 18.62 3.33 9.74 14.66 21.48 1.59 5.87 10.11 16.24

L2LTR [36] 11.23 31.27 42.50 49.52 5.94 18.32 28.53 35.23 6.13 18.70 27.95 34.08
GeoDTR+ [19] 17.49 40.27 52.01 59.41 9.06 25.46 35.67 43.33 5.55 17.04 24.31 31.78

SAIG-D [2] 25.65 51.44 62.29 68.22 15.12 35.55 45.63 53.10 7.40 21.76 31.14 37.14
Sample4Geo [20] 50.80 74.22 79.96 82.32 37.52 64.52 71.92 76.39 6.51 20.61 30.31 36.12

SpaGBOL 56.48 77.47 83.85 87.24 40.88 63.79 72.88 78.28 18.63 43.20 54.05 61.20
SpaGBOL+B 64.01 86.54 92.09 94.64 52.01 82.20 89.47 93.62 - - - -

SpaGBOL+YB 76.13 95.21 97.96 98.98 66.82 92.69 96.38 97.30 - - - -
VIGOR-Graph

FOV 360◦ 180◦ 90◦

Model Top-1 Top-5 Top-10 Top-1% Top-1 Top-5 Top-10 Top-1% Top-1 Top-5 Top-10 Top-1%
CVM [7] 1.83 7.80 11.90 22.75 1.79 5.49 9.63 16.99 1.39 4.31 8.58 15.08

CVFT [14] 5.01 12.99 18.48 28.93 1.96 6.28 9.89 16.51 1.31 3.57 6.28 11.29
DSM [15] 6.19 16.51 22.14 32.64 1.05 2.31 3.70 7.67 0.44 1.48 2.66 5.36

L2LTR [36] 6.41 17.52 26.45 37.91 3.09 8.37 12.20 20.78 1.87 6.75 10.12 17.08
GeoDTR+ [19] 3.09 11.07 17.08 28.24 2.05 6.71 11.20 20.22 1.48 5.19 9.37 17.43

SAIG-D [2] 7.63 17.47 24.92 36.17 5.27 14.55 21.79 32.81 2.88 7.97 13.16 21.00
Sample4Geo [20] 32.03 54.73 64.10 75.90 13.92 31.07 36.17 54.23 1.35 4.40 7.93 14.81

SpaGBOL 31.88 57.99 67.47 77.56 13.36 31.53 41.66 54.59 6.51 18.95 27.07 41.22
SpaGBOL+B 47.99 74.63 83.45 91.40 19.17 42.53 52.88 66.25 - - - -

SpaGBOL+YB 58.21 81.49 88.69 94.32 21.88 47.25 58.17 69.96 - - - -

Table 2. Benchmark Dataset Test Recall Accuracies.

Train
Model Top-1 Top-5 Top-10 Top-1%

ConvNeXt-T 52.93 70.80 88.01 92.87
C+GNN 79.04 95.80 97.36 99.75
C+G+Bearing 84.03 97.92 99.55 99.91
C+G+B+Yaw 85.89 98.82 99.29 99.97

Test
ConvNeXt-T 15.00 44.80 60.00 67.58
C+GNN 56.48 77.47 83.85 87.24
C+G+Bearing 64.01 86.54 92.09 94.64
C+G+B+Yaw 76.13 95.21 97.96 98.98

Table 3. Ablation study demonstrating the performance impact
from each component of SpaGBOL.

5. Conclusion & Future Work
In this paper, we successfully progress CVGL towards

real-world application, demonstrating the benefits of ad-
vancing the field from single-image and image-sequence
representations towards explicitly structured graphs. We
release a comprehensive novel dataset focused on regions
most likely to benefit from CVGL - dense GNSS-denied
urban regions. We have presented an approach using graph
representations and GNNs to significantly aid CVGL by ex-
ploiting the relationship between image features, their geo-
graphic proximity, and geo-spatial structures. Furthermore
we have demonstrated how performance may be boosted
by implementing BVM according to observed road bear-

ings. Evaluating against previous approaches, we increase
retrieval performances by more than 11.18% for Top-1 re-
trievals - boosting up to 49.86% when utilising the BVM
capabilities of graph representation.

5.1. Future Work
We have demonstrated the utility of graphs for CVGL,

effectively verifying various benefits of such approaches.
However, there are some limitations that must be addressed
in future works. Although closer to real-world feasibility
than prior datasets/techniques, the granularity of our dataset
limits precision - only capable of localising to the nearest
road junction. Within our test set, the median length of
edges is 73 metres. This could be naively addressed by in-
corporating additional sensors for localising between nodes,
such as using an IMU for measuring between successful re-
trievals. Future works may overcome this obstacle by in-
troducing hierarchical structures such as sub-graph repre-
sentations for each edge on the corpus graph, allowing for
secondary localisation once the nearest node has been de-
termined against the city-scale graph.
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