
Bit-Flip Induced Latency Attacks in Object Detection

Manojna Sistla1,∗, Yu Wen1,∗, Aamir Bader Shah1, Chenpei Huang1, Lening Wang2,
Xuqing Wu1, Jiefu Chen1, Miao Pan1, Xin Fu1,†

1University of Houston 2Prairie View A&M University

Abstract

Deep learning and computer vision have experienced
significant advancements, particularly in critical applica-
tions such as autonomous driving and real-time surveil-
lance, where object detection (OD) plays a pivotal role.
Ensuring the accuracy and speed of these systems is
paramount to prevent accidents or failures. Recently,
latency-based attacks have emerged as a new threat, driven
by the essential need for real-time performance in various
applications. These attacks target model responsiveness
to disrupt system performance without necessarily compro-
mising accuracy. Our preliminary experiments show that
introducing just a few bit flips to key parameters in OD
models can significantly increase latency, degrading perfor-
mance. Meanwhile, recent advancements in memory-based
attacks, such as Row Hammer [18], demonstrate the ability
to conveniently introduce bit flips at desired locations with-
out physical hardware interaction. Based on the observa-
tions, we propose a novel attack on OD models that lever-
ages row-hammer to introduce bit-flips via side channels,
targeting the non-maximum suppression (NMS) filter and
significantly increasing latency. Unlike previous methods
that modify input data, our technique ensures efficiency by
minimizing bit-flips through critical path exploitation and
achieves practical applicability with only a subset of vali-
dation data. Experiments across various datasets and mod-
els validate our approach, demonstrating latency increases
up to 71.6 ms (20.4×) with just 31 bit-flips.

1. Introduction
The fields of deep learning and computer vision have

garnered significant attention for their pivotal roles in ad-

vancing intelligent systems, particularly in domains like

autonomous driving and real-time surveillance, where OD

stands as an indispensable component tasked with crucial

responsibilities [41]. Ensuring the accuracy and safety of

these systems demands algorithms capable of achieving

*Co-first authors
†Corresponding author: xfu8@central.uh.edu

high precision within constrained timeframes. Failure to

meet these standards can lead to catastrophic consequences,

such as traffic accidents or the failure of surveillance sys-

tems [22]. Therefore, research into the performance and

stability of object detection algorithms is necessary to en-

sure the reliability and safety of intelligent systems.

OD algorithms such as Faster-RCNN [9], Mask-RCNN

[12], and YOLO [31] have gained significant popularity re-

cently due to their wide range of applications. However,

alongside their widespread adoption, there has been con-

siderable research into the vulnerabilities inherent to these

models. A significant portion of these studies focused on

attacking the correctness of the models, employing vari-

ous tactics such as object generation, misclassification, and

omission [2, 37]. This type of attack is known as the

integrity-based attack, wherein the targeted model can be

subjected to malicious behavior by introducing adversarial

noise or specific patterns of adversarial patches [7, 38] into

the inputs. Alternatively, backdoors can be implanted into

the models, triggered by certain stimuli such as stickers or

random objects in the input [23].

Recently, latency-based attacks have gained popularity

due to their simplicity, widespread impact, and conceal-

ment. Unlike integrity-based attacks, which target the cor-

rectness of model outputs, these attacks focus on the timing

or responsiveness of models. Adversarial attacks, which in-

volve subtly modifying input data to deceive models, have

been the primary focus of studies aiming to increase la-

tency. However, a new type of attack has recently gained

traction among deep learning models, where adversaries ex-

ploit hardware vulnerabilities such as row-hammer [18] to

manipulate model functionality by attacking their parame-

ters. By inducing bit-flips into the model parameters during

inference via row-hammer, these attacks do not require ac-

cess to training data and can be launched from side chan-

nels without directly accessing the model parameters, thus

enhancing their stealth and potency.

Motivated by this concept, we have developed a novel

adversarial attack based on bit-flips in OD models via row-

hammer to induce bit-flips in the model parameters, thereby

increasing the number of candidates passed to the NMS fil-

This WACV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

6709

ter, unlike previous attacks, where we explore the model

architecture to identify parameters that maximize latency

without affecting actual object detection. Additionally, we

enhance our attack by exploring the critical path using Dy-

namic Programming (DP) techniques, globally optimizing

the attack model to achieve powerful results with fewer bit-

flips. Moreover, we thoroughly analyze the detection layer

to identify vulnerabilities, enabling our attacks to transfer

effectively across different models. Compared to previous

methods, our approach is more difficult to detect as it lever-

ages row-hammer via side channels without modifying in-

put data. Moreover, it requires only a subset of valida-

tion data to determine updated parameter values, enhancing

practicality for potential users. The key contributions of this

paper are outlined below:

• We investigate the behavior of the OD models and ob-

serve that modifying a few model parameter values can

significantly increase the confidence score of several

candidate predictions.

• We develop a novel loss function to identify param-

eters with high gradient values and implement back-

propagation by applying a mask to generate updated

parameter values and determine the required bit-flips.

• We integrate a global optimization to identify the most

susceptible parameters and maximize latency along the

critical path with minimal bit-flips.

• We conduct a comprehensive analysis of the detection

layer to uncover vulnerabilities, enabling effective at-

tack transferability between different models.

• We perform a comprehensive evaluation on various

models using different datasets and demonstrate the ef-

fectiveness of the technique by increasing the number

of candidates passed to NMS up to 38000, resulting in

a latency of 71.6 ms (20.4×) with only 31 bit-flips.

2. Background and Related Work
2.1. Latency-based Attacks

Latency-based attacks aim to increase execution la-

tency, thereby degrading system performance and poten-

tially making models less responsive or unavailable. These

attacks are harder to detect and may progressively worsen

over time, significantly disrupting user experience and op-

erational efficiency. An early example is Sponge Exam-

ples [34], which used an evolutionary search algorithm to

find adversarial examples that increase the latency of NLP

and image classification models. Subsequent studies ex-

panded on this concept, incorporating adversarial attacks

on models such as Multi-exit networks [16], Neural caption

generation [6], and Vision Transformers [26]. In [3,33], ad-

versarial patches were designed to overload the NMS filter

in object detection models. Similarly, [20] proposed pertur-

bation attacks on LiDAR-based 3D object detection models.

Building on [33], [22] introduced a scheduling algorithm

to maximize latency in object-tracking algorithms, signifi-

cantly impacting the safety of autonomous driving systems.

Most studies focus on designing predictable and short-lived

adversarial patches. In contrast, our approach uses bit-flip

attacks to target internal model parameters, enhancing ob-

ject detection recall rates by leveraging the model’s func-

tionality. By addressing vulnerabilities beyond basic input

manipulation, our findings open new avenues for exploring

and mitigating deeper model vulnerabilities.

2.2. Bit-Flip Attacks

Bit-flip attacks have emerged as a popular attack method

in the machine learning community due to their ability to

subtly and efficiently manipulate model parameters, thereby

altering model behavior. Unlike traditional attacks such as

backdoors, bit-flip attacks often operate during model in-

ference and require minimal training or validation data. For

instance, in [15], researchers demonstrated how flipping a

single bit can drastically impact model effectiveness. Addi-

tionally, bit-flips have been exploited to implant backdoors

in various models, leading to the misclassification of in-

puts containing specific triggers. Studies like [4, 28, 29]

have leveraged bit-flip attacks to introduce backdoors in

CNNs, while the TrojViT approach [40] successfully in-

serted backdoors into Vision Transformers using bit-flips.

Recent advancements, such as [8], have even integrated bit-

flip attacks into model training, allowing adversaries to al-

ter model performance by modifying a single bit. Despite

these advances, the potential of bit-flip attacks to disrupt

model availability remains underexplored. Our research ex-

plores bit-flip attacks on model weights to induce latency in

object detection models, aiming to advance our understand-

ing and application of techniques that compromise model

availability, which lays the foundation for enhancing model

resilience against sophisticated adversarial threats.

2.3. Row-Hammer

DRAMs are susceptible to bit-flips caused by electro-

magnetic interference between memory cells. Exploited by

Row-Hammer attacks [18], it induces bit-flips in vulnera-

ble memory locations (victim rows) by repeatedly accessing

adjacent rows (aggressor rows). [30] further revealed that

attackers can strategically profile vulnerable memory loca-

tions and manipulate access patterns through memory mas-

saging techniques to induce targeted bit-flips. The sever-

ity of Row-Hammer depends on various factors including

DRAM technology, memory access patterns, and environ-

mental conditions [25]. Row-Hammer vulnerabilities per-

6710

NMSConf > th

a) Pre-processed
Input

b) Object
Detection Model

c) Model
Predictions

d) Predictions filtered by
conf threshold

e) Final Predictions

Figure 1. Object detection pipeline.

sist across several state-of-the-art DRAM technologies such

as DDR3, DDR4, ECC DRAM, LPDDR2, and LPDDR3

[25]. For example, experiments detailed in [35] show that

row-hammer attacks can induce thousands of bit-flips in

DDR3 and DDR4 DRAMs within a short period. Recent

advancements in the field have accelerated progress signif-

icantly. For example, studies indicate that over the past

decade, the number of row activations required to induce

a bit-flip has decreased by a factor of 10, while the num-

ber of bit-flips resulting from the same number of activa-

tions has increased by a factor of 500 [24]. These studies

underscore the increasing severity of the row-hammer vul-

nerability, highlighting its growing significance. For further

details related to row-hammer deployment, please refer to

Appendix A.6.

3. Methodology
This section illustrates the concept of Bit-Flip Induced

Latency Attacks in object detection (OD). Fig. 1, presents

the pipeline of the object detection model, the transformed

image is fed to the model, which extracts features to gener-

ate candidate predictions. Each prediction includes bound-

ing box parameters (coordinates, width, and height), an

objectness score (likelihood of containing an object), and

class probabilities (likelihood of belonging to a specific

class). Confidence scores are calculated by multiplying

the objectness score by the highest class probability. Pre-

dictions with confidence scores above a threshold (th) are

retained. Non-maximum Suppression (NMS) then refines

these predictions by evaluating overlapping areas using the

Intersection-over-Union (IoU) metric, retaining only the

highest-confidence candidate per object.

A common strategy in latency-based attacks on OD mod-

els involves designing an adversarial patch to elevate con-

fidence scores of candidate predictions above a threshold

Tconf [3, 22, 33]. The confidence score is the product of

the Objectness Score (tobj) and the Maximum Class Prob-

ability (cobj). This increases the NMS step’s latency, as it

must compare each prediction with all others, resulting in

an algorithmic complexity of O(n2)+O(n), where n is the

number of candidates [22].

To explore bit-flip attacks on model weights to increase

latency, we first examine the training process. Train-

ing OD models involves optimizing a loss function with

three components: objectness loss (detecting objects within

grid cells), IoU regression loss (measuring the accuracy of

bounding boxes), and classification loss (assigning object

classes). During back-propagation, tobj values are forced to

0 in non-interest regions, ensuring detection only in relevant

areas. Since the detection layer is convolutional, altering

even one kernel can impact predictions across the image.

We exploit this by introducing bit-level perturbations to a

small subset of weights, creating phantom objects. Prelim-

inary experiments suggest generating up to 8,000 objects

with fewer than 10 parameter changes.

With these insights, we propose a potent bit-flip attack

that significantly increases model latency. This attack uses

a subset of validation data and can be executed as a side-

channel attack during runtime using techniques like row-

hammer [18, 21]. Since it does not introduce noise to the

input, it operates covertly, evading detection. The following

section provides a detailed explanation of the design.

4. Bit-Flip induced latency attack
Building upon our earlier discussion about object detec-

tion model training, we recognize that during training, pre-

dictions from the forward pass are filtered to isolate image

regions of interest, reducing objectness scores for the re-

maining regions to zero. To make the model detect addi-

tional objects, we may raise the objectness scores of these

background regions. With this insight, we introduce a novel

attack on pre-trained object detection models. Our approach

maximizes detection latency by prompting the model to

identify numerous phantom objects.

4.1. Attack Overview

Attack Objective: Fig. 2 illustrates an overview of our

attack. During the forward pass, candidate predictions, de-

noted as C, are obtained from the detection layers. Each

candidate comprises three components: box parameters

(Px, Py , Pw, and Ph), Objectness Score (Pobj), and class

probabilities (Cprob). To compute the loss function, the

predicted candidates are compared side-by-side with their

corresponding targets to delineate regions of interest con-

taining objects. This subset of candidates termed CRoI , is

assigned target objectness scores equivalent to the IoU area

of the associated bounding box relative to the target bound-

ing box. The remaining candidates, designated as Cm, are

6711

௫ܲ

ܲ

ܥ 0,1, …… ܥ݊, − 1

௬ܲ ܲ௪ܲ

݂݊ܥ ≔ ܲ ∗max(ܥ)

ݔܤ ݏݎ݁ݐ݁݉ܽݎܽܲ

ݏݏ݁݊ݐ݆ܾܱܿ݁ ݁ݎܿܵ

ݏݏ݈ܽܥ ݏ݁ݐ݈ܾܾ݅݅ܽݎܲ

݊݃݅݊݁ܤ ݈݁݀ܯ

݀݁݇ܿܽݐݐܣ ݈݁݀ܯ

1 0 0 1 1

1 1 1 0 1

0 1 0 1 0

1 0 1 1 1

1 0 0 0 1

݊݅ݐܽ݃ܽݎ݇ܿܽܤ

݈ܽݐܶ ݏݏܮ ݈ܾ݁ܽݎ݈݁݊ݑܸ ݐݑ݊ܫݏݐܾ݅ ݁݃ܽ݉ܫ

ݐݑ݊ܫ ݁݃ܽ݉ܫ ݈ܽ݊݅ܨ ݐ݈ݑݏܴ݁

ݐݑݐݑܱ ݁݃ܽ݉ܫ

݀݁݇ܿܽݐݐܣ ݈݁݀ܯ

݊݅ݐܽ݃ܽݎ݇ܿܽܤ
ݐݑ݊ܫ ݁݃ܽ݉ܫ ݁ݐܽ݅݀݁݉ݎ݁ݐ݊ܫ ݐ݈ݑݏܴ݁

௫ܮܮ
݈ܽݐܶ ݏݏܮ

1 0 0 1 1

1 1 1 0 1

0 1 0 1 0

1 0 1 1 1

1 0 0 0 1

݈ܾ݁ܽݎ݈݁݊ݑܸ ݏݐܾ݅
௫ܮܮ

݈ܽݐܶ ݏݏܮ
1

2

3

௫ܮܮ
݁ݐܽ݀݅݀݊ܽܥ ݁ݐܵݏ݊݅ݐܿ݅݀݁ݎܲ 1

݁ݐܵ 2

݁ݐܵ 3

(a) Overview of our Attack model (b) Candidate prediction details

Figure 2. Attack overview.

considered masked, with their target objectness score set to

0. The objective of our attack is to leverage the masked

candidates, Cm, to devise a loss function that increases the

number of candidates forwarded to the NMS filter. This

manipulation aims to augment inference latency, aligning

with our attack objectives. In the following parts of the sec-

tion, we will delve into the specific details of our strategies,

including attack model formulation, detection layer vulner-

ability analysis, and optimization based on the critical path.

Attack Assumptions: To design an optimized latency

attack method, we assume a white-box scenario where the

attacker has complete access to the model’s architecture and

parameters. This approach aligns with numerous studies on

adversarial and backdoor attacks [3–6, 29, 33, 40], which

also operate under similar assumptions. In practice, the

availability of open-source models further supports the fea-

sibility of such attacks [11, 14].

Additionally, our method only requires a subset of the

validation data, a realistic assumption supported by prior

work [29], which demonstrates that such information can be

obtained through side-channel attacks. If the attacker has

domain knowledge of the specific application, they could

further enhance the attack’s effectiveness by generating syn-

thetic data using techniques such as Generative Adversarial

Networks (GANs) or Diffusion Models (DDPMs).

In practice, executing the attack requires the victim to

run a specific malicious program to perform row-hammer

and induce bit-flips. This can be achieved through malware

or social engineering. The malicious program can also help

the attacker determine the victim model’s memory address

and layout at runtime, eliminating the need for prior knowl-

edge. For instance, [10] demonstrates how row-hammer at-

tacks can be executed through JavaScript on web browsers,

highlighting the practical feasibility of such methods. More

details on the attack and its practical feasibility are included

in Appendix A.3 and A.4.

4.2. Fundamental Loss-Driven Attacks

In this part, we will systematically introduce our pro-

posed attack steps to provide a thorough comprehension of

our attack model. First, to facilitate the enhancement of

confidence scores for predictions from background regions,

we devised a loss function with two primary components:

objectness loss and bounding-box area loss. Our approach

aims to increase the model’s confidence in detecting objects

within these regions.

Objectness Loss: The objectness score (tobj) is trained

to reflect the presence of an object within each candidate or

grid cell. Specifically, if an object exists within a particu-

lar grid cell, the corresponding tobj is set to the IoU area

between the candidate bounding box and the target bound-

ing box provided in the labels. Conversely, for candidates

where no object is present, tobj is enforced to approach zero.

To facilitate the detection of phantom objects, we adjust the

tobj values for all candidates without objects to a prede-

fined threshold value, Thobj . This adjustment is achieved

through the design of our loss function, outlined below:

Lobj = Thobj − tobj |C ∈ Cm and tobj < Thobj (1)

The value of Thobj is carefully selected to ensure that

it does not impact the tobj values of candidates with actual

predictions.

Bounding box Area Loss: During the application of the

NMS filter, only the candidate with the highest confidence

score is retained for each object, among candidates with

6712

Input Layer Intermediate Layer Output Layer

Selected Critical Path Non-critical PathsOther Critical Paths

MaxGrad
MaxGradMaxG MaxG

G
G

G
G

G G

Grad
Grad

Grad

Grad

Figure 3. Representation of critical path in neural networks.

overlapping bounding boxes. To maximize the retention

of objects during this step, we aim to minimize the over-

lap between bounding boxes by reducing their areas. This

objective is pursued through the following loss function:

Lbbox =
1

Ncm

∑
c∈Cm

bcw ∗ bch
W ∗H (2)

Here, Ncm represents the number of masked candidates,

and bcw and bch denote the width and height of the candidate

bounding box, and with W and H denoting the width and

height of the input image, respectively. Thus, the final loss

function can be derived as follows:

LTotal = λ1Lobj + λ2Lbbox (3)

where λ1 and λ2 are hyperparameters.

After calculating the model’s loss using the function (3)

with a batch of validation data, gradients are computed by

back-propagating through the detection layer. These gradi-

ents are then used to generate a gradient mask, which iden-

tifies the top-n parameters requiring adjustment. Through

several epochs of optimization using gradient descent, these

selected parameters are updated to minimize the loss. The

Hamming distance between the original and updated pa-

rameter values is calculated to determine the number of

necessary bit-flips. For efficiency, our approach focuses

on modifying only the top 10 to 13 most significant bits

(MSBs) of each parameter. This strategy not only reduces

the number of bit-flips required but also enhances latency in

certain scenarios.

4.3. Optimization via Critical Paths

To further enhance the effectiveness of our attack and

comprehensively assess its impact on the model, we ex-

tended the back-propagation of loss beyond the detection

layer and calculated the gradients. This analysis revealed

non-uniform propagation of loss across parameters of the

preceding layers, with certain parameters exhibiting higher

gradient values relative to others. These parameters, iden-

tified as critical path parameters, are pivotal in shaping the

predictions of the OD model for any given input.

Building on this insight, we introduce a technique lever-

aging critical path analysis to optimize attack strategies.

Fig. 3 illustrates an example of a critical path in a network

with input, intermediate, and output layers. Parameters with

large-magnitude gradients, highlighted in black, form criti-

cal paths for specific inputs. As model activations vary with

inputs, multiple critical paths may exist. In this study, we

analyze critical paths to determine the optimal number of

updating parameters to launch the attack efficiently and suc-

cessfully. By tracking the gradient propagation path of the

loss function given in Eq. (3), we identify parameters cru-

cial for increasing the confidence score of the model predic-

tions and determining the optimal parameters for updating.

Specifically, we compute the gradient value Gi for each pa-

rameter, further decomposed into weights (w) and biases

(b), using gradient descent algorithms typically employed

in OD models. We compute the maximum gradient in each

layer and derive the critical path using the equation:

MaxGradlayer = max
i

(
∂L

∂pi

)
= max

i

(
∂L

∂wi
,
∂L

∂bi

)
(4)

Here, MaxGradlayer represents the maximum gradient

in the current layer, i denotes the parameter index, and ∂L
∂wi

and ∂L
∂bi

are the gradients of weights and biases, respectively.

Next, we identify critical path parameters by selecting pa-

rameters with the highest gradient values in each layer.

Thus, we can find critical path parameters in each layer and

further compute the critical path of the entire model. Nev-

ertheless, the direct connection of neurons with maximal

gradients into critical paths may not always be feasible, as

non-MLP architectures may lack such pathways, and even

if present, they cannot ensure global optimality. We adopt

a dynamic programming (DP) algorithm to obtain critical

paths for the attack, gaining insights into the model’s struc-

ture and determining influential layers for updates. The DP

process can be formulated as follows:

MaxGi = max(
∑

Gradi−1 , Gradi +
∑

Gradi−2) (5)

By computing the critical path, we gain valuable insights

into the structure of the model. Specifically, we first iden-

tify influential neurons and then determine the most impact-

ful neuron and its corresponding layer based on magnitude,

guiding our decisions on where to prioritize updates. Focus-

ing on the most influential neurons maximizes the perturba-

tion’s impact on the model’s predictions, enhancing the ef-

ficiency of our attacks and unveiling previously overlooked

vulnerabilities. This enables the attacker to launch a stealth-

ier and more powerful attack with fewer bit-flips, making it

more practical in real-time scenarios. In summary, analyz-

ing critical paths is essential for refining attack strategies

and uncovering vulnerabilities in unknown models, partic-

ularly in OD networks.

6713

Table 1. Quantitative comparison of the attack performance in NMS and Latency

Dataset Model Baseline Attacked model

NMS/image Avg. Latency(ms) Bit-flips NMS/image Avg. Latency (ms)

COCO YOLOv3 125 3.5 31 38457 (307.65×) 71.6 (20.4 ×)

YOLOv4 81 1.6 26 39881 (492.35×) 6.40 (4.00 ×)

YOLOv5 551 1.5 31 29865 (54.201×) 20.4 (13.6 ×)

YOLOv7 131 2.1 27 10728 (81.893×) 69.0 (32.8 ×)

PascalVOC YOLOv3 128 1.8 6 33200 (259.37×) 12.6 (7.00 ×)

YOLOv4 183 1.6 34 31568 (172.50×) 7.80 (4.90 ×)

YOLOv5 262 1.5 6 33334 (127.23×) 10.0 (6.70 ×)

YOLOv7 17 1.6 19 20809 (1224.1×) 11.8 (7.40 ×)

BDD100K YOLOv3 127 0.7 18 31640 (249.13×) 17.7 (25.3 ×)

YOLOv4 65 0.7 18 42267 (650.26×) 6.10 (8.70 ×)

YOLOv5 369 0.7 6 33199 (89.970×) 12.3 (17.6 ×)

YOLOv7 435 0.6 31 32256 (74.151×) 15.4 (25.6 ×)

4.4. Attack Transfer via Detection Layer Analysis

Our attack model highlights the susceptibility of OD

models to latency induced by bit-flips, underscoring the

need for robust defenses. Deploying such attacks in real-

world scenarios poses challenges, including the extensive

time required for training over multiple epochs to update pa-

rameters. To address these, we conduct a vulnerability anal-

ysis of the detection layer, using back-propagation through

the loss function from equation 3. This analysis identifies

exploitable weaknesses, enabling the transfer of the attack

to similar models in a grey-box scenario, without needing

detailed model parameters or extensive optimization.

We begin by examining the critical parameters within the

detection layer of OD models and their direct impact on

model predictions, particularly their role in object recog-

nition and localization. By analyzing the model outputs and

the NMS step, we pinpoint parameters influencing the ob-

jectness score computation. In instances where objectness

scores are less critical, our attack strategy can pivot towards

influencing other aspects, such as class probabilities (e.g.,

increasing the probability P (c) of specific classes).

Our analysis of these critical parameters reveals identi-

fiable patterns, notably involving sign reversals in param-

eters responsible for computing objectness scores. This

adjustment is crucial as it alters how the model inter-

prets the absence or presence of objects, affecting predic-

tion confidence scores. Moreover, manipulating parame-

ter magnitudes, particularly toggling the most significant

bits (MSBs), can significantly impact model predictions

by potentially increasing the number of generated predic-

tions. Based on these insights, our attack strategy involves

selecting parameters following the pattern in the detection

layer and introducing bit-flips strategically to induce suffi-

cient latency. This approach allows us to transfer our attack

methodology to models with NMS and similar architecture,

minimizing extensive optimization overhead.

5. Evaluation
In this section, we evaluate the efficacy and performance

of our Bit-flip Latency Attacks across several leading object

detection networks. We start with a brief overview of the

implementation in Section 5.1, followed by an in-depth re-

sults analysis in Section 5.2. Finally, we present various ab-

lation experiments in Section 5.3 to assess the impact of our

proposed design. For detailed experiment settings and ad-

ditional evaluations, please refer to Appendix A.1 and A.2.

5.1. Implementation

We implemented our attack method using PyTorch 1.9.1

[27] and evaluated it on various YOLO models [1,17,31,32,

36], known for their speed and real-time applicability. The

models were trained on the MS-COCO 2017 [19] dataset

and fine-tuned on BDD100k [39] and Pascal VOC [13]. We

assessed induced bit-flips, NMS candidates, and detection

latency, comparing our method to state-of-the-art latency at-

tacks like PhantomSponges [33] and Overload [3].

5.2. Result Analysis

5.2.1 Optimization of Individual Models

Attack performance: Table. 1 summarizes our attack’s

performance across different object detection models and

datasets. We used a consistent confidence threshold of

0.25 for NMS filtering in all experiments, adjusting the IoU

threshold to 0.65 for MS-COCO and Pascal VOC datasets,

and to 0.45 for BDD100k. For accurate latency evaluation,

experiments were conducted on the test datasets containing

between 2, 000 to 5, 000 images. We measured the aver-

age latency increase in both baseline and attacked models.

Typically, the baseline models exhibit an average latency

of 0.6-3.5 ms, with only a few hundred predictions reach-

ing NMS, while our attack significantly amplifies this count

with a minimal number of bit-flips. In the best-case sce-

6714

0

2

4

6

8

10

0.85 0.75 0.65 0.55 0.45

N
or

m
al

iz
ed

 L
at

en
cy

VOC

0
5

10
15
20
25
30
35

0.85 0.75 0.65 0.55 0.45

COCO

0

10

20

30

40

0.85 0.75 0.65 0.55 0.45

BDD100K

0
3
6
9

12
15
18
21

0.2 0.25 0.3 0.35 0.4

VOC

0
5

10
15
20
25
30
35
40

0.2 0.25 0.3 0.35 0.4

COCO

0
5

10
15
20
25
30
35
40

0.2 0.25 0.3 0.35 0.4

BDD100K

yolov3 yolov4 yolov5 yolov7

(a) IoU Threshold (b) Conf Threshold

Figure 4. Evaluating NMS filter thresholds on the performance (a) IoU Threshold vs Latency, (b) Confidence Threshold vs Latency.

Figure 5. Latency with increasing bit-flip numbers.

nario, our attack increases average latency up to 71.6 ms

(20.4×) using only 31 bit-flips, and in the worst case, it still

achieves a latency of 6.4 ms (4.0×) with 26 bit-flips. These

results demonstrate that our bit-flip attack achieves a con-

sistent increase in latency across various conditions.

Latency vs. number of bit-flips: The latency induced

by our attack increases with the number of bit-flips applied

to the model. Fig. 5 shows the relationship between la-

tency and the number of bit-flips across different models

and datasets. On average, latency rises by 30 to 60 ms with

fewer than 100 bit-flips, and in some instances, up to 100
ms. Even in the worst-case scenarios, latency was increased

by up to 11 ms. As latency increases, model recall deterio-

rates significantly, potentially causing major disruptions.

Confidence and IoU thresholds: The number of objects

retained after the NMS step is influenced by confidence and

IoU thresholds. We investigated their impact on our attack

strategy. Results in Fig. 4 show the effect of IoU thresholds

from 0.45 to 0.85 and confidence thresholds from 0.2 to 0.4.

The results demonstrate the robustness of our attack strat-

egy across various IoU threshold values. While increasing

confidence thresholds showed a slight impact on latency,

adjusting thresholds alone is insufficient to fully mitigate

the attack. Conversely, excessively high thresholds could

compromise the model’s performance by potentially miss-

ing genuine objects.

5.9x

16.1x
20.4x

0

1

2

3

4

5

0
0.5

1
1.5

2
2.5

3
3.5

PS Overload Ours

N
or

m
al

iz
ed

 R
ec

al
l

N
or

m
al

iz
ed

 N
M

S

NMS Recall Latency

Figure 6. Performance comparison against SOTA latency attacks.

Comparison with SOTA latency attacks: Fig. 6 com-

pares our attack’s performance against state-of-the-art la-

tency attacks [3, 33]. The results show that PS introduced

an adversarial patch resulting in a latency increase of up to

6×, while Overload achieved a 16.1× latency increase at

the expense of recall (only 57% compared to PS). In con-

trast, our proposed bit-flip attack achieves superior perfor-

mance, reaching up to 20.4× latency increase, surpassing

both previous works while maintaining up to 71.5% recall

compared to PS.

5.2.2 Analysis of Attack Transferability

In this section, we evaluated the transferability of our attack

across different variants in the YOLO family, as they all

incorporate the NMS process. As the NMS is located in the

detection layer, we perform the detection layer analysis as

discussed in Section 4.4.

Specifically, we first conduct a vulnerability analysis

on the detection layer of the YOLOv3 model using the

BDD100K dataset. Given that models with similar archi-

tectures and identical NMS processes are likely to exhibit

comparable vulnerability patterns, we extend our analysis to

YOLO variants. After identifying key vulnerability trends

in YOLOv3, we apply bit-flips to the same locations in these

variants, randomly flipping between 50 and 70 bits within

their detection layers, following the identified pattern. This

evaluation encompassed various YOLO models optimized

for COCO, VOC, and BDD100K datasets to ensure gen-

eralizability. The experimental results are shown in Fig.7,

where Fig.7(a) illustrates the number of bit-flips required

for each evaluation, and Fig. 7(b) displays the induced la-

tency. The results indicate a latency increase of 2× to 13×,

6715

0
2
4
6
8

10
12
14

v3 v4 v5 v7 v3 v4 v5 v7 v3 v4 v5 v7

COCO VOC BDD100K

N
or

m
al

iz
ed

 L
at

en
cy

0

20

40

60

80

v3 v4 v5 v7 v3 v4 v5 v7 v3 v4 v5 v7

COCO VOC BDD100K

N
um

be
r o

f b
itf

lip
s

(a) (b)

Figure 7. Evaluation of attack transferability

even without optimization. Additionally, we observe that

the number of bit-flips needed to induce latency increases

with the number of classes in the dataset. This suggests

that the transferability of our attacks may improve across

models when applied to more uniform application scenar-

ios, revealing the practical feasibility of achieving gray-box

attacks through transferability.

5.3. Ablation Study

We validate our design through a structured evaluation

process, establishing a baseline by evaluating the vanilla

model’s performance without attacks, assessing fundamen-

tal loss-driven attacks, and evaluating the CP attack. Fig.

8. (a) shows bit-flips required for different attack methods:

Vanilla model (attack-free), Loss-driven (LD) attack opti-

mized on the detection layer, and Critical Path-based (CP)

attack. Our CP attack reduces maximum bit-flips from 74
to 34, with a minimum of 6. Fig. 8. (b) displays induced la-

tency by each attack compared to the vanilla model. The LD

attack induces up to 12 ms latency, effective but less so with

complex datasets. The CP attack induces latency from 6.1
ms to 71.6 ms, significantly improving performance with

fewer bit-flips. This evaluation highlights the efficiency and

gains from optimized attack strategies, crucial for robust de-

fense in object detection systems.

6. Limitation and Future Work
While we have demonstrated successful latency in-

creases with minimal bit-flips, the practical implementa-

tion of our method exceeds the scope of this paper. Fu-

ture research efforts could focus on refining these attacks

for real-world applications, including designing specific ap-

plications to trigger row-hammer attacks. While effective,

our method’s reliance on prior knowledge of the loss func-

tion may restrict its applicability in certain scenarios. Fu-

ture research should focus on training models capable of

performing attacks without this prerequisite, thereby en-

hancing method accessibility. Additionally, exploring the

transferability of attacks to similar models is essential for

assessing broader impacts. Analyzing transferability across

different architectures and configurations can offer insights

into their generalizability and robustness.

Our method extends beyond YOLO models and can

be applied to other NMS-based object detection models.

0

10

20

30

v3 v4 v5 v7 v3 v4 v5 v7 v3 v4 v5 v7

COCO VOC BDD100K

La
te

nc
y

60

70
Vanilla Loss Driven Critical Path(b)

0

20

40

60

80

v3 v4 v5 v7 v3 v4 v5 v7 v3 v4 v5 v7

COCO VOC BDD100K

N
um

be
r o

f b
itf

lip
s

Vanilla Loss Driven Critical Path(a)

Figure 8. (a) Bit-flips required and (b) Latency analysis for the

vanilla model, Loss Driven attack, and Critical Path-based attack.

However, due to significant architectural differences, direct

transferability may not be feasible, requiring manual opti-

mizations. For details on extending the attack to other net-

works, please refer to Appendix A.5.

7. Conclusion

Object detection is vital in deep learning and computer

vision, yet its susceptibility to attacks poses serious safety

and security risks. While previous research has mainly ad-

dressed integrity-based attacks, the emergence of latency-

based attacks has introduced new concerns about object

detection model reliability. We proposed a novel bit-flip-

based latency attack method for object detection models.

Our approach, executed through side channels like memory

manipulation, requires no modifications to input data, en-

hancing its practicality for potential attackers. By inducing

bit-flips in model parameters, we significantly increased the

number of candidates passed to the NMS filter, resulting in

notable latency increases with minimal bit-flips. Addition-

ally, our global optimization identified critical parameters

to maximize latency with minimal bit-flips, and our analy-

sis of the detection layer uncovered vulnerabilities, enhanc-

ing attack transferability between models. These findings

underscore the imperative of addressing latency vulnerabil-

ities in deep neural networks and pave the way for exploring

defense mechanisms against such attacks.

8. Acknowledgement

This research is partially supported by NSF grants CCF-

2130688, and CNS-2107057.

6716

References
[1] Alexey Bochkovskiy, Chien-Yao Wang, and Hong-

Yuan Mark Liao. Yolov4: Optimal speed and accuracy of

object detection. arXiv preprint arXiv:2004.10934, 2020. 6

[2] Shih-Han Chan, Yinpeng Dong, Jun Zhu, Xiaolu Zhang, and

Jun Zhou. Baddet: Backdoor attacks on object detection. In

European Conference on Computer Vision, pages 396–412.

Springer, 2022. 1

[3] Erh-Chung Chen, Pin-Yu Chen, I Chung, Che-rung Lee,

et al. Overload: Latency attacks on object detection for edge

devices. arXiv preprint arXiv:2304.05370, 2023. 2, 3, 4, 6,

7

[4] Huili Chen, Cheng Fu, Jishen Zhao, and Farinaz Koushanfar.

Proflip: Targeted trojan attack with progressive bit flips. In

Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 7718–7727, 2021. 2, 4

[5] Simin Chen, Hanlin Chen, Mirazul Haque, Cong Liu, and

Wei Yang. The dark side of dynamic routing neural net-

works: Towards efficiency backdoor injection. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 24585–24594, 2023. 4

[6] Simin Chen, Zihe Song, Mirazul Haque, Cong Liu, and Wei

Yang. Nicgslowdown: Evaluating the efficiency robustness

of neural image caption generation models. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 15365–15374, 2022. 2, 4

[7] Shang-Tse Chen, Cory Cornelius, Jason Martin, and

Duen Horng Chau. Shapeshifter: Robust physical adversar-

ial attack on faster r-cnn object detector. In Machine Learn-
ing and Knowledge Discovery in Databases: European Con-
ference, ECML PKDD 2018, Dublin, Ireland, September 10–
14, 2018, Proceedings, Part I 18, pages 52–68. Springer,

2019. 1

[8] Jianshuo Dong, Han Qiu, Yiming Li, Tianwei Zhang, Yuan-

jie Li, Zeqi Lai, Chao Zhang, and Shu-Tao Xia. One-bit flip

is all you need: When bit-flip attack meets model training.

In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pages 4688–4698, 2023. 2

[9] Ross Girshick. Fast r-cnn. In Proceedings of the IEEE inter-
national conference on computer vision, pages 1440–1448,

2015. 1

[10] Daniel Gruss, Clémentine Maurice, and Stefan Mangard.

Rowhammer. js: A remote software-induced fault attack in

javascript. In Detection of Intrusions and Malware, and
Vulnerability Assessment: 13th International Conference,
DIMVA 2016, San Sebastián, Spain, July 7-8, 2016, Pro-
ceedings 13, pages 300–321. Springer, 2016. 4

[11] Tianyu Gu, Brendan Dolan-Gavitt, and Siddharth Garg. Bad-

nets: Identifying vulnerabilities in the machine learning

model supply chain. arXiv preprint arXiv:1708.06733, 2017.

4

[12] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Gir-

shick. Mask r-cnn. In Proceedings of the IEEE international
conference on computer vision, pages 2961–2969, 2017. 1

[13] Derek Hoiem, Santosh K Divvala, and James H Hays. Pas-

cal voc 2008 challenge. World Literature Today, 24(1):1–4,

2009. 6

[14] Sanghyun Hong, Nicholas Carlini, and Alexey Kurakin.

Handcrafted backdoors in deep neural networks. Advances
in Neural Information Processing Systems, 35:8068–8080,

2022. 4

[15] Sanghyun Hong, Pietro Frigo, Yiğitcan Kaya, Cristiano

Giuffrida, and Tudor Dumitras, . Terminal brain damage: Ex-

posing the graceless degradation in deep neural networks un-

der hardware fault attacks. In 28th USENIX Security Sympo-
sium (USENIX Security 19), pages 497–514, 2019. 2

[16] Sanghyun Hong, Yiğitcan Kaya, Ionuţ-Vlad Modoranu, and

Tudor Dumitraş. A panda? no, it’s a sloth: Slowdown at-

tacks on adaptive multi-exit neural network inference. arXiv
preprint arXiv:2010.02432, 2020. 2

[17] Glenn Jocher, Ayush Chaurasia, Alex Stoken, Jirka Borovec,

Yonghye Kwon, Kalen Michael, Jiacong Fang, Colin Wong,

Zeng Yifu, Diego Montes, et al. ultralytics/yolov5: v6.

2-yolov5 classification models, apple m1, reproducibility,

clearml and deci. ai integrations. Zenodo, 2022. 6

[18] Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye

Lee, Donghyuk Lee, Chris Wilkerson, Konrad Lai, and

Onur Mutlu. Flipping bits in memory without accessing

them: An experimental study of dram disturbance errors.

ACM SIGARCH Computer Architecture News, 42(3):361–

372, 2014. 1, 2, 3

[19] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,

Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence

Zitnick. Microsoft coco: Common objects in context. In

Computer Vision–ECCV 2014: 13th European Conference,
Zurich, Switzerland, September 6-12, 2014, Proceedings,
Part V 13, pages 740–755. Springer, 2014. 6

[20] Han Liu, Yuhao Wu, Zhiyuan Yu, Yevgeniy Vorobeychik,

and Ning Zhang. Slowlidar: Increasing the latency of lidar-

based detection using adversarial examples. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 5146–5155, 2023. 2

[21] Yannan Liu, Lingxiao Wei, Bo Luo, and Qiang Xu. Fault

injection attack on deep neural network. in 2017 ieee. In

ACM International Conference on Computer-Aided Design
(ICCAD), pages 131–138. 3

[22] Chen Ma, Ningfei Wang, Qi Alfred Chen, and Chao Shen.

Slowtrack: Increasing the latency of camera-based percep-

tion in autonomous driving using adversarial examples. In

Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 38, pages 4062–4070, 2024. 1, 2, 3

[23] Hua Ma, Yinshan Li, Yansong Gao, Alsharif Abuadbba, Zhi

Zhang, Anmin Fu, Hyoungshick Kim, Said F Al-Sarawi,

Nepal Surya, and Derek Abbott. Dangerous cloaking: Natu-

ral trigger based backdoor attacks on object detectors in the

physical world. arXiv preprint arXiv:2201.08619, 2022. 1

[24] Onur Mutlu et al. Fundamentally understanding and solving

rowhammer. In Proceedings of the 28th Asia and South Pa-
cific Design Automation Conference, pages 461–468, 2023.

3

[25] Onur Mutlu and Jeremie S Kim. Rowhammer: A retrospec-

tive. IEEE Transactions on Computer-Aided Design of In-
tegrated Circuits and Systems, 39(8):1555–1571, 2019. 2,

3

6717

[26] KL Navaneet, Soroush Abbasi Koohpayegani, Essam

Sleiman, and Hamed Pirsiavash. Slowformer: Universal ad-

versarial patch for attack on compute and energy efficiency

of inference efficient vision transformers. arXiv preprint
arXiv:2310.02544, 2023. 2

[27] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,

James Bradbury, Gregory Chanan, Trevor Killeen, Zeming

Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An im-

perative style, high-performance deep learning library. Ad-
vances in neural information processing systems, 32, 2019.

6

[28] Adnan Siraj Rakin, Zhezhi He, and Deliang Fan. Bit-flip

attack: Crushing neural network with progressive bit search.

In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pages 1211–1220, 2019. 2

[29] Adnan Siraj Rakin, Zhezhi He, and Deliang Fan. Tbt: Tar-

geted neural network attack with bit trojan. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 13198–13207, 2020. 2, 4

[30] Kaveh Razavi, Ben Gras, Erik Bosman, Bart Preneel, Cris-

tiano Giuffrida, and Herbert Bos. Flip feng shui: Hammer-

ing a needle in the software stack. In 25th USENIX Security
Symposium (USENIX Security 16), pages 1–18, 2016. 2

[31] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali

Farhadi. You only look once: Unified, real-time object de-

tection. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 779–788, 2016. 1, 6

[32] Joseph Redmon and Ali Farhadi. Yolov3: An incremental

improvement. arXiv preprint arXiv:1804.02767, 2018. 6

[33] Avishag Shapira, Alon Zolfi, Luca Demetrio, Battista Big-

gio, and Asaf Shabtai. Phantom sponges: Exploiting non-

maximum suppression to attack deep object detectors. In

Proceedings of the IEEE/CVF Winter Conference on Appli-
cations of Computer Vision, pages 4571–4580, 2023. 2, 3, 4,

6, 7

[34] Ilia Shumailov, Yiren Zhao, Daniel Bates, Nicolas Paper-

not, Robert Mullins, and Ross Anderson. Sponge examples:

Energy-latency attacks on neural networks. In 2021 IEEE
European symposium on security and privacy (EuroS&P),
pages 212–231. IEEE, 2021. 2

[35] Youssef Tobah, Andrew Kwong, Ingab Kang, Daniel

Genkin, and Kang G Shin. Spechammer: Combining spectre

and rowhammer for new speculative attacks. In 2022 IEEE
Symposium on Security and Privacy (SP), pages 681–698.

IEEE, 2022. 3

[36] Chien-Yao Wang, Alexey Bochkovskiy, and Hong-

Yuan Mark Liao. Yolov7: Trainable bag-of-freebies sets

new state-of-the-art for real-time object detectors. In Pro-
ceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pages 7464–7475, 2023. 6

[37] Wenbin Wang and Haixia Long. A study of backdoor attacks

against the object detection model yolov5. In 2023 2nd In-
ternational Conference on Machine Learning, Cloud Com-
puting and Intelligent Mining (MLCCIM), pages 278–284.

IEEE, 2023. 1

[38] Zuxuan Wu, Ser-Nam Lim, Larry S Davis, and Tom Gold-

stein. Making an invisibility cloak: Real world adversar-

ial attacks on object detectors. In Computer Vision–ECCV

2020: 16th European Conference, Glasgow, UK, August 23–
28, 2020, Proceedings, Part IV 16, pages 1–17. Springer,

2020. 1

[39] Fisher Yu, Haofeng Chen, Xin Wang, Wenqi Xian, Yingying

Chen, Fangchen Liu, Vashisht Madhavan, and Trevor Dar-

rell. Bdd100k: A diverse driving dataset for heterogeneous

multitask learning. In Proceedings of the IEEE/CVF con-
ference on computer vision and pattern recognition, pages

2636–2645, 2020. 6

[40] Mengxin Zheng, Qian Lou, and Lei Jiang. Trojvit: Tro-

jan insertion in vision transformers. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 4025–4034, 2023. 2, 4

[41] Zhengxia Zou, Keyan Chen, Zhenwei Shi, Yuhong Guo, and

Jieping Ye. Object detection in 20 years: A survey. Proceed-
ings of the IEEE, 111(3):257–276, 2023. 1

6718

