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{ssmeu,eburceanu}@bitdefender.com andrei.nicolicioiu@mila.quebec

Abstract

Novelty detection seeks to identify samples deviating from

a known distribution, yet data shifts in a multitude of ways,

and only a few consist of relevant changes. Aligned with

out-of-distribution generalization literature, we advocate

for a formal distinction between task-relevant semantic or

content changes and irrelevant style changes. This distinc-

tion forms the basis for robust novelty detection, empha-

sizing the identification of semantic changes resilient to

style distributional shifts. To this end, we introduce Stylist,

a method that utilizes pretrained large-scale model repre-

sentations to selectively discard environment-biased fea-

tures. By computing per-feature scores based on feature

distribution distances between environments, Stylist effec-

tively eliminates features responsible for spurious corre-

lations, enhancing novelty detection performance. Evalu-

ations on adapted domain generalization datasets and a

synthetic dataset demonstrate Stylist’s efficacy in improv-

ing novelty detection across diverse datasets with stylis-

tic and content shifts. We make our code available at

https://github.com/bit-ml/Stylist.

1. Introduction

In the broader body of literature, Novelty Detection (ND)
[23, 31, 34, 37, 43, 48] has conventionally revolved around
the identification of notable and meaningful deviations from
established data distributions. The ND task is often used
interchangeably with the broader anomaly detection task,
but there is a notable difference between the two. Anoma-
lies are fundamentally distinct from typical samples and can
manifest as deviations in various forms. Novelties, or seman-
tic anomalies, represent a subset of anomalies, specifically
targeting semantic deviations, aiming to identify any test
sample that does not conform to the established training
categories. For example, in practical scenarios such as med-
ical diagnosis [7], financial fraud detection [5] or network
intrusion detection [11], the primary objective is to detect

*Equal contribution.

novelties, such as unique aspects of a cell’s biological struc-
ture, while disregarding irrelevant divergent characteristics,
such as artifacts stemming from equipment.

Our main point is that not all changes are created equal.
When we move across a continent using a self-driving car,
we might be amazed by the style of different houses that
we have not seen before, but the self-driving car should still
behave the same. On the other hand, when encountering a
new structure that it has not seen before, such as a new type
of intersection or bridge, the car should detect that this is a
novel situation and cease the control to the driver.

Thus, we define semantic or content shifts as the changes
in data distribution that involve factors relevant to our task
(such as driving), and style shifts as the changes that involve
some factors that are irrelevant to our task . In many cases,
the style factors are correlated with content factors, so when
learning the semantics of a problem, we might learn some
spurious correlations involving irrelevant style factors. These
spurious correlations might not always hold; thus, we should
not rely on them. In this context, we focus on robust novelty

detection, which aims to identify distribution changes in
content while ignoring style changes.

To distinguish between the two, we consider the multi-
environment setup from the distribution shift studies [19,51],
where, besides the usual content label, we also have access
to a style label. An environment is composed of samples
with a particular style category, but with any content cate-
gories. In this scenario, a style category is essentially a set
of factors or relations that hold only in one environment (e.g.
for the self-driving car example, driving in the forest, near
a beach, or even in some fictional, Disney-like scenario can
be seen as different styles). On the other hand, a content
category refers to a set of factors or relations that hold across
all environments (e.g. roads, cars, bikes, human categories).
The style component characterizes the data in an uncertain,
maybe even spurious way, toward the content classification
task. During training, the content may be correlated with
other factors from the training environments, which are ir-
relevant to this new task and might become spurious. This
is a challenging problem for content classification tasks and
even more challenging in the novelty detection setup, where,
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Figure 1. Multi-env setup for the Robust Novelty Detection task.

during training, you only observe a set of known classes.
With this in mind, our work centers on detecting

novel content, while removing environment-biased fea-
tures. Specifically, we propose a method to rank features
based on their distributional changes across training environ-
ments. This ranking mechanism, followed by the removal
of environment-biased features, aims to enhance the per-
formance of novelty detection methods, enabling them to
generalize more effectively in the presence of spurious cor-
relations and providing insights into the interpretability of
features.

Our main contributions are the following:
1. We show that feature selection based on environment
information helps to detect novelties in the presence of irrel-
evant changes, a setup we call Robust Novelty Detection.
2. We introduce a simple, yet highly effective algorithm,
Stylist, that scores pretrained features, based on their distri-
butional changes between training environments. We em-
pirically prove that it ranks features based on how much

they focus on environmental details and gives a glimpse of
interpretability to the ”black-box” embeddings.
3. We show that, by gradually removing the environment-
biased features proposed by Stylist, we significantly improve
the ND models’ generalization capabilities, both in the co-
variate and sub-population shift setups, by up to 8%.
4. We introduce COCOShift, a comprehensive, synthetic
benchmarkwhich enables a detailed analysis for the Robust
Novelty Detection. We also adapt the DomainNet and fMoW
multi-environment real datasets to novelty detection and
validate our main results in this setting.

2. Problem formulation

Real-world data suffers from a multitude of changes that
we usually refer to as distributional shifts. As described
by [40] these kinds of shifts are involved in different lines of
work, with different goals: domain generalization wants to

be robust to style shifts while most anomaly detection meth-
ods want to detect either style or semantic shifts. We denote
robust novelty detection as the task of detecting semantic
novelties while being robust to style distributional shifts.
More exactly, detect samples that differ by some seman-
tic shifts from some seen training samples, while ignoring
samples that are only affected by style shifts.

We work in a multi-environment setup, where each train-
ing environment changes the style of the samples, while
all environments contain a set of seen content classes. The
goal of training environments is to define what is content
and what is style. Consequently, we are not restricted to a
certain definition of style, but rather expect the training envi-
ronments to define what might be correlated with our task,
but is not actually relevant. Then, we define an evaluation
environment, containing both seen and novel classes with
an associated new style. The goal of robust novelty detec-

tion is to separate between seen and novel content classes,
without being affected by the new style.

We focus on multi-class novelty detection, where we
have training environments with multiple content classes.
However, we treat them as a single group of normal samples
and ignore their content labels. By the definition of novelty
detection task, there is a zero level of corruption among the
normal samples, as opposed to the more common setup of
anomaly detection.

In Fig. 1 we present two scenarios to exemplify our setup.
In the first example, normal samples encompass representa-
tions of objects in various formats (real images or paintings).
In this context, style is defined as the manner of depiction.
During testing, our objective is to correctly categorize the
laptop as a novel class. Furthermore, we must discern that
the sketch of the banana, despite the shift in style (from real
images and paintings to sketches), is not a novel class. In the
second example, we observe a different definition of style,
namely the background of the images, which should also be
irrelevant for classifying the content.

3. Our approach

Some dimensions of a given pretrained representation
could be more representative of the semantic aspects, while
others might be more representative of style elements. To
minimize the impact of style factors on our novelty detec-
tion task, we aim to reduce our reliance on them. Thus,
it might be that we are better off ignoring the dimensions
that mostly contain style information, which we denote as
environment-biased features. We focus on discovering which
features from a given, pretrained representation, are more
environment-biased, thus prone to contain spurious correla-
tions, and should be better ignored. Finding the robust part
of a representation is closely linked to invariance between
environments, thus we want to have a measure of variance
for each dimension in our representation. We first quantify
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Figure 2. Stylist. We improve the ND performance by identifying (Step 1) and gradually removing (Step 2) environment-biased features.
From this point of view, higher distribution distances between environments proved to be a good indicator for ranking features.

the degree of change in each feature distribution, and then
we drop the ones that vary more, as depicted in Fig. 2.

We assume that for each sample of our training set, we
start with a vector of N features, extracted from a pretrained
model. We proceed in two steps:

Step 1. Feature ranking in training environments First,
we compute a score that says how much a feature changes
across environments. For each feature i, we consider fi(env)
to be the distribution of this feature in environment env. In
our case, we use the feature histogram per environment.

fi(env) = p(fi|env), →i ↑ [1..N ], →env ↑ all.envs.
(1)

Next, we employ the Wasserstein distance to compute the
distance between the distributions of each feature i, across
pairs of environments (a, b).

disti(enva, envb) = W (fi(enva), fi(envb)), →i ↑ [1..N ]
(2)

The per-feature score is then obtained as the expected
value of the Wasserstein distance across all pairs of environ-
ments (enva, envb), where a ↓= b.

scorei = Ea,b[disti(enva, envb)], →i ↑ [1..N ],

→ training enva ↓= envb,
(3)

Step 2. Features selection for Robust Novelty Detection

Next, since our purpose is to be robust and to be able to

ignore environmental changes, we remove features with the
highest scores. The intuition here is that environment-biased
features facilitate spuriousness, providing a training setup
prone to such correlations.

The exact distance used might not be that important, but
what matters is the process of looking at differences between
environments and searching for what consistently changes
between them (e.g. in terms of distribution). For this, in our
approach, we rely on the following assumptions, which we
argue that are not very restrictive, but rather grounded in
common sense:

1. The feature extractor It is mandatory for our feature
extractor to ”see” both known and new content, but also
styles. Missing discriminative features between new and
known content, makes our task impossible to approach. On
the other hand, having features that are non-discriminative
of style, makes the robust ND task useless, since there is
no information related to the style that the algorithm needs
to adapt to ignore. This assumption is easily met in prac-
tice nowadays, when we have access to powerful pretrained
models that have been trained on large and comprehensive
datasets. Thus, the difficulty does not lie in getting good
representation, but at the next level, where, given a set of
very descriptive features, you need to select the ones that
are relevant for identifying novel content, while dropping
style-related features that can cause spurious correlations. A
clarifying example for motivating the need for this assump-
tion and its relevance is the following: ”Alert me when you
see wild animals, intruding into my garden, engaging with
my pets, or farm animals”. In this case, the ND task could
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be to detect if something abnormal - wild - appears, after
training the model with a collection of normal images.

2. Style changes more between environments In our
setup, both style and content can vary across environments.
We assume that style-induced changes in the data distribution
are greater than content-induced ones, when we look at two
different environments. Hence, if the style is changing more,
the content is changing less, and a natural interpretation of
this assumption is that class distribution across environments
is similar. While our method clearly benefits from such a
setup, this is not a hard assumption we need. In our experi-
ments for ND, we have two classes (normal vs novel), that
aggregates over multiple real content one. Those real classes
are usually very heterogeneous, covering even 340 for some
datasets (see Appendix G), completely disregarding the in-
terpretation that the content should be similarly distributed
across environments for Stylist to work.

4. Experimental analysis

Our experimental analysis is conducted using two real
datasets and a synthetic one. For the first two, we em-
ploy adaptations of well-established domain generalization
datasets: fMoW [8] and DomainNet [29]. All are multi-
environment datasets and for each, we divide the environ-
ments into two sets denoted as follows: in-distribution (ID)
environments (associated with styles that we observe during
training) and out-of-distribution (OOD) environments (asso-
ciated with styles that we only observe during testing). Each
dataset contains a set of annotated semantic categories, and
we divide them into two sets: normal classes (content cate-
gories observed during training) and novel classes (content
categories that should be distinguished from normal ones
during testing). For each sample, we have a style label and a
novelty label (normal vs. novel).

fMoW comprises satellite images of various functional
buildings. The style is defined by the location of the image,
while the content is defined by the class of the observed
building. To generate a greater shift between ID and OOD
styles, we considered photos taken in Europe, America, Asia,
and Africa to compose the ID environments, while those
taken in Australia were used as OOD ones. The content
separation into normal and novel categories was randomly
generated (see Appendix G.1).

DomainNet contains images of common objects in six
different domains. The style is defined by the domain, while
the content is defined by the object class. We separated the
environments into ID: clipart, infograph, painting, and real
and OOD: quickdraw and sketch. We randomly split the
classes into normals and novelties (see Appendix G.2).

COCOShift is a synthetic dataset generated to allow an
in-depth analysis of our approach. We combined segmented
objects from COCO [27] with natural landscape imagery

from Places365 [50]. The landscape images define the style
of the data, while object categories depict the content. We
have grouped the landscape images into 9 categories (e.g.
forest, mountain), each of an equal number of samples, and
further split them into 5 ID and 4 OOD styles. The object
categories were split into normal and novel classes by fol-
lowing a proper balancing between them. (see Appendix
G.3). Spuriousness: For COCOShift, we deliberately intro-
duced and varied the level of spurious correlations between
style and content, similar to [18, 36]. The spuriousness level
ranges from 50% (balanced dataset, without spurious correla-
tions) to 95% (where the normal class is strongly correlated
with some environments, while we observe few samples in
the rest of the environments). We obtain the COCOShift
benchmark, with 4 levels of spuriousness in the training sets:
COCOShift balanced, COCOShift75/90/95.

Metrics: For our ND experiments, we report the ROC-
AUC metric, as the average performance over test environ-
ments. Unless otherwise specified, we report performance
over OOD environments.

Feature selection algorithms: We have transformed In-
foGain [20] and FisherScore [13] to identify and then dis-
card the environment-biased features. Along with our Stylist
method, we denote those three methods as ’Env-Aware’ meth-
ods. As ’Not Env-Aware’ methods, we evaluate MAD (mean
absolute difference), Dispersion (as the ratio between arith-
metic and geometric mean), Variance, and PCA Loadings.
We use all those methods to compute an individual score per
feature (see Appendix A for details).
Env-InfoGain: We compute the mutual information between
each feature and the style labels. High scores indicate a
higher dependency between feature and style labels.
Env-FisherScore: We rank the features based on their rele-
vance for the classification of style categories.

Novelty detection algorithms: We observe the impact of
our method on several ND solutions: OCSVM [38], LOF [6],
and kNN [2] with different variations (normalized or not at
sample level, with 10 or 30 neighbors to measure variations).
We also tested the impact in the state-of-the-art solution
for OOD detection, kNN+ [41], which trains a kNN on top
of normalized samples, but on top of ResNet-18 features,
fine-tuned using a supervised contrastive loss like in [17].

Pretrained features: We validate over multiple feature
extractors, from different tasks, architectures, and datasets
(supervised, multi-modal, contrastive, from basic ResNet to
Visual Transformers, trained on ImageNet [10] and other
larger datasets): ResNet-18, ResNet-34 [14], CLIP [32],
ALIGN [16], BLIP-2 [25]. Unless otherwise specified, the
experiments use ResNet-18, pretrained on ImageNet.

4.1. Robust Novelty Detection

Stylist for Novelty Detection We evaluate how our selection
affects the robustness of various Novelty Detection algo-
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Table 1. Novelty Detection Methods on top of Stylist features. Notice how, for almost all ND algorithms and dataset combinations,
dropping top environment-biased features, as identified by Stylist, increases the ROC-AUC performance (see the improvement in green).

Novelty Detection

Method

fMoW DomainNet COCOShift95

ROC-AUC ↔ %
selected

feat.

ROC-AUC ↔ %
selected

feat.

ROC-AUC ↔ %
selected

feat.all
feat.

Stylist

feat.
all

feat.
Stylist

feat.
all

feat.
Stylist

feat.
OCSVM 46.9 54.3 (+7.4) 85 50.4 51.4 (+1.0) 95 52.6 58.4 (+5.8) 90
LOF 58.0 60.8 (+2.8) 15 51.1 52.0 (+0.9) 90 83.4 86.5 (+3.1) 30
kNN 59.0 60.3 (+1.3) 20 50.6 50.8 (+0.2) 40 79.8 85.1 (+5.3) 30
kNN norm 41.9 49.9 (+8.0) 5 52.5 52.8 (+0.3) 70 86.2 86.2 (+0.0) 100

kNN+ 58.0 60.8 (+2.8) 15 51.1 52.0 (+0.9) 90 82.3 82.3 (+0.0) 100

Figure 3. Feature selection algorithms. From left to right on the horizontal axis, we remove features according to the ranking of each
feature selection algorithm. As the spuriousness level of the train set increases (a) → b) → c)), the performance of Stylist (in black)
increases, while the performance of other methods decreases. This proves that our approach is better at identifying environment-biased
features responsible for the spurious correlations. The reported ROC-AUC performance is for the same OOD sets in all three plots.

Figure 4. Dataset spuriousness impact. We vary the train set spuriousness level between style and content for the two steps of our algorithm.
a) same dataset for both steps; b) fixed dataset (COCOShift balanced) for ND training in Step 2; c) fixed dataset (COCOShift balanced) for
Feature ranking in Step 1. Our method always manages to improve the ND performance (w.r.t. all features baseline), even in degenerated
cases like 95% (or no) spurious correlation, in only one or in both steps (see the positive slopes in all curves).

rithms. Tab. 1 presents the initial performance using all fea-
tures and the best result achieved by dropping environment-
biased features as identified by Stylist. Notice how for almost
all cases, using only a percentage of features improves per-
formance by up to 8%.

Comparison with other feature selection algorithms We
compare in Fig. 3 between different methods of feature selec-
tion. For all algorithms, we drop features ranked as the most
irrelevant. We see that, as we vary the spuriousness level

in the training dataset, the relative order of the algorithms
changes, showing that some perform better when working
on a balanced dataset (like PCA based ones), while our
Stylist works the best in difficult scenarios with an increased
level of spurious correlations. Please refer to Appendix A
for the individual performances and notice in Appendix B
how those covariate shift results are consistent even for the
sub-population OOD shifts. Also, Appendix D shows a
qualitative analysis.
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Table 2. Feature extractors. Stylist improves the performance for all types of pretrained features considered, over all three datasets. For
simplicity, we use only ResNet-18 in other experiments.

Features

fMoW DomainNet COCOShift95

ROC-AUC ↔ %
selected

feat.

ROC-AUC ↔ %
selected

feat.

ROC-AUC ↔ %
selected

feat.all
feat.

Stylist

feat.
all

feat.
Stylist

feat.
all

feat.
Stylist

feat.
ResNet-18 59.0 60.3 (+1.3) 20 50.6 50.8 (+0.2) 40 79.8 85.1 (+5.3) 30
ResNet-34 61.9 65.6 (+3.7) 30 51.1 51.1 (+0.1) 40 78.9 82.6 (+3.7) 20
CLIP 54.3 55.5 (+1.3) 25 60.8 61.5 (+0.8) 30 94.5 94.9 (+0.4) 95
ALIGN 54.6 56.2 (+1.6) 40 60.6 60.8 (+0.3) 75 89.6 89.7 (+0.1) 80
BLIP-2 58.6 59.1 (+0.4) 15 65.1 65.8 (+0.7) 20 96.7 96.8 (+0.1) 95

Figure 5. Features Selection vs. Dimensionality Reduction (PCA). When comparing Stylist (black) with PCA (orange), we see that Stylist
selection works better in all cases. Moreover, when combining the best selection percentage of Stylist with further dimensionality reduction
using PCA (green), we observe an improvement (note that the green curve corresponds to different absolute numbers of features).

Stylist robustness to dataset spuriousness level To better
understand the real cases, we further analyze the impact of
spurious correlations in each step of our approach. We use
datasets with various levels of spuriousness between style
and content, in three setups (Fig. 4): a) use the same dataset
in both algorithm steps; b) keep the spuriousity level fixed
for Step2 while varying the spuriousity level for Step1 c)

keep the spuriousity level fixed for Step1 while varying the
spuriousity level for Step2. The dataset kept constant in b)
and c) is COCOShift balanced. We observe that having a
higher degree of spuriousness in feature selection (Step 1),
leads to better performance for our Stylist method. Nev-
ertheless, in all cases, even in the most degenerated ones
(with very high correlations to none), we see an increase
after removing the top-ranked environment-biased features.

Feature Selection vs. Dimensionality Reduction Classical
dimensionality reduction approaches (like PCA) address the
idea of reducing space dimensionality while preserving or
maximizing the most important information. In PCA, we can
assume that a projection into the space of the principal com-
ponents will produce a robust representation. Although this
projection method differs from feature selection methods,
as it reprojects features into a new space rather than retain-
ing specific features, we compare it with Stylist, in Fig. 5,
for the robust novelty detection task. Consistently, for all

datasets, Stylist selection performs better. We also combine
Stylist with PCA, by applying an additional dimensionality
reduction over the best percentage of features from Stylist.
We observe an improvement in the curves, highlighting the
potential of combining the two approaches, proving that the
two methods are not only different, but also complementary.

4.2. Ablations

Feature extractors We show in Tab. 2 that our feature selec-
tion method is model-agnostic, improving over 100% feature
usage baseline, over a wide variety of pretrained models,
coming from basic supervised classification, multi-modal
and contrastive approaches.
Stylist distance We validate the algorithmic decisions of our
proposed Stylist approach. To compute the per-feature scores,
we measure the per-feature distance in distribution (Eq. 1),
between any two training environments (Eq. 2), and combine
those per-pair distances to obtain a more informative rank-
ing, based on all training environments (Eq. 3). The per-pair
ranking combinations do not influence the overall perfor-
mance, while the distance used seems to be dataset-specific
(symmetric KL is better on fMoW, while Wasserstein is bet-
ter on DomainNet and the synthetic COCOShift95). For
simplicity, we have used Wasserstein distance with mean
over the features per-pair scores in all our experiments. See
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Figure 6. Features’ focus analysis. a) In a controlled experiment, with 50% of features being content-related and 50% being style-related,
we evaluate how accurate is Stylist in determine which is which. We observe that the top-ranked 40% features are correctly identified
as environment related (100% accuracy in predicting whether a feature is content or style related). In fact, all env-aware methods have
impressive results, overcoming non env-aware methods by a large margin. b) In a balanced setup, we have also evaluated the ability of our
top-ranked environment-biased features to classify the style category of an image. Note that our approach reaches a high accuracy with only
5% of the top-ranked environment-biased features. This indicates that the identified features are indeed strongly correlated with the style.

Appendix C for detailed scores.
The percent of selected features As highlighted in Fig. 3,
Stylist consistently improves over the baseline w.r.t. the per-
cent of considered features, proving that the provided feature
ranking is relevant for the novelty detection problem. To
select an optimal percent of features per setup, we employ
a validation step, analyzing either the performance on an
ID validation set or the performance on an OOD test set.
There is a very small performance variance between those
techniques (less than 0.015 for ResNet-18 features, and even
0 for CLIP features), highlighting that the performance is
stable. This is an important property of our algorithm, man-
aging to improve Out-Of-Distribution performance, with
In-Distribution chosen hyper-parameters.
Class (un)balanced environments Our method benefits
from having the same distribution of classes in all environ-
ments. While we assume that the class variations are small,
we do not strictly enforce this in our main experiments, as
we assume that we do not have access to the class labels.
Nevertheless, we can use the class label information to have
the same class distribution in all environments, by resam-
pling. Although the class distributions in our datasets vary
by a small amount between environments, we performed
an experiment where we resampled all datasets to be class-
balanced and applied the selection method to the resulting
ones. That ROC-AUC stays the same or improves slightly
(+0.87%) compared to the initial unbalanced dataset.

4.3. A glimpse of interpretability

Our approach ranks features based on how much they rep-
resent the environment’s irrelevant factors, and we validate
their quality with two experiments.

a) We investigate if the approach can find the features that

focus on the environment factors in the ideal case of disen-
tangled features, where some features exclusively represent
style while others exclusively represent content. For this, we
split each image from COCOShift balanced train set into two
images, one containing only the object (content), while the
other only the background (style). We independently extract
features from the two images and then concatenate them,
thus the first 50% of the features are content features and the
rest are style features. Further, we apply Stylist over this com-
bined representation, on COCOShift balanced dataset. For
each percent of features used (from 5% to 100%) we com-
pute the accuracy of this selection (first 50% should be envi-
ronment features then style features). In Fig. 6 a) we present
the results of our experiment. For the first 40% top-ranked
environment-biased features, Stylist has a perfect accuracy
score, with other env-aware methods (Env-InfoGain and
Env-FisherScore) having also impressive scores of 99.1%
and 99.7%, while the non env-aware methods performing
significantly lower. In this scenario with disentangled fea-
tures, env-aware methods consistently select as top features,
those associated with the style.

b) In a more realistic scenario, with pretrained features
that might not be disentangled, we analyze the degree in
which the top-scored environment-biased features represent
style. For this, we train a classifier to predict the ground-
truth style of an image, given the selected features. Starting
from our COCOShift dataset, we build a balanced dataset,
without spurious correlations, for the task of classifying the
style category of an image (1 out of 9). In Fig. 6 b) we
present the results of our experiment, where we have trained
a classifier for each percent of features. We observe that
with only a small fraction of the features, we achieve almost
the maximum score for predicting the environment, showing
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that the top-ranked features are, indeed, style predictive.
In contrast, when randomly selecting features, the same
performance is achieved using significantly more features.

Although the FisherScore selection method works very
well in a), in the perfect feature disentanglement case, in the
real-world scenario of b), it fails below the random base-
line. Intuitively, FisherScore relies on computing full feature
space distances when finding neighbours, but those distances
are largely affected by the imperfect scenario, where fea-
tures are intertwined and the feature extractor can contain an
unbalanced ratio of style vs. content features. In contrast,
Stylist analyzes distances between individual feature distri-
butions, implicitly balancing the impact of content vs. style
if part of the spectrum looks similar because it represents the
content part. In this way, Stylist manages to be more robust
in the real-case scenario like in b).

5. Related work

Out-Of-Domain (OOD) generalization: Machine learn-
ing methods proved to have remarkable capabilities, but
are still subject to mistakes when dealing with out-of-
distribution data [4, 12, 15, 22].

Invariant learning: To tackle the changing distribution,
one possible solution involves learning some invariant mech-
anisms of the data [3, 28, 30]. IRM [3] constraints the model
such to obtain the same classifier in different environments,
while vREx [21] constrains the loss to have low variance
across domains. The work of [49] proves that features with
small variations between training environments are impor-
tant for out-of-distribution generalization. This also gives a
formal motivation to our work. In [44] a subspace of invari-
ant features is determined through PCA of class-embeddings.
A formalization of invariant learning is proposed in [45]
and suggests that depending on the structure of the data,
different constraints should be used. Different from those
solutions that require both semantic (content) labels (namely
content classes) and environment labels, Stylist needs only
environment labels.

OOD datasets: Other existing datasets on OOD [19]
have different limitations when we tried to approach them
using Stylist, motivating us to introduce COCOShift, which
brings a controllable level of spurious correlations. Water-
birds [35] has only two environments, one used for training,
and one used for testing. The existence of multiple environ-
ments is essential to define what the style consists of, so we
need to see at least two training domains to determine the
environment-biased features. Background challenge bench-
mark [47] does not provide labels for the style, but only
for the content. Furthermore, by construction, we have sec-
ondary objects in the samples, for which we don’t have la-
bels, but they come from the same set of classes as the main
content. This makes it impossible to have a clear separation
between style and content. In MetaShift [26], the annota-

tions of each image encompass nearly all objects present
within it. Usually, there are 3 or more different objects per
image, which intersect the content and environment label
sets. We only found 2159 clean samples (with no conflicting
annotations). For non-intersecting content and environment
label sets, there are only 281 samples.

Novelty detection: Semantic anomaly detection [1] aims
to detect only changes in some high-level semantic factors
(e.g. object classes) as opposed to low-level cues (such as
image artifacts). Methods like the ones in [39,42,43,46] use
a self-supervised method for anomaly or out-of-distribution
detection while the methods in [24, 33, 52] also adapt pre-
trained extractors using contrastive methods. RedPanda [9]
method learns to ignore some irrelevant factors but achieves
this using labels of such factors. Still, most works in this
space only focus on settings containing only one type of
factor, semantic or non-semantic, but not both.

Robust novelty detection: We propose this term for the
setting that contains both content and style factors, where
the goal is to detect changes in content while being robust to
style. This setting is introduced in [40] where they show that
robustness methods based on multi-environment learning
can help anomaly detection. Our work shows that a simple,
but efficient method of ranking feature invariance improves
performance in the context of robust novelty detection.

6. Conclusions

In this work, we first propose Stylist, a feature selection
method that finds features focused more on the environment,
which are irrelevant for a pursued task, by emphasizing the
distribution distances between environments, at the feature
level. Next, we prove that by dropping features for which
our algorithm gives a high probability of being environment-
biased, we improve the generalization performance of nov-
elty detection in the setup where both style and content
distribution shifts. We validate our approach on real-world
datasets DomainNet and fMoW as well as our introduced
benchmark, COCOShift where we can control the level of
spuriousness.

7. Impact statement

This paper tackles fundamental research in Machine
Learning without any specific application. As the proposed
method is generic, we feel it does not present special or di-
rect ethical or societal negative consequences. By removing
spurious correlations, this approach has the potential for in-
creased fairness and robustness while also being useful for
analyzing existing biases in pretrained representations.
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