
Pre-capture Privacy via Adaptive Single-Pixel Imaging

Yoko Sogabe Shiori Sugimoto Ayumi Matsumoto Masaki Kitahara
NTT Corporation, Japan

{yoko.sogabe, shiori.sugimoto, ayumi.matsumoto, masaki.kitahara}@ntt.com

Abstract

As cameras become ubiquitous in our living environ-
ment, invasion of privacy is becoming a significant concern.
A common approach to privacy preservation is to remove
personally identifiable information from a captured image,
but there is a risk of the original image being leaked. In
this paper, we propose a pre-capture privacy-aware imag-
ing method that captures images from which the details
of a pre-specified anonymized target have been eliminated.
The proposed method applies a single-pixel imaging frame-
work in which we introduce a feedback mechanism called
an aperture pattern generator (APG). The introduced APG
adaptively outputs the next aperture pattern to avoid sam-
pling the anonymized target by using already acquired data
as a clue. Furthermore, the anonymized target can be set to
any object without changing hardware. Except for the re-
moved detailed features of the anonymized target, the cap-
tured images are of comparable quality to those captured
by a general camera and can be used for various computer
vision applications. We target faces and license plates and
experimentally show that the proposed method can capture
clear images in which detailed features of the anonymized
target are eliminated, achieving both privacy and utility.

1. Introduction
As a result of technological innovations in networking,

semiconductors, computer vision, and more, cameras have

become ubiquitous in our living environment. The use of

such cameras with computer vision is expected to have var-

ious practical applications. However, the widespread use of

cameras raises concerns about privacy and may be subject

to social backlash and legal restrictions. Thus, to promote

the utilization of computer vision, it is necessary to over-

come privacy and utility trade-offs.

A common approach to privacy preservation is to remove

personal data from the captured image data after capturing.

However, there is a risk that the data before removal may be

leaked. Such an approach in which personal data is removed

after capturing is called post-capture privacy. In contrast,

pre-capture privacy is an approach based on computational

Figure 1. Overview of proposed imaging system. The system cap-

tures a single image gradually by repeatedly acquiring the incident

light through the aperture pattern multiple times based on a single-

pixel imaging framework. The entire reconstructed captured im-

age gradually becomes clear. The next aperture pattern is gener-

ated to avoid sampling the anonymized target by using the current

unclear reconstructed captured image. This feedback mechanism,

which is proposed in this paper, results in the optical elimination

of the anonymized target.

imaging in which personal data is not captured (either op-

tically or at the sensor level), which ultimately enhances

the level of security. Prior studies on pre-capture [27, 43]

used thermal cameras to estimate the location of the face to

avoid sampling it. These imaging systems were designed by

focusing on face anonymization, and it is difficult to apply

them to anonymize anything other than faces. With cameras

in public places, however, there is a wide variety of objects

that should not be captured, i.e., anonymized targets. Ex-

amples include faces, textual information (license plates),

fingerprints, and irises.

In this paper, we propose a pre-capture privacy-aware

imaging method that captures images in which the details

of the anonymized target are optically eliminated. An aper-

ture pattern generator (APG) is introduced in a single-pixel

imaging framework. The APG implicitly estimates the loca-

tion of the anonymized target from the unclear image, which

is reconstructed from the already acquired data, and outputs

the next aperture pattern to avoid sampling that location.

This WACV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

9035



Assuming that the anonymized targets are either faces or

license plates, our quantitative experiments by simulations

show that both privacy and utility can be achieved. In addi-

tion, a prototype imaging system is assembled to verify its

application in the real world.

Our contributions are as follows:

Pre-capture privacy. We introduce imaging that optically

excludes detailed features of the anonymized target by

adaptively controlling the aperture, achieving anonymiza-

tion at the point of capture.

Utility. The captured anonymized images are of compara-

ble quality to those captured by a general camera, except for

the local degradation of the anonymized target, and can be

used for computer vision tasks.

Variability of anonymized targets. The anonymized tar-

get can be any object other than a face. In this case, the

aperture pattern generation network only needs to be re-

trained using the existing pre-trained recognition model for

the anonymized target, without changing the hardware.

2. Related Work
Traditionally, the approach to privacy preservation has

been post-capture privacy, but recent advances in computa-

tional imaging have made pre-capture privacy possible. In

relation to our work, we outline methods for pre-capture pri-

vacy and computational imaging techniques that are closely

related to privacy preservation.

Pre-capture privacy for face. The most difficult part of

pre-capture privacy is determining the location of the

anonymized target before capturing. In [43] and [27], a

thermal camera is used to estimate the location of faces.

The thermal camera detects a face silhouette by assuming

the temperature of faces. Another camera, which can con-

trol the shutter pixel-by-pixel, captures an anonymized im-

age by turning off the shutter at the detected silhouette. The

captured images are natural, except for the faces, which are

masked. Therefore, they can be used in any computer vision

application. However, such imaging systems have been de-

signed by focusing on face anonymization, and it is difficult

to apply them to anonymizing anything other than faces.

Pre-capture privacy for specific applications. Some

studies have achieved pre-capture privacy by capturing an

image that can only be used for specific applications but the

image is globally degraded to the point that personal data is

unrecognizable. In [26], moderately degraded images are

captured with a defocus lens attached to a camera to blur

captured images. This preserves privacy while using the

camera for a specific application such as full-body motion

tracking. In [35], an imaging system combining optical

convolution, and pooling and quantization in sensor circuits

is developed. By jointly optimizing HW parameters with

a face detector and recognizer, the system enables face

detection while limiting identification. In [14], a lens’s

point spread function and human pose estimation network

are jointly trained in an end-to-end fashion. This makes

it possible to degrade private attributes while maintaining

important features for human pose estimation. In [37], an

end-to-end trained phase mask is inserted into the aperture

plane to capture an image that is strongly blurred to protect

privacy while enabling depth estimation. In [4], the coded

aperture on a lensless camera and classifier network are

jointly trained in an end-to-end fashion. This makes it

difficult for a malicious user to reconstruct the image while

still being suitable for the trained classifier. Meanwhile, the

captured anonymized image should be usable for not only

one task but various tasks such as people flow analysis,

character recognition, and object detection.

Computational imaging in relation to privacy.
FlatCam [3], the coded aperture camera [22, 40], and

single-pixel imaging [10] are based on compressed sens-

ing (CS) theory [6]. CS-based imaging destroys spatial

information in the sensor image (raw image) and visually

eliminates privacy in the sensor image. However, because

the original image, which includes personal data, can

potentially be recovered from the sensor image by CS

reconstruction methods, it is not classified as pre-capture.

In [25], which is a modified version of FlatCam, facial

information is eliminated in software by detecting the face

through CS reconstruction. This approach is essentially

classified as post-capture privacy.

To overcome the trade-off between privacy and utility, it

is necessary to be able to set arbitrary anonymized targets

and to be able to capture images without global degradation

for use in any application. In contrast to prior studies, the

proposed method satisfies all of these requirements.

3. Adaptive Single-Pixel Imaging for Privacy

Figure 1 shows an overview of the proposed pre-capture

privacy-aware imaging method. The proposed method is

based on a single-pixel imaging (SPI) framework and in-

troduces a feedback mechanism, called an aperture pattern

generator (APG), using a deep learning model. SPI grad-

ually captures a single image by repeatedly acquiring in-

cident light through the aperture pattern, where the entire

reconstructed image gradually becomes clear. The APG

generates the next aperture pattern to avoid sampling the

anonymized target from the current unclear reconstructed

image. This feedback mechanism make it possible to elimi-

nate the anonymized target optically. Sec. 3.1 describes and

formulates the principle of conventional SPI, and Sec. 3.2

describes how anonymization is achieved through the feed-

back mechanism by APG.
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Figure 2. Proposed network architecture. The aperture pattern generator (APG) implicitly estimates the location of the anonymized target

from x̂{i}, which is reconstructed from the already acquired data, and outputs the next aperture pattern φi+1 to avoid sampling that

location. The APG and reconstructor are jointly trained. The two reconstructors share the network weights.

3.1. Single-Pixel Imaging

We explain the mathematical principles, followed by the

optical implementation. SPI is an imaging method based

on CS [6]. While we use SPI, our focus is not on the low

sampling rates typical of CS, but rather on achieving pri-

vacy with higher sampling rates to preserve image quality

for downstream tasks. The target image x ∈ R
N (an image

with a total of N pixels) is not acquired directly but is re-

constructed from y and Φ. First, x is optically modulated

to a measurement y ∈ R
M with fewer M(< N) elements

using a measurement matrix Φ ∈ R
M×N , and then y is

acquired.

y = Φx (1)

Then x is reconstructed from y and Φ.

x̂ = Recon(y,Φ) (2)

The reconstruction is typically solved by an iterative algo-

rithm [36]. A deep unrolled network, which is an algorithm

that combines the advantages of deep learning techniques

and traditional iterative reconstruction algorithms, has also

been developed [41, 42]. We choose an unrolled network,

ADMM-CSNet [41], as the CS reconstructor because of its

high computational speed and accuracy. In this paper, yi
denotes the i-th elements of y, y[1,i] denotes the sub-vector

from the 1st to i-th elements of y, φi ∈ R
N denotes the

i-th row vector of Φ, and Φ[1,i] denotes sub-matrix from

the 1st row to the i-th row of Φ. M/N is referred to as the

sampling rate.

SPI involves a photodetector (PD) and digital micromir-

ror device (DMD) as shown in Figure 1. The light ray from

the target is modulated by the aperture pattern φi displayed

on the DMD, and the modulated light is then acquired in the

PD (yi = φi · x). The above process is repeated M times

to obtain y.

Additionally, SPI can also be reconstructed using y[1,i]

at the i(< M)-th acquisition. x̂{i}(= Recon(y[1,i],Φ[1,i]))
represents the reconstructed image at the i-th acquisition.

When i is small, x̂{i} is inaccurate, and the accuracy is ex-

pected to increase as i increases.

3.1.1 Block-based CS
In the block-based CS [13], the target image is partitioned

into small non-overlapping blocks which are acquired in-

dependently but reconstructed jointly. This can reduce the

computational cost of reconstruction.

Suppose that we capture an L × L image (N = L ×
L pixels in total) by dividing it into B × B-pixel blocks

(n = B × B total pixels in a block). Nb = N/n is the

number of blocks. As Nb measurements are acquired every

i, y ∈ R
M is acquired for M ′(= M/Nb) iterations, and Φ

is re-defined as an M ′×N matrix. Additionally, yi denotes

the measurements of Nb blocks at the i-th acquisition and

can be written as

yi ∈ R
Nb =

⎡
⎢⎢⎢⎣
yi,1
yi,2

...

yi,Nb

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

φi,1 · x1

φi,2 · x2

...

φi,Nb · xNb

⎤
⎥⎥⎥⎦ = Forward(φi,x),

(3)

where yi,j denotes the measurement of the j-th block at i-
th acquisition, φi,j ∈ R

n denotes the j-th block of φi, and

xj ∈ R
n denotes the j-th block of x. The measurements

from the 1st to i-th acquisition are written as

y[1:i] ∈ R
iNb = [y1,y2, . . . ,yi]

T (4)

3.2. Adaptive Aperture Generation for Privacy

Introducing a feedback mechanism via an APG into SPI

enables anonymization. In SPI, aperture patterns generated

from random normal distributions are typically used, but in

the proposed method, aperture patterns are derived through

a feedback mechanism via the APG. As shown in Figure 2,

the aperture pattern at i + 1 (φi+1) is adaptively generated

from the unclear provisional reconstructed image at the i-th
acquisition (x̂{i}) to avoid sampling the anonymized tar-

get. When i is sufficiently small, x̂{i} is expected to be

an unclear image, and face silhouettes can be detected even

through individuals cannot be identified. As a very simple

example, it is possible to avoid acquiring detailed parts of
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Algorithm 1 Training procedure (lines 15–23 are skipped
for imaging procedure)

Require: x, BB(Bounding box of the anonymized target)

1: w ← 1N

2: φ1 ← N (0, 1)N

3: Φ[1,1] ← [φ1]
T

4: for i ← 1, . . . ,M ′ do
5: yi ← Forward(φi,x)

†

6: y[1,i] ← [y[1,i−1],yi]
7: if i ∈ {�Kn�|n ∈ N} then
8: x̂{i} ← Recon(ΘR,y[1,i],Φ[1,i])

9: w ← APG(ΘG, x̂
{i})

10: end if
11: wi+1 ← w
12: ni+1 ← N (0, 1)N

13: φi+1 ← wi+1 � ni+1

14: Φ[1,i+1] ← [Φ[1,i], [φi+1]
T ]

15: if i ∈ {�Kn�|n ∈ N} then
16: φi+2, . . . ,φM′ ← wi+1 � (N (0, 1)N , . . . ,N (0, 1)N )

17: Φ′ ← [Φ[1,i+1], [φi+2, . . . ,φM ′ ]T ]
18: y′

i+1, . . . ,y
′
M′ ← Forward(φi+1,x), . . . , Forward(φM′ ,x)

19: y′ ← [y[1,i],y
′
i+1, . . . ,y

′
M ′ ]

20: x̂′ ← Recon(ΘR,y
′,Φ′)

21: Calculate LG using x, x̂′,BB, and update ΘG

22: Calculate LR using x, x̂′, x̂{i}, and update ΘR

23: end if
24: end for
25: return x̂ ← Recon(ΘR,y,Φ)

ΘG and ΘR are the network weights of the APG and reconstruc-

tor, respectively. †This operation is optical acquisition using the

DMD and the PD in the real imaging process.

the face by setting φi+1 to zero for the location of each

facial part after the i-th acquisition. Repeating the above

process up to the M ′-th acquisition should produce a recon-

structed image x̂ in which only facial features are masked.

Alg. 1 shows the pseudo-code. The proposed system

captures a single anonymized image by repeatedly perform-

ing the process of the optical acquisition using φi (line 5)

and the adaptive generation of φi+1 by the APG (lines 8–

13). The APG generates w, which is the sampling weight

at each pixel. The APG consists of a U-NET deep learning

model [29] (#steps=5, #channels=64) with outputs clipped

within the range [0, 1] and takes x̂{i} ∈ R
N as input and

outputs w ∈ [0, 1]
N

as shown in line 9 of Alg. 1. The next

aperture pattern φi+1 is defined as follows:

φi+1 = wi+1 � ni+1, (5)

where ni+1 is a random normal distribution vector (

N (0, 1)N ), and � denotes an element-wise product. Be-

cause the compressed sensing theory states that a clear im-

age can be obtained by using Φ of random bases, ni+1

is used as the original basis and then is partly attenuated

by wi+1 to suppress the acquisition of information at each

pixel.

In addition, to accelerate the training and imaging pro-

cess, the adaptive feedback (line 8–9 of Alg. 1) operates

only at exponential intervals (line 7), and the previous w is

reused (line 11). Because a random vector ni+1 is gener-

ated at each i (line 12), a different φi+1 is obtained. K can

be changed in the training and imaging phase. A too large

K causes loss of anonymity.

3.2.1 Loss Function

The APG is trained with the following loss function to out-

put w such that only the anonymized target is not sampled.

LG = αLmse + (1− α)Lanony, (6)

where α is a balancing parameter. Lmse and Lanony are used

to evaluate image quality and the degree of anonymity, re-

spectively. The loss function is evaluated using the target

image x, which is known at the training phase, and a recon-

structed image which depends on wi+1. Note that instead of

x̂{i+1}, which is the reconstructed image at the (i+1)-th ac-

quisition, we use x̂′, which is the reconstructed image when

wi+1 is reused until the M ′-th acquisition. Since hundreds

of acquisitions are required for a single image, the impact of

an aperture pattern (wi+1) is small. To amplify the minute

effects of a single wi+1 and facilitate learning, we use the

reconstructed image assuming that wi+1 is reused until the

end (M ′), namely x̂′, as shown in lines 16–20 of Alg. 1.

Lmse and Lanony are calculated from x and x̂′ as shown

in the ‘Training Phase’ in Figure 2. Lmse is the mean

squared error between x and x̂′. Lanony must be small when

anonymity is high. Lanony depends on the anonymized tar-

get (face and license plate), the details of which are defined

as follows:

Face Anonymization. FaceNet [31] is used as a facial fea-

ture extractor. In FaceNet, the distance of feature vectors

from two face images is less than 1.1 when the two faces

are the same individual. Following this rule, Lanony is cal-

culated as follows: first, x,x̂′, and BB (bounding box of the

face) are given. A face image pair is created by cropping

x and x̂′ using BB, and the cropped image pair is resized

to 160 × 160 to match the input of FaceNet. Then we cal-

culate the distance of the feature vectors from the output of

FaceNet (average if there is more than one face) and enter

the distance value into an adjustment function. The adjust-

ment function is a modified Leaky ReLU function, i.e.,

f(x) =

{
−(x− 1.1) if x < 1.1

−0.01× (x− 1.1) otherwise
(7)

License Plate Anonymization. The basic procedure is the

same as that for faces; please refer to the supplementary

material for details.
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Face License plate

Optimizer Adam

lr 1.0× 10−4 (halved at every 5 epochs)

#epochs 40

#mini batches 4

Data augmentation Random crop, Random resize [0.5 : 2]
Random rotate [−10◦ : 10◦]

Training time about three weeks

α 0.999 0.1
Dataset BSDS500 [2], DIV2K [1]

CelebA [21] Cars [18]

Table 1. Training Parameters

3.2.2 Robustness to Reconstruction Attacks

We need to consider what kind of image attackers will

obtain when all acquisition values, namely Φ and y, are

leaked. The anonymity level during training is assessed us-

ing x̂′ reconstructed by our training’s reconstructor. How-

ever, as attackers may use various reconstruction methods,

anonymity should ideally be robust against any reconstruc-

tion method. To achieve this, the reconstructor is specif-

ically trained for the Φ property produced by the APG,

which should enable it to surpass the performance of the at-

tackers’ reconstructors. For this purpose, the reconstructor

is alternately trained with the APG using a specific equa-

tion, which is line 22 of Alg. 1.

LR =
1

N
‖x− x̂{i}‖2 + 1

N
‖x− x̂′‖2 (8)

This perspective is also discussed in Sec 4.3.

4. Simulated Experiment
We verify the effectiveness of the proposed method

through a simulation experiment in which yi =
Forward(φi,x) is operated on a computer with the image

in the dataset as x. We assume two anonymized targets,

a face (Sec. 4.1) and a license plate (LP) (Sec. 4.2). Al-

though it is difficult to compare the proposed method to

other pre-capture privacy-preserving methods, we conduct

a quantitative comparison with the simplest method using

defocus blurring with a lens. To simulate defocus blur-

ring, a 31 × 31 Gaussian blur with σ = 16 is applied

to the input image. σ is adjusted so that the anonymity

is almost the same as that of the proposed method. We

compare ‘Original’, ‘Defocus’, and ‘Ours’, which corre-

spond to general cameras, cameras with the defocus lens

attached, and the proposed method, respectively. The target

is 256× 256 RGB images (N = 65536), and the block size

B is 32. Higher sampling rates generally improve image

accuracy but make anonymity harder to maintain. To as-

sess anonymity under challenging conditions, we use a high

sampling rate (M/N = 0.5), resulting in M ′ = 512. We

set K = 4, determining the 5 feedback iterations (Nf ). The

programs are written in Python (TensorFlow v2.9.1) and

Figure 3. Images captured from simulations of face anonymization

run in Ubuntu 20.04 with an Intel Xeon Platinum 8275CL

(memory: 1152GB) and a NVIDIA Tesla A100 (40GB).

Other training parameters are shown in Table 1. All images

in the dataset are separated into training and testing images

at a ratio of 9:1. The anonymized targets (face or LP) are

detected from the training images by the pre-trained detec-

tor, and their bounding boxes (BB) are stored in advance. A

total of 64K images are prepared for training.

4.1. Face Anonymization

4.1.1 Training

The pre-trained Retinaface1 [33] is used for the face de-

tector, the pre-trained FaceNet2 [31] for the facial feature

extractor, and ADMM-CSNet [41] for the CS reconstruc-

tion. The detector and feature extractor are used to prepare

the training data and compute the loss function but are not

used in the imaging phase. ADMM-CSNet is modified to

be applicable to block-based CS and pre-trained using Φ of

a random normal distribution matrix with the sampling rate

in the range of 0.0 to 0.5 in advance, and the pre-trained

weights are used as initial values. The training images con-

tain a roughly even mix of faces and non-faces. The ratio of

the number of faces in each image is adjusted to 5:4:1 for

zero, one, and two or more faces. Since the face images are

unaligned, faces appear in various positions.

4.1.2 Results

Figure 3 shows the output images. As shown by x̂, the

clothing, letters, and background are accurate, while de-

tailed information on the face is concealed, making it dif-

ficult to identify the person. Additionally, it remains ef-

fective even when multiple faces are presented. wM ′ ,φM ′

indicates that the face area is set to zero values to avoid ac-

quiring features. Figure 4 shows the progression of x̂{i} and

wi+1 for better understanding of the role of the introduced

APG. The APG can estimate the location of faces from x̂{i}

and generate wi+1 to avoid sampling at the location. As for

1https://github.com/peteryuX/retinaface-tf2
2https://github.com/davidsandberg/facenet
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Figure 4. x̂{i} and wi+1 in progress. x̂{i} and wi+1 are calcu-

lated at ‘i ∈ {�Kn�|n ∈ N}’ (where K = 4). When i = 0,

x̂{i} and wi+1 are the initial values (not calculated). When i = 1,

x̂{i} is reconstructed, and then the APG generates wi+1 to avoid

sampling the faces, although the region may be slightly inaccurate.

The same applies hereinafter at i = 4, 16, 64, 256. wi+1 gradu-

ally becomes more accurate. Finally, when i = 512, x̂(= x̂{M′})
is reconstructed and outputted as the captured image.

Anonymity Image quality

Method LFW(↓) AgeDB-30(↓) PSNR(↑)
PASCAL

VOC2007(↑)

Original 0.999 0.987 - 0.6912

Defocus 0.659 0.569 21.06 0.2535

Ours 0.675 0.558 31.64 0.6078

Table 2. Results of anonymity and image quality in face

anonymization. ‘LFW’ and ‘AgeDB-30’ indicate AUC value in

1:1 face verification test. ‘PASCAL VOC2007’ indicates mAP on

object detection.

Figure 5. Anonymity assessment by ROC curve on LFW and

AgeDB-30.

computational time, the generation time of Φ per image is

about 0.35 seconds.

The quantitative evaluation is conducted to assess

anonymity and image quality, the result of which are shown

in Table 2. For the anonymity assessment, we perform

a face recognition test and evaluate the area under curve

(AUC) of the receiver operating characteristic (ROC) curve.

We test the LFW [15] and AgeDB-30 [24] dataset using

the pre-trained ArcFace3 model [8]. A set of ‘Defocus’

and ‘Ours’ images are obtained through Gaussian blur and

simulation of our method, respectively, from the original

images in the dataset. The images are resized once to

256 × 256, each operation is applied, and then they are re-

sized to back to the original size. The column values of

‘LFW’ and ‘AgeDB-30’ indicate the AUC value. If the

faces is recognized completely randomly, the AUC will be

3https://github.com/peteryuX/arcface-tf2

Original Defocus

Ours

Figure 6. Results of object detection. In ‘Ours’, all objects are de-

tected although the positions of bounding boxes are slightly differ-

ent from that of ‘Original’. ‘Defocus’ detects only a few objects.

0.5. Figure 5 shows the ROC curve. In AgeDB-30, ‘Ours’

and ‘Defocus’ are close to the random classifier. The results

of the CFP-FP [32] and FGLFW [9] dataset can be found in

our supplementary material. The results show that the pro-

posed method and the defocus lens method achieve a high

degree of anonymity.

The image quality is evaluated by using an image qual-

ity metric and score of object recognition. For the image

quality metric, PSNR is calculated by masking the face

area. Next, object recognition scores are evaluated to assess

whether objects other than faces are accurately captured.

The dataset PASCAL VOC 2007 [12] (20 object classes)

and the detector model Faster-RCNN4 [28] are used. The

training and testing images of PASCAL VOC 2007 are con-

verted to ‘Original’, ‘Defocus’, and ‘Ours’, respectively, in

advance. This conversion procedure is the same as that of

the face recognition test. The Faster-RCNN models is the

trained on the training images. The PASCAL VOC2007

test is performed, and the mean average precision (mAP)

is reported in the ‘PASCAL VOC2007’ column. The val-

ues show that the proposed method clearly captures objects

other than faces. In contrast, ‘Defocus’ cannot be used for

object recognition due to overall image degradation. Figure

6 shows an example of object detection.

Image restoration Attacks. We evaluate the anonymity in

the case of an image restoration attack. Assuming that an

attacker can access a set of original (x) and reconstructed

images (x̂), the attacker could train a network to recover

the faces. For this purpose, we utilize Panini-Net [39],

which is the most advanced GAN-based model for face

image restoration and can handle various types of image

degradations. The training images are converted by using

“Ours” and “Defocus” respectively, and the model is trained

4https://github.com/smallcorgi/Faster-RCNN_TF
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Figure 7. Image Restoration Attack

Figure 8. Images captured from simulations of LP anonymization

by each of the converted training images. Figure 7 shows

examples of restored images. With ‘Ours’, Panini-Net fre-

quently restores the face of a noticeably different person,

whereas it is restored quite accurately with ‘Defocus’. The

quantitative results of the face recognition test under the im-

age restoration attack are presented as ‘Ours with attack’

and ‘Defocus with attack’ in Figure 5. The image restora-

tion attack is very effective against ‘Defocus’ but has little

to no effect on ‘Ours’. The results show that the proposed

method is robust against image restoration attacks whereas

the defocus lens is not.

In summary, the results of our quantitative evaluation

demonstrate that only the proposed method achieves

anonymity while providing clear imaging for other objects.

4.2. License Plate Anonymization
The second anonymized target is set to be vehicle license

plates (LPs). Since the basic experimental procedure fol-

lows that of the face version (Sec. 4.1), we focus on the dif-

ferences in this section. The training processes are largely

the same; for details, see the supplementary material.

4.2.1 Results
Figure 8 shows the output images. As shown by x̂, detailed

information on the LPs is concealed. φM ′ and wM ′ indicate

that the LP area is set to zero to avoid acquiring features.

Quantitative evaluation is conducted in term of

anonymity and image quality. Table 3 shows the results of

Anonymity Image quality

Method ALPR(↓) PSNR(↑) PASCAL VOC2007(↑)

Original 0.715 - 0.6912

Defocus 0.0 21.06 0.2535

Ours 0.0 31.81 0.6117

Table 3. Results of anonymity and image quality in license plate

anonymization. ‘ALPR’ indicates scores of LP recognition test.

‘PASCAL VOC2007’ indicates mAP on object detection.

ADMM-CSNet

(jointly trained)

ADMM-CSNet

(not jointly trained)

ADMM(TV) PnP(BM3D)

Figure 9. Comparison of reconstruction methods

the quantitative evaluation. For the anonymity assessment,

we follow the ALPR-Unconstrained5 test condition [34],

where an LP is considered correct if all characters are cor-

rectly recognized. ALPR-Unconstrained is used for LP de-

tection and recognition. As shown in Table 3, no LP could

be correctly identified in ‘Ours’ and ‘Defocus’. However,

the image quality of the proposed method is higher than that

of ‘Defocus’ and is comparable to that of the original. As in

the case of faces, only the proposed method achieves both

anonymity and utility.

4.3. Reconstruction Attacks
In this section, assuming all of the acquired data (Φ and

y) has been leaked, we compare three reconstruction meth-

ods to verify that the details of the face cannot be recovered.

In Sec. 4.1 and 4.2, we evaluated the degree of anonymity

using the reconstructor (ADMM-CSNet) which is trained

jointly with the aperture pattern generator. As described in

Sec. 3.2.2, because the reconstructor is trained to recover

data as accurately as possible, including the face, the evalu-

ation should be reliable. However, an attacker who obtains

Φ and y may reconstruct the target image by any CS recon-

struction method. In this section, we evaluate three differ-

ent reconstruction methods: ADMM-CSNet which is not

jointly trained, the alternating directions method of multi-

pliers (ADMM) [5] with total variation (TV) [30] regular-

ization, and plug-and-play (PnP) [38] with BM3D [7], as

shown in Figure 9. ADMM-CSNet, which is jointly trained,

recovers the face most accurately, indicating that that the

anonymity evaluation in Sec 4.1 and 4.2 is reliable.

4.4. Ablation Study
Comparison to Simple Detection and Masking. As the

APG is similar to a semantic segmentation network with

only two instances (face and background), we compare

the APG with a simple segmentation model to verify its

5https://github.com/sergiomsilva/alpr-unconstrained
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Method Anonymity

APG 0.675

Segmentation 0.832

Table 4. Anonymity by simple semantic segmentation compared

to APG. ‘Anonymity’ indicates the AUC value of face recogni-

tion on the LFW dataset using the pre-trained Arcface model. The

segmentation model compromises anonymity by failing to detect

faces in low-quality reconstructed images when i is small.

K Anonymity Times[sec] (#feedbacks)

1.5 0.675 0.83 (16)

2 0.676 0.54 (9)

4 0.675 0.35 (5)

8 0.683 0.26 (3)

16 0.701 0.26 (3)

Table 5. Anonymity (AUC for face recognition on LFW using Ar-

cface) and GPU computing times for CS reconstruction and APG,

by varying K.

effectiveness. We evaluate the APG trained by Alg. 1 and

the face segmentation model trained using CelebAMask-

HQ [20] as shown Table 4. The network structure of both

models is exactly the same. The segmentation model

compromises anonymity due to its inability to detect

faces in low-quality reconstructed images when i is small.

Additional details are in the supplementary material.

Determination of K. If K is too large, the amount of feed-

back can be reduced but anonymity would be lost. Table 5

shows how changing K affects anonymity. When K ex-

ceeds 8, the anonymity begins to decline, and speed does

not improve significantly. However, reducing K to less than

4 does not result in any anonymity improvement at all. As

a result, we prioritized anonymity and set K = 4.

5. Prototype
As shown in Figure 10, we assembled a rough prototype

of the proposed system based on the single-pixel imaging

implementation in [11]. To simplify implementation, our

prototype is degraded in two aspects compared to the simu-

lated version: the aperture pattern is binary and the captured

images are monochrome.

The subject is a paper printout of one of the images in

CelebA, the sampling rate M/N is 0.75, and K = 4. Since

only one PD is used, the PD sequentially acquires the light

from each block by switching off the blocks other than the

target block. Furthermore, due to inadequate control and

synchronization, the system operates slowly. As a result,

it takes about thirty seconds to capture one image. Note

that the bottleneck is not the processing time of the intro-

duced APG because the total GPU computing time is less

than 0.5 seconds. Figure 10 also shows the captured images

in non-adaptive conventional SPI and in our system, which

Figure 10. (a) Prototype of the proposed system and images cap-

tured by (b) non-adaptive conventional SPI and (c) our system.

We use a Thorlabs PMM02 as the PD. The analog to digital con-

verter is a National Instruments USB-6223. The DMD is a Vialux

V7001-VIS for intensity modulation. The objective lens is a Thor-

labs LB1901.

demonstrate that the proposed method was effective in the

actual experiment.

6. Discussion and Conclusion
We have presented a pre-capture privacy-aware imaging

method based on single-pixel imaging that adaptively gen-

erates aperture patterns using a deep learning model. The

introduced aperture pattern generator outputs the next aper-

ture pattern by exploiting the data already acquired so as to

exclude features of the anonymized target. Through simu-

lation experiments on face and license plate anonymization,

we show that our proposed method can anonymize images

while maintaining image quality.

However, the following should be considered with re-

gards to the proposed method:

Real-time imaging. Real-time imaging is difficult because

thousands of acquisition values must be sequentially per-

formed for a single image. The fundamental bottleneck of

SPI is the operating frequency of the DMD. Recent stud-

ies [16, 17] have achieved more than 100 fps by mechan-

ically moving a DMD or modulating light with LEDs in-

stead. By combining these implementations with the pro-

posed method, real-time imaging should be feasible.

Anonymity for reconstruction using temporal adjacency.
All experiments in this paper are evaluated assuming

that a single image is recovered from a single Φ and y.

However, when the proposed method is applied to video, a

reconstruction attack may exploit even multiply pairs of Φ
and y derived from the previous and next frames. We have

not evaluated the anonymity for such a situation.

Reconstruction-free inference. [19, 23] suggest that infer-

ence without reconstruction may outperform inference af-

ter reconstruction. To more comprehensively evaluate

anonymity, it is necessary to assess the proposed method

from this perspective.

For future work, we plan to improve the hardware im-

plementation for real-time imaging. In addition, we plan

to conduct further evaluations to expand the scope of

anonymized targets and examine the case where multiple

types of anonymized targets are specified simultaneously.
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