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Abstract

Recent advancements in computer vision have led to a
renewed interest in developing assistive technologies for in-
dividuals with visual impairments. Although extensive re-
search has been conducted in the field of computer vision-
based assistive technologies, most of the focus has been
on understanding contexts in images, rather than address-
ing their physical safety and security concerns. To address
this challenge, we propose the first step towards detecting
anomalous situations for visually impaired people by ob-
serving their entire surroundings using an egocentric 360-
degree camera. We first introduce a novel egocentric 360-
degree video dataset called VIEW360 (Visually Impaired
Equipped with Wearable 360-degree camera), which con-
tains abnormal activities that visually impaired individuals
may encounter, such as shoulder surfing and pickpocket-
ing. Furthermore, we propose a new architecture called the
FDPN (Frame and Direction Prediction Network), which
facilitates frame-level prediction of abnormal events and
identifying of their directions. Finally, we evaluate our
approach on our VIEW360 dataset and the publicly avail-
able UCF-Crime and Shanghaitech datasets, demonstrat-
ing state-of-the-art performance. Code and dataset are
available at https://github.com/Songinpyo/VIEW360.

1. Introduction

People with visual impairments encounter various chal-
lenges in their daily lives, especially related to their physi-
cal safety and security risks, as they may not perceive their
surroundings as easily as sighted individuals [2]. Tradition-
ally, white canes and guide dogs have been widely used
to help them navigate their environment and understand
their surroundings. However, these traditional assistive sys-
tems suffer from certain limitations. For example, white
canes only provide limited information about the surround-
ings [9], and training guide dogs is both time-consuming

Figure 1. This paper aims to tackle safety and security concerns
faced by visually impaired individuals. To tackle these concerns,
we introduce a new dataset, VIEW360, specifically designed for
detecting unusual activities by observing their entire surroundings
using an egocentric 360-degree camera. The dataset is collected
through a process involving (a) capturing footage with a wearable
360-degree camera worn around the neck, (b) recording egocen-
tric 360-degree videos to encompass the wearer’s surroundings,
and (c) stitching these videos into panoramic views for compre-
hensive analysis. In the depicted scene, the individual highlighted
in magenta is attempting a wallet theft.

and expensive [24]. As a result, there has been a signifi-
cant increase in developing a visual aid system to create new
“eyes” for visually impaired individuals using wearable de-
vices and Artificial Intelligence (AI) technologies [12, 26].
However, much of the research up to now has primarily fo-
cused on tasks like the image captioning and visual question
answering rather than addressing real-world issues such as
physical safety and security concerns [11–13]. Therefore,
this paper proposes a first step towards to address the physi-
cal safety and security concerns of visually impaired people
by employing a 360-degree wearable camera. In particular,
we have two primary objectives: (1) detecting suspicious or
abnormal activities within a 360-degree video stream, (2)
identifying the direction of these activities.

To accomplish this, we first introduce a new dataset
called VIEW360, which has been designed for detecting
anomalies in a camera wearer’s entire surroundings. This
dataset includes egocentric 360-degree videos captured at
several public locations, such as ATM booths, parks, and
cafes. VIEW360 is comprised of 575 videos that illustrate
real-life situations, which were obtained through interviews
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with visually impaired individuals [2]. Our dataset can be
categorized as one of the datasets for the Video Anomaly
Detection (VAD) task in the field, which aims to identify
frames in a video where unusual or anomalous events oc-
cur. There are generally two approaches to this task: semi-
supervised Video Anomaly Detection (sVAD) and weakly-
supervised Video Anomaly Detection (wVAD). The sVAD
approach trains networks using only normal videos with-
out any annotations [25, 32], whereas the wVAD approach
uses video-level labels for training, but with limited annota-
tion [28, 29].

Among the two lines of approaches, lately, researchers
have shown an increased interest in wVAD methods due
to their promising performance on public VAD benchmark
datasets [7, 10]. However, these methods face challenges in
identifying abnormal activities in rapidly changing scenar-
ios. This limitation is inherent to recent wVAD approaches,
which tend to predict anomaly scores at the snippet-level
(a brief segment extracted from a video). Consequently,
these approaches assign identical anomaly scores to a fixed
number of frames (referred to as snippets), often resulting
in overly generalized predictions. Therefore, these tech-
niques could face difficulties in identifying sudden real-
world anomalies, such as short and unexpected activities
like shoulder surfing at an ATM booth.

To address these limitations, we introduce a framework
called Frame and Direction Prediction Network (FDPN). It
is designed to predict anomaly scores at the frame level, ex-
tending beyond mere snippet-level scores. We achieve this
through our innovative coarse-to-fine learning approach. By
utilizing existing snippet-level predictions [7,29] as pseudo-
supervision, our FDPN is trained to predict frame-level
anomalies, eliminating the requirement for extra annota-
tions. This frame-level prediction proves particularly ad-
vantageous in identifying abrupt abnormal events occurring
within a brief timeframe, as depicted in Figure 2.

Furthermore, we employ an off-the-shelf saliency detec-
tion model as our pre-processing step, denoted as saliency-
driven image masking, to further enhance the process. This
technique identifies visually striking regions in a frame that
may contain anomalies. Since anomalies often appear in
salient regions, this method allows us to narrow down the
search space for anomaly detection. This is especially use-
ful for handling 360-degree images due to their extensive vi-
sual coverage. We also incorporate direction classification
from a 360-degree egocentric perspective, offering practical
guidance for visually impaired individuals during anoma-
lous events. This is achieved through a dedicated subnet-
work utilizing saliency heatmaps.

Finally, we evaluate the proposed approach on our
VIEW360 and the publicly available UCF-Crime, Shang-
haitech datasets. Our approach achieves state-of-the-art per-
formance on the VIEW360, UCF-Crime and Shanghaitech

datasets. In summary, this paper makes the following con-
tributions:

• To our knowledge, this is the first study to address the
physical safety and security concerns of people with
visually impairments by detecting anomalous events
and identifying their direction in the surroundings.

• We introduce VIEW360, a novel egocentric 360-
degree video-based dataset to address safety and secu-
rity concerns of visually impaired people in real-world
scenarios.

• We propose a novel architecture called FDPN that can
predict more precise anomaly scores at the frame-level
based on rich scene representation without the need for
additional frame-level annotation.

2. Related Work
2.1. AI for People with Visual Impairments

In the last decade, there has been a dramatic increase in
developing a visual aid system aimed at creating new “eyes”
for the visually impaired people using AI technologies. Gu-
rari et al. have introduced the VizWiz-VQA dataset, a col-
lection of images and questions gathered from blind indi-
viduals [12]. These researchers have also created another
VQA dataset, named the VizWiz-Priv dataset, which fo-
cuses on identifying unintended leaks of personal informa-
tion through VQA for visually impaired users [11]. Fur-
thermore, diverse approaches have emerged in recent years
to offer various perspectives within this VQA task. These
include delving into the reasons behind variations in re-
sponses to identical visual questions among distinct indi-
viduals [3], addressing the domain gap between images cap-
tured by visually impaired individuals and sighted individ-
uals [13], as well as tackling poor image quality in VQA
systems by creating a dataset and task to predict reasons for
low-quality images [8].

While existing efforts have made substantial progress in
comprehending the contextual aspects of images, less at-
tention has been directed towards video analysis, especially
in addressing the security and physical concerns that vi-
sually impaired individuals might encounter in their daily
lives [27]. Therefore, this study bridges a research gap in
AI-based visual aid systems for people with visual impair-
ments by introducing a novel 360-degree egocentric video
anomaly detection task along with a new dataset.

2.2. Anomaly Detection in Videos

Video anomaly detection, a crucial computer vision task,
identifies frames with abnormal events in videos. Ap-
proaches are categorized as semi-supervised and weakly-
supervised. Semi-supervised methods, assuming most data
is normal, detect abnormalities by identifying image frames
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Figure 2. This figure contrasts anomaly scores at event start and
end boundaries for state-of-the-art method MGFN and our FDPN
on VIEW360 dataset. MGFN often makes false predictions at
event boundaries because it predicts at the snippet-level, whereas
our proposed method makes better predictions at the event bound-
aries since it can make frame-level predictions.

that significantly differ from previously observed data [23,
25]. This approach makes sense since abnormal events “un-
usually” occur in the real world and it offers a clear advan-
tage as it does not require annotation costs. However, their
performance often declines when classifying unseen data.

In contrast, weakly-supervised approaches aim to en-
hance detection performance by utilizing minimal annota-
tions, such as video-level labels, during training. Recent
advancements in this field include the use of graph net-
works to handle noisy labels in abnormal videos [38], and
the integration of motion information to improve detection
accuracy [40]. Further innovations, such as inter-class dis-
tancing, sequence learning, self-supervised techniques, and
magnitude-based methods, have significantly contributed
to the progress in anomaly detection [7, 16, 29, 30, 33].
Additionally, the adoption of vision-language models and
prompt-enhanced techniques has advanced capabilities in
this domain [6, 15, 35, 36]. However, existing methods,
which are primarily snippet-level anomaly detection ap-
proaches, often struggle with abrupt events due to uni-
form scoring. Our proposed frame-level approach leverages
snippet-level predictions as pseudo-supervision, thereby
improving detection accuracy for short-lived anomalies.

3. VIEW360:Dataset for the Visually Impaired
This section presents the “Visually Impaired Equipping

Wearable 360-degree camera” (VIEW360) dataset, de-
signed to advance AI-assisted technology for individuals
with visual impairments through a 360-degree wearable
camera [19]. This is the first dataset that contains 360-
degree egocentric videos of anomaly activities that visually
impaired people commonly encounter in their daily lives.
We selected the locations and anomalies for our dataset
through interviews with visually impaired individuals [2].
We focused on three types of abnormal scenarios: Glance,

Dataset Videos Avg. anomaly duration (s) Video source

UCSD Ped1 [17] 70 11.2 CCTV
UCSD Ped2 [17] 28 13.7 CCTV
Avenue [21] 37 9.2 CCTV
UBnormal [1] 543 10.7 Virtual scene
Shanghaitech [20] 437 6.7 CCTV
NWPU Campus [4] 547 10.8 CCTV

UCF-Crime [28] 1,900 20.1 CCTV
XD-violence [34] 4,754 37.5 Movie, Game, etc.
VIEW360 (Ours) 575 3.5 Ego 360° camera

Table 1. Comparison of anomaly detection datasets, distinguishing
between sVAD (top) and wVAD (bottom). Our VIEW360 dataset,
stands out by exclusively featuring egocentric 360-degree videos.
Notably, VIEW360 focuses on shorter average anomaly duration,
emphasizing the detection of quick, transient anomalies.

Stealing, and Teasing, as illustrated in Figure 3. Data was
collected from eight different public venues: Cafes, Restau-
rants, Bus stops, Elevators, Parks, Libraries, Offices, and
Automated Teller Machine (ATM) booths.
Video Collection All videos in the dataset were captured
using a 360-degree wearable camera mounted on the neck
of an actor who simulated being visually impaired. To en-
sure diversity, 11 participants wore the camera and per-
formed abnormal behaviors. We aimed to construct a
dataset with a range of situations, so we mostly collected
short videos ranging from 10 to 60 seconds instead of long
videos typical of most video anomaly datasets. In total, we
collected 575 videos consisting of 484,364 frames.
Annotations There are two types of annotations available:
temporal annotations and directional annotations. Temporal
annotations are created in accordance with the conventions
of existing anomaly detection datasets [28, 34]. Specifi-
cally, we annotated video-level labels for the training set,
while the testing set includes frame-level labels for evalua-
tion purposes. A challenge in labeling the anomaly detec-
tion dataset is determining the boundary between the begin-
ning and end of the anomaly. To address this, a total of five
annotators were engaged, cross-validating each other’s la-
bels to maintain consistency and enhance accuracy. For di-
rection prediction, we deliberately simplified the annotation
to three categories, Left back, Center, and Right back. This
sparse but practical directional information can aid visually
impaired individuals in swiftly identifying potential threat
directions, enabling quicker decision-making and more ef-
fective responses in real-world scenarios.
Dataset Statistics The training set comprises 375 videos:
181 normal and 194 abnormal. The testing set includes
200 videos: 95 normal and 105 abnormal. Our dataset fea-
tures 3 directional labels, Left back (106 videos), Center
(101 videos), and Right back (105 videos). Details of train-
ing/testing sets, locations, and abnormal directions are in
Figure 4. Abnormal situations are evenly distributed be-
tween the training and testing sets. Video length (in sec-
onds) and abnormal class distribution are in Figure 5.
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Figure 3. Here are some abnormal instances in our VIEW360 dataset. The first row shows theft of personal belongings from the camera-
wearer. The second row depicts shoulder-surfing attacks: someone covertly observing the camera wearer’s ATM use and smartphone
without their awareness. The third row portrays a person with visual impairments being mocked or harassed.

Figure 4. Distribution of the VIEW360 dataset, illustrating train-
ing/testing splits, video locations, and abnormal event orientations.
Includes a bar chart of normal and abnormal video counts, a pie
chart of video location distribution, and a donut chart of abnormal
event directions.

Figure 5. Video duration and abnormal classes in VIEW360.

Privacy and Ethics The dataset collection for the
VIEW360 was rigorously conducted under the approval of
the Institutional Review Board (IRB), ensuring that all re-
search activities adhered to the highest ethical standards and
guidelines. Informed consent was obtained from all partic-
ipants involved in the simulated scenarios, thereby guaran-
teeing their full awareness of the data collection’s purpose
and scope, and affirming their rights as participants. Dur-
ing the collection process, special attention was given to re-
specting the rights of others in private spaces and diligently
avoiding the capture of sensitive areas or activities. For
non-consenting individuals appearing in public areas within
the videos, privacy measures like blurring and facial mask-
ing were applied to uphold their anonymity and ensure the
dataset adhered to ethical research practices.

4. Proposed Approach

Building upon our VIEW360 dataset, our goal is to iden-
tify short-lived abnormal activities in a 360-degree video
stream and determine their direction. In this section, we in-
troduce our framework, the Frame and Direction Prediction
Network (FDPN), designed to achieve these aims.

4.1. Overview

Our FDPN begins by identifying salient regions within
the input frame that may contain anomalies given 360-
degree panoramic image frames as input. Once the salient
regions in the image frames are identified, FDPN inter-
nally employs two types of input images: 1) masked im-
ages, retaining only the salient regions while masking out
other portions, and 2) original images, the unaltered 360-
degree panorama input images. FDPN then proceeds to
extract snippet-level features from the original images us-
ing Inflated 3D ConvNet (I3D) [5], and it extracts frame-
level (image-level) features from the masked images us-
ing ResNet [14]. After that, we employ the snippet-level
features for prediction at the snippet level and to gener-
ate pseudo-labels for training our Frame Prediction Subnet-
work (FPS). Finally, these snippet-level features are com-
bined with the frame-level features, and this concatenated
feature set is utilized to compute anomaly scores at the
frame level.

For identifying the direction of abnormal events, we con-
struct the Direction Prediction Subnetwork (DPS). It oper-
ates on concatenated features of snippet-level and image-
level features, along with the saliency maps used in the ini-
tial step. Figure 6 depicts the overall architecture of the
FDPN. We present the details of each module within this
process in the following subsections.
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Figure 6. Overview of our FDPN. During training, positive and negative video pairs are fed into the framework. (a) Saliency map-based
masking is applied to these pairs, identifying salient regions within input image frames. Snippet-level original frames are processed using
an I3D feature extractor, while frame-level masked images are handled by ResNet. (b) Following feature extraction, the Snippet Network
generates F ′

snippet and computes snippet-level anomaly score Ssnippet, used to create a pseudo label (P) for training the FPS. (c) FPS employs
the concatenated feature F ′

frame, combining Fframe from masked images and F ′
snippet, to compute frame-level anomaly score Sframe. (d) For

direction estimation, we construct the DPS. DPS initially estimates direction using concatenated feature Fdir, refining output with softmax-
applied saliency values. (e) To train the model, we use binary focal loss with Sframe and the pseudo labels (P). In addition, Frame Ranking
Loss (LFR) ensures higher anomaly scores for positive videos than for negative ones.

4.2. Saliency-driven Image Masking (a)

We first employ TASED-Net [22] to derive saliency
heatmaps H as shown in Figure 6-(a). These heatmaps
emphasize visual significance within the frame, with each
pixel value Hx,y representing the saliency score at the corre-
sponding coordinates (x,y) within the image. Subsequently,
we divide these heatmaps into an n × n grid. For each cell
denoted by integers (i, j), we then compute the importance
score by summing the pixel saliency values within it:

Gi,j =
∑

x,y∈celli,j

Hx,y (1)

After this step, we pinpoint the top-K salient regions with
the highest scores from the grid scores Gi,j . Following this,
we generate a binary mask M where the top-K cells are
assigned a value of 1, and the remainder are assigned a value
of 0:

Mi,j =

{
1 if Gi,j is in top-K
0 otherwise

(2)

Finally, the masked image Imasked is obtained by multiplying
the original image I by the binary mask M :

Imasked = I ⊙M (3)

This approach offers a significant advantage: it guides focus
toward event-specific regions by utilizing the saliency map
to pinpoint critical areas while concealing others. This em-
phasis improves the analysis of potential anomaly locations,
as shown in Figure 7.

From Imasked, frame-level features are extracted using
ResNet, yielding Fframe ∈ RB×T×N×C . Simultaneously,
snippet-level features are derived from the original frames
using I3D, resulting in Fsnippet ∈ RB×T×C . Here, B repre-
sents the number of video pairs, T the number of snippets,
each snippet consists of N frames and C the channel.

4.3. Coarse-to-Fine Learning (b - c)

Snippet-level Prediction (b) To enable our FDPN to pro-
duce frame-level anomaly scores, the network needs frame-
level ground truth labels for training. Consequently, we
initially train the Snippet Network for snippet-level predic-
tion. This involves using pre-trained networks [7,29] to cre-
ate feature F ′

snippet and snippet-level anomaly scores Ssnippet.
Subsequently, the snippet-level anomaly score Ssnippet is du-
plicated N times, following the specified rule below, result-
ing in pseudo labels P crafted for training our FPS at the
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Figure 7. This figure shows that our saliency-driven image mask-
ing preprocess applied to events at an ATM booth. It is divided into
two rows, representing normal and abnormal events, with each row
consisting of the original image, saliency map, and masked image,
respectively. In the bottom row representing abnormal events, we
marked the grid cells where the anomaly activity happened in red.

frame level.

P =

{
0 if S+

snippet < 0.5 or S−
snippet

1 if S+
snippet ≥ 0.5

, (4)

S+
snippet and S−

snippet denote snippet-level anomaly scores for
positive and negative videos, respectively. Positive videos
receive pseudo labels of 0 or 1 according to their anomaly
scores, while negative videos (without anomalies) are as-
signed a pseudo label of 0.
Frame-level Prediction (c) With the acquired pseudo la-
bels, we proceed to train the FPS. By combining Fframe and
F ′

snippet, we create F ′
frame as FPS input. This design aims

to encompass both frame-level and snippet-level informa-
tion. Following training, FPS is primed to estimate frame-
level anomaly scores, denoted as Sframe ∈ RB×T×N . We
designed this FPS to handle sequences, inspired by Pool-
Former [37]. It employs average pooling and 1D convolu-
tions to capture frame connections and compute frame-level
anomaly scores. This improves the network’s capability to
understand relationships among neighboring frames.

4.4. Direction Prediction (d)

We also developed the DPS to determine abnormal event
directions by utilizing Fdir, a concatenation of Fframe and
Fsnippet. DPS employs the same PoolFormer-based archi-
tecture as FPS and computes direction scores for three ori-
entations (Center, Left back, and Right back). It inte-
grates saliency heatmap values across a 1x3 grid and ap-
plies softmax to enhance anomaly direction prediction. This
approach leverages spatial information from the saliency
heatmap and our PoolFormer-based architecture to improve
the accuracy of abnormal event direction prediction, reduc-
ing spatial ambiguity in video frames.

4.5. Loss Functions (e)

We utilize three loss functions for frame-level prediction
and a single loss function for direction prediction. The first
loss, Binary Focal Loss [18], LBF , compares the pseudo

labels P to the frame-level anomaly scores Sframe with a
focusing parameter γ that emphasizes hard-to-classify ex-
amples.

LBF = −P(1− Sframe)
γ log(Sframe)

−(1− P)Sγ
frame log(1− Sframe) (5)

The second loss function, Frame Ranking Loss LFR, pri-
oritizes the top R frames with the highest anomaly scores
in both positive and negative videos. It drives the anomaly
scores of positive videos towards 1 and those of negative
videos towards 0.

LFR =
1

R

R∑
r=1

(
1− S+

frame,r + S−
frame,r

)
(6)

The third loss, Smoothness Loss, Lsmooth [28], penalizes
rapid changes in the predicted anomaly scores to ensure
smooth transitions between adjacent frames. It is calculated
for all F frames as follows:

Lsmooth =
1

F

F∑
f=1

(Sf
frame − Sf−1

frame)
2 (7)

For direction prediction, we utilize Directional Focal
Loss LDF , employing the identical focusing parameter γ.

LDF = −
C∑

k=1

yk(1− pk)
γ log(pk) (8)

Here, C represents the three directions (Center, Left back,
Right back) in our VIEW360 dataset. yk is the ground-truth
label for direction and pk is the predicted probability for
that direction. The parameter γ is shared with Binary Focal
Loss and adjusts the class contribution to the loss.

The overall loss is computed as follows, where λ1, λ2,
and λ3 represent weight factors for each respective loss
function.

L = LBF + λ1LFR + λ2Lsmooth + λ3LDF (9)

5. Experiments
5.1. Datasets and Evaluation Metrics

We evaluate our method on three anomaly detection
datasets: VIEW360, UCF-Crime, and Shanghaitech [20,
28]. We used Area Under the Receiver Operating Char-
acteristic (AUC-ROC) evaluation metric same with estab-
lished works [7, 29]. For VIEW360, we additionally em-
ployed AUC-ROC and Area Under the Precision-Recall
(AUC-PR) metrics to evaluate model, addressing both false
positives and false negatives. This approach ensures a bal-
anced assessment of the model’s ability to accurately detect
anomalies while minimizing unnecessary alerts for visually
impaired users, enhancing the system’s practical reliability.
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Method Publication Feature AUC-ROC AUC-PR

MIST [10] CVPR”21 I3D 79.30 19.58
RTFM [29] ICCV”21 I3D 83.92 24.94
S3R [33] ECCV”22 I3D 83.96 25.17
MGFN [7] AAAI”23 I3D 80.43 20.16
DMU [39] AAAI”23 I3D 83.88 25.11
CLIP-TSA [15] ICIP”23 CLIP 80.03 17.41
VadCLIP [35] AAAI”24 CLIP 79.92 21.28

FDPN (Ours) - I3D 86.00 26.97

Table 2. Comparison of frame-level AUC-ROC and AUC-PR per-
formances on VIEW360 dataset.

Method Publication Feature UCF-Crime Shanghaitech

MIST [10] CVPR”21 I3D 82.30 94.83
RTFM [29] ICCV”21 VidSwin 83.31 96.76
RTFM [29] ICCV”21 I3D 84.03 97.21
MSL [16] AAAI”22 I3D 85.30 95.45
MSL [16] AAAI”22 VidSwin 85.62 96.93
S3R [33] ECCV”22 I3D 85.99 97.48
MGFN [7] AAAI”23 I3D 86.98 -
DMU [39] AAAI”23 I3D 86.97 -
CLIP-TSA [15] ICIP”23 CLIP 87.58 98.32
PE-MIL [6] CVPR”24 I3D 86.83 98.35
*TPWNG [36] CVPR”24 CLIP 87.79 -
*VadCLIP [35] AAAI”24 CLIP 88.02 -

FDPN (Ours) - I3D / CLIP 88.03 98.51

Table 3. Comparison of frame-level AUC-ROC performance on
UCF-Crime and Shanghaitech datasets. Models marked with “*”
use multi-modal text information, which was not available for
evaluation on the Shanghaitech dataset.

5.2. Implementation Details

Following existing methods [7,33], each video is divided
into 32 snippets with 16 frames in each snippet during the
training stage. For the hyperparameters, we set B = 16,
T = 32, N = 16, n = 3, K = 4, γ = 2, R = 48, λ1 = 1,
λ2 = 1.6e−3, λ3 = 0.3 .

5.3. Evaluation

VIEW360 As shown in Table 2, our approach outperforms
state-of-the-art methods in both AUC-ROC and AUC-PR
on the VIEW360 dataset. We achieved improvements of
2.08% and 2.03% in AUC-ROC and AUC-PR, respectively,
compared to RTFM (used as the snippet network). These re-
sults highlight the efficacy of our method in detecting subtle
anomalies and short-life anomalies in the dataset, important
for applications with visually impaired users.
UCF-Crime and Shanghaitech Our FDPN achieved state-
of-the-art performance on UCF-Crime and Shanghaitech as
shown in Table 3. These results highlight the robustness of
our frame-level prediction method across different anomaly
detection tasks.
Analysis of Existing Methods We observed an intrigu-
ing performance discrepancy between recent state-of-the-
art methods like MGFN and VadCLIP across different

DPS Saliency Direction acc.

✓ 56.50
✓ 67.80

✓ ✓ 75.04

Dataset SD OD Diff.

VIEW360 86.00 84.78 -1.24

UCF-Crime 88.03 86.37 -1.66

(a) (b)
Table 4. (a) Ablation study for direction prediction on VIEW360,
(b) Effectiveness comparison of image masking process with
Saliency Detection (SD) or Object Detection (OD)

Grid 3x3 (9) 4x4 (16) 5x5 (25)

Top-K ROC Top-K ROC Top-K ROC
Unmasked 5 / 9 85.19 10 / 16 85.19 15 / 25 85.02

85.02 4 / 9 86.00 8 / 16 85.50 12 / 25 85.41
3 / 9 85.54 6 / 16 85.26 9 / 25 85.30

Table 5. Comparison of different grid sizes and Top-K salient re-
gions for Saliency-driven Image Masking on VIEW360

datasets. While these methods excelled on UCF-Crime,
they underperformed on VIEW360. This variance primarily
stems from the inherent differences in dataset characteris-
tics. VIEW360 contains more subtle and shorter-duration
anomalies compared to UCF-Crime. Therefore, MGFN,
optimized for high-magnitude snippet training, tends to
struggle with accurate clip selection in datasets featuring
subtler anomalies like VIEW360. Similarly, VadCLIP’s
reliance on abnormal category classification for training
proves less effective for VIEW360, where abnormal events
are more challenging to distinguish than in UCF-Crime.
Snippet Network Selection. We tailored our snippet net-
work selection to each dataset’s characteristics. For UCF-
Crime, which features prominent anomalies, we opted for
MGFN due to its proven effectiveness in such scenarios.
In contrast, for VIEW360, which contains more subtle and
shorter-duration anomalies, we selected RTFM. RTFM’s
approach of training on entire videos minimizes the risk of
missing critical frames, making it more suitable for datasets
with nuanced anomalies. For Shanghaitech, which pri-
marily comprises abnormal object appearances, we chose
CLIP-TSA to leverage the strong image feature extraction
capabilities of CLIP. This customized strategy enables our
FDPN to effectively adapt to diverse anomaly detection sce-
narios, contributing to its robust performance across differ-
ent datasets.
Direction Prediction on VIEW360 Our FDPN also aims
to identify the direction of detected abnormal activities to
assist visually impaired individuals. With our DPS, we
achieved 75.04% directional prediction accuracy by lever-
aging salient area information from the saliency detector.
We further conduct ablation experiments to understand the
impact of each module. Results in Table 4-a demonstrate
the essential role of both image features and salient area in-
formation in estimating abnormal event directions, which
highlights their combined effectiveness on VIEW360.
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Figure 8. The figure shows FDPN’s anomaly scores on the UCF-
Crime (top) and VIEW360 datasets (bottom). Ground truth abnor-
mal frames are highlighted with blue boxes on the graph. Beside it,
we present original and saliency-driven masked images of frames.
In the VIEW360, direction prediction results and ground truth di-
rection are additionally displayed as colored bars: green for left,
blue for center, and orange for right.

5.4. Ablation Study

Saliency Detection vs Object Detection As part of our
ablation study, we also analyzed the benefits of using a
saliency detector versus a general object detector (YOLO
v7 [31]) in our pre-processing step. To do this, we replaced
the saliency detector as object detector which is trained on
COCO dataset. Results in Table 4-b confirmed that the
saliency detector is more effective for anomaly detection.
The primary advantage of saliency detection is its focus on
active region rather than numerous inactive objects present
in video. Moreover, being class-agnostic, it can detect any
active image objects, enhancing flexibility and robustness.
Optimizing Image Masking Our saliency-driven image
masking’s effectiveness is influenced by grid size and top-
K salient regions retained within the grid, while others are
masked. We thus examined various grid sizes and top-K re-
gions. Table 5 illustrates this experiment, emphasizing the
critical role of proper masking in highlighting key image ar-
eas for more precise detection. In the table, in a n× n grid,
“4 / 9” indicates retaining 4 salient regions out of a total of
9, with 5 areas masked.
Verifying Frame-level Prediction’s Benefit Our FDPN ex-
cels in identifying abrupt abnormal events occurring within
brief timeframes, thanks to frame-level prediction as illus-
trated in Figure 2. To validate this capability, we conducted
a deeper analysis comparing the accuracy improvement of
our FDPN against MGFN across varying anomaly dura-
tions. We evaluated anomaly detection performance using

Figure 9. Accuracy improvement of FDPN over MGFN across
anomaly durations on UCF-Crime dataset. Thresholds range from
0.6 to 0.9. Representative abnormal events: 0-3s (RoadAccidents),
3-6s (Abuse, Shooting), 6+s (Assault, Explosion).

various score thresholds: 0.6, 0.7, 0.8, and 0.9. The re-
sults, presented in Figure 9, clearly demonstrate that FDPN
achieves more substantial improvements for videos contain-
ing shorter-duration anomalous events.

6. Conclusion
The aim of this research was to tackle safety and secu-

rity challenges for individuals with visual impairments. To
achieve this, we introduced a novel problem and dataset,
VIEW360, aimed at detecting anomalous events and deter-
mining their direction by observing the entire surroundings
through an egocentric 360-degree camera. Additionally, we
present FDPN, a new weakly-supervised video anomaly
detection method for frame-level detection and direction
prediction. Experimental results show that our FDPN en-
ables more precise detection of anomalous events, as ev-
idenced by achieving state-of-the-art results on the UCF-
Crime, VIEW360 and Shanghaitech datasets. This method
shows promise in enhancing safety for individuals with vi-
sual impairments. We believe our research offers valuable
insights for developing AI-based assistive systems, con-
tributing to their safety and security.
Limitations While our dataset was developed through con-
sultation with blind individuals to reflect real-world situa-
tions, it may not encompass all challenges faced by the vi-
sually impaired community. Additionally, the model’s pro-
cessing speed of 1.7 FPS presents a limitation, as it falls
short of the real-time performance needed for practical as-
sistive technology. Future work will focus on optimizing
processing speed while maintaining analytical accuracy.
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