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Abstract

Self-Supervised Semantic Segmentation, aiming to lever-
age masses of unlabeled data for boosting semantic seg-
mentation, has been rapidly emerging as an active task
in recent years. However, existing self-supervised seman-
tic segmentation approaches mainly focus on planar im-
ages, leaving multiple distorted objects encountered in
panoramic images unexplored due to the formidable chal-
lenge of handling heterogeneous degrees of distortions
across different locations. In this paper, we propose a novel
Self-Supervised Panoramic Semantic Segmentation model,
termed DASC-SPT, built upon the mainstream contrastive
learning framework. Towards distortions in panoramic im-
ages, we present two structures to better learn from dis-
torted features by applying planar images. For the input im-
ages of self-supervision, we design a Spherical Projection
Transformation (SPT) strategy that involves randomly pro-
jecting planar images onto various locations of the sphere
to introduce the distortions. For pixel-wise distorted fea-
tures, we construct a Deformation-aware Sampling Consis-
tency (DASC) framework to further utilize the shared con-
tent and discrepancies caused by different distortions of
paired views, where the deformation-aware consistency can
be quantified on pixel-wise features. Both of the two compo-
nents facilitate the model to adapt to distortions and boost
panoramic semantic segmentation. Extensive comprehen-
sive experiments on three panoramic datasets demonstrate
the effectiveness and superiority of DASC-SPT approach.

1. Introduction

For fully-supervised semantic segmentation, sufficient
labeled data is essential. Nevertheless, the process of la-
beling data is both time-consuming and costly. In recent
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Figure 1. Comparison of two types of self-supervised semantic
segmentation methods. (a): The plane-based methods take planar
images as input and generate two undistorted views using random
crop, where two encoders are added to compute the global similar-
ity between the two paired views. (b): Ours takes planar images as
the input and generates two distorted views using the SPT strategy.
where the DASC framework is also applied to compute the simi-
larity behind the encoder besides the existing two global branches.

years, self-supervised learning has attracted increasing at-
tention due to it learns from the easy-to-obtain unlabeled
data, and attains promising results in semantic segmenta-
tion task. Existing methods [24,27,33,34,37–39,43] mainly
focus on representation understanding with undistorted ob-
jects in planar images. However, in more complex image
representation, such as panoramic images , which usually
have high resolutions and objects in images undergo ge-
ometric shape changes, resulting in the higher annotation
cost. Therefore, self-supervised panoramic semantic seg-
mentation is worth studying.

Compared with planar images, the primary characteris-
tic of panoramic images are distortions, which are intro-
duced by a transformation when mapping from a spherical
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representation to the commonly used equirectangular pro-
jection (ERP) representation in panoramic datasets. The
mainstream self-supervised semantic segmentation meth-
ods with CNNs on planar images [2, 3, 13–15, 41, 45] are
based on the contrastive learning framework, as shown in
Figure 1(a). By introducing data transformations, the main
idea of the framework is to maximize the similarity between
two augmented views from the same image and minimize
the similarity between views from different images. This
enables the model to learn more generalized features across
instances or features that are more robust for specific at-
tributes, such as the rotation and mask prediction. To extend
the framework to panoramic semantic segmentation, we be-
lieve two key aspects need to be addressed: 1) Distortions
are an inherent property of objects in panoramic images.
How can we introduce different distortions to the same ob-
ject to get two views in the self-supervised learning frame-
work. 2) As the backbone network is a complex nonlinear
function, we can modify the framework during pre-training
to facilitate the backbone in learning panoramic distortions
as effectively as possible, thereby mitigating the challenges
of segmenting distorted objects in semantic segmentation.

To the best of our knowledge, this paper is the first
work to propose the Self-Supervised Panoramic Semantic
Segmentation approach focusing on panoramic distortions,
termed DASC-SPT. Following SimSiam [4], DASC-SPT is
built upon the siamese framework, where one of the views
from the same image is input into the prediction head to
predict the other view. The two key designs are an transfor-
mation method using planar images and a distortions-robust
framework at the dense pixel level.

Our methods are shown in Figure 1(b). To be specific,
considering that acquiring views of the same object with
different distortions in panoramic images is challenging, we
propose a Spherical Projection Transformation (SPT) strat-
egy. SPT enables the mapping of planar images to different
latitudes of a sphere, generating views with varying degrees
of panoramic distortions. In this manner, we can guide the
learning of backbone by maximizing the similarity between
two different panoramic distorted views from the same im-
age. Furthermore, SPT has the potential to introduce more
distorted objects based on large datasets of planar images.
In addition, considering that pixels in different views are
misaligned after using SPT, we propose a Deformation-
aware Sampling Consistency (DASC) framework. DASC
predicts offsets for each pixel from one view, and pixels
displace with offsets based on their own positions to align
with the corresponding pixel from the other view. This ap-
proach aims to achieve pixel-wise deformation-aware con-
sistency, enabling the learning of more fine-grained repre-
sentations for semantic segmentation and improving robust-
ness of backbone to distorted perspectives.

Extensive experiments demonstrate that our DASC-

SPT approach achieves significantly improved performance
compared with existing methods on three panoramic seman-
tic segmentation datasets, including the Stanford2D3DS
[1], SUN360 [12], and CVPG [26] datasets. Ablation ex-
periments also verify the effectiveness of SPT and DASC.

In summary, this paper proposes SPT and DASC by an-
alyzing distortions, making an early exploration of self-
supervised learning for panoramic semantic segmentation.
We hope that this work can provide a good starting point
and serve as an effective baseline for future research.

2. Related Work
2.1. Self-Supervised Semantic Segmentation

In recent years, self-supervised learning has achieved
impressive performance in image classification and seg-
mentation. Among these methods, contrastive-based meth-
ods [3, 4, 14, 15, 25, 31, 35, 41] train models by minimiz-
ing the distance between similar object features and max-
imizing the distance between dissimilar object features,
thereby learning powerful representation capabilities. Sim-
Siam [4] maximizes the similarity of positive pairs without
using negative sample pairs and large batches. Nonethe-
less, these methods merely focus on instance discrimina-
tion tasks from a global perspective. For semantic segmen-
tation, which require pixel-level classification, emphasiz-
ing pixel-level learning can lead to more effective improve-
ments [2, 24, 27, 33, 34, 37–39, 43]. DenseCL [33] imple-
ments dense contrastive learning by optimizing a pairwise
contrastive (dis)similarity loss at the pixel level between
two views of input images. VICRegL [2] learns pixelwise
representations by forcing local features to remain constant
over different viewing conditions, exploring the fundamen-
tal trade-off between learning local and global features. In
the field of panoramic images, PPS [18] directly applies
PixPro [39] to panoramic image semantic segmentation.
360VAM [9] maximizes the mutual information of differ-
ent views from the equator and poles of panoramic images.
However, none of these works are designed for distortions
in panoramic semantic segmentation. This paper aims to fill
this blank and offer a starting point for future research.

2.2. Panoramic Semantic Segmentation

Different from planar semantic segmentation, panoramic
semantic segmentation focuses on solving the problem of
panoramic distortions. Because applying planar segmenta-
tion methods directly to panoramic images will not achieve
the original expected results due to the existence of distor-
tions. To address this, recently some methods [5, 32] con-
vert panoramic images into the cube representation with
lower distortions levels to tackle cube boundary disconti-
nuity. Due to the increased uniformity and discretization
of the icosahedron compared to the cube, many methods
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Figure 2. The overview of our DASC-SPT approach, which consists of Self-Supervised module, including the SPT strategy and the DASC
framework as the initial upstream self-supervision, and the eventual Panoramic Semantic Segmentation task as the final downstream task.

[11, 19, 22, 42] design convolution and pooling operations
on its representation to simulate planar operations. Efforts
have been made to use graph neural networks for feature ex-
traction on the sphere, aiming for more flexible connections
[20,21,40].Other methods [8,28–30,44] propose the spheri-
cal convolutions,which aim to extract features varying in the
size on different latitudes. Different from the above works
that focus on the supervised paradigm, this paper makes
an early exploration of self-supervised panoramic seman-
tic segmentation, which can boost the backbone robust to
distortions and reduce the annotation cost.

3. Method
3.1. Preliminary

Panoramic coordinate representations. The ideal rep-
resentation of panoramic images is an undistorted and com-
plete unit sphere. However, for display and storage pur-
poses, datasets often use an equirectangular representation,
and the pixel coordinates between these two representations
can be converted correspondingly. Similar to planar im-
ages, the equirectangular representation E uses pixel co-
ordinate system to express image pixels E(x, y). We use
S to represent the unit sphere, and the geographical loca-
tion of any point on the sphere can be represented by lati-
tude (Lat) ϕ ∈ [−π

2 ,
π
2 ] and longitude (Lon) θ ∈ [−π, π],

which are also known as the polar angle and azimuthal an-
gle. The equator and poles of the sphere are commonly

used to refer to undistorted and heavily distorted regions
in panoramic images, respectively. There is a one-to-one
correspondence between the E(x, y) and the spherical sur-
face S(θ, ϕ), which can be expressed as θ = 2xπ

w , ϕ = yπ
h .

where x ∈ [0, w], y ∈ [0, h], w, h are the width and height
of the panoramic image. After that each point P (θ, ϕ) can
be transformed into P (X,Y, Z) in the 3D Cartesian coordi-
nate system as shown in Figure 1(b), and is defined by

X = cosϕ cos θ

Y = cosϕ sin θ

Z = sinϕ

(1)

Through Equation 1, each pixel on the spherical surface can
be applied to the generation of the equirectangular represen-
tation via coordinate transformation with sampling. In the
following Section 3.2, the spherical projection in 3D space
will be more introduced in detail.

Self-Supervised contrastive learning framework. The
general framework of self-supervised contrastive learning is
based on instance discrimination tasks. Here we take Sim-
Siam [4] as an example to roughly introduce the workflow
of self-supervised contrastive learning. Given an unlabeled
dataset I = {I1, I2, ..., In}, where each image xi is aug-
mented by two different data transformations T1 and T2 to
generate two views zi1 = T1(Ii), zi2 = T2(Ii). The views
are encoded by the encoder g : I → RD and projector
q : RD → RC , and mapped to a feature space. Next, Sim-
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Figure 3. The diagram of different modes for the spherical projec-
tion transformation strategy.

Siam uses a predictor p : RC → RC to convert the projected
representations to predicted representations. The projector
and predictor heads are typically composed of small fully
connected layers, ReLU activation functions, and Batch-
Norm layers. In the training stage, the loss of global in-
stances discrimination L uses cosine similarity, which can
be expressed as

L(zi1, zi2) = − p(q(g(zi1)))

∥p(q(g(zi1)))∥2
· stop(q(g(zi2)))

∥stop(q(g(zi2)))∥2
(2)

where ∥·∥2 is the l2-norm, stop indicates the stop-gradient
operation. After self-supervised training, the encoder can be
transferred to downstream visual tasks, providing the better
representation capability for other dense prediction models.

3.2. Spherical Projection Transformation Strategy

As mentioned above, capturing a range of perspectives
for a single object while contending with various distortions
in panoramas is an inherently complex undertaking, neces-
sitating a comprehensive and nuanced approach. Conse-
quently, we propose a Spherical Projection Transformation
(SPT) strategy that generates controllable panoramic distor-
tions from planar images for self-supervised panoramic se-
mantic segmentation to learn distortions.

As shown in Figure 2, our proposed strategy is divided
into two steps: the spherical projection and the center crop
operation. The spherical projection involves aligning a pla-
nar image tangentially with the unit sphere S and rotat-
ing the sphere to align the projection point with the x-axis.
Then, all points are projected onto the normalized plane.
Based on Section 3.1, it is known that each point P on the
sphere S can be represented by P(X,Y, Z), and the nor-
malized form becomes P(1, Y

X , Z
X ), which is denoted as

P(1, y′, z′). Next, we transform the planar image pixels
to the normalized plane through the transformation of the
spherical projection using Equation 3. The diagram of the
transformation is shown in Figure 3 and the formula can be
given by

y′ =
y

W
· 2t− t, t =


tanη

2 if using tangent mode
sin η

2 if using chord mode
η
2 if using arc mode

(3)

where y′ is coordinate of a pixel in the normalized plane,
y represents the coordinate of the pixel in the tangent plane,
W is width of the image, 2t is the projection limit range
based on the set η. And z′ dimension follows the same rule.

After that, we filter out the points outside the defined
range based on Fov η and different modes, i.e., tangent,
chord or arc. By doing this, the relationship is established
of the transformation.

A planar image can be projected onto a sphere using
spherical projection and transformed into an ERP represen-
tation through the above transformation. However, due to
the narrower Fov, it contains a amount of irrelevant infor-
mation. When using random crop, the views may include
background regions. Striving to make such views as simi-
lar as possible ultimately affects model training. To address
this, we further perform center crop on the ERP representa-
tion to remove most of the background information and gen-
erate views with different distortions as the input. Specif-
ically, the projection tangent center point eP (θP , ϕP ) can
be transformed to the coordinates eP (xP , yP ) on the ERP
image E. We crop the image around the point eP to obtain
a rescaled clipped image I(u, v), which is defined as

I(u, v) = E(i+ u, j + v) (4)

where 0 ≤ u < w, 0 ≤ v < h, and i = xP − h
2 , j = yP − w

2
are the horizontal and vertical coordinates of the top left
corner of the clipped region respectively, h and w are the
height and width of the rescaled clipped image. Subse-
quently, the rescaled clipped image is upsampled to the in-
put image size (H,W ) using a scale hyper-parameter s,
where H = s2 · h,W = s2 · w. In consequence, the ran-
dom crop can be replaced by our strategy for the generation
of paired views with different distortions to make full use
of current large-scale planar image datasets for subsequent
self-supervised panoramic semantic segmentation.

3.3. Deformation-aware Sampling Consistency
Framework

Since the presented SPT strategy has employed spherical
projection and center crop on planar images, the model can
possess the adaptability to object distortions in panoramic
images to a certain degree. Moreover, on this basis, a
deformation-aware sampling consistency framework named
DASC is proposed to leverage the paired views with differ-
ent distortions. The main purpose is to boost the feature
representational capabilities of the model and improve its
robustness to distorted perspectives by measuring the con-
sistency between two distinct views after undergoing a de-
formable spatial transformation. So, the DASC not only
learns the global consistency introduced in Sec.3.1 but also
includes pixel-wise consistency learning for distortions.

As shown in Figure 2, the DASC framework regards the
paired views zi1, zi2 as the input of the shared encoder g,
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and the output can be described as f : RC×H×W , where
C,H,W are the channels, height and width of the feature
map respectively. Furthermore, the projector q, the pre-
dictor p and offset generator c : RC×H×W → R2×H×W

are stacked to generate the trainable offset vector, where
the channel 2 means the two directions (x, y) of the offset
oik = [ox, oy]

T
ik from the k-th view in the i-th image, and

x ∈ [0,W ], y ∈ [0, H], k = 1 or 2. Note that each compo-
nent of the offset vector are constrained to a certain range
ox ∈ [−1, 1], oy ∈ [−1, 1], which represents the deforma-
tion to any location lmn = [m,n]T within the feature map,
where [m,n]T =

[
2x
W − 1, 2y

H − 1
]T ∈ [−1, 1] are the nor-

malized coordinate of the location (x, y). Therefore, each
location is transformed to be deformable when the predicted
offsets are combined with the original location, and the spe-
cific derivation can be given by

l
′

ik(m,n) = lmn + ôik(m,n) (5)

where l
′

ik(m,n) indicates the new location in the (m,n) co-
ordinates from the k-th view in the i-th image after apply-
ing the transformed offset ôik on the identical location lmn.
Meanwhile, the coordinates of the feature map are normal-
ized to [−1, 1], implying an ideal maximum offset of 2 in
any direction. Thus we can apply the linear transformation
to adjust the range of the offset, which is formulated as

ôik(m,n) = α · oik(m,n) + β (6)

where oik(m,n) is the predicted offset of the network, α
and β are respectively the scaling and translation hyper-
parameters, and ôik(m,n) refers to the offsets resulting
from the transformation. Once the new deformable loca-
tions are computed, the pipeline will perform grid sam-
ple with these new coordinates. By doing this, the resam-
pled feature map from one view can be deduced to quan-
tify the consistency with that from the other view. We take
l
′

ik(m,n) and encoded feature map f as the input of the grid
sample G based on a differentiable bilinear interpolation.

By using the bilinear interpolation, the deformation-
aware resampled feature map can be acquired to measure
the pixel-wise consistency with the one from another view.
We treat the cosine similarity in Equation 2 as the consis-
tency quantification. The detailed theoretical analysis of
pixel-wise consistency is in the supplementary materials.

Consequently, the complete self-supervised training ob-
jective for panoramic images is denoted as

L(zi1, zi2) =
1

2
(Lg(zi1, zi2) + Lg(zi2, zi1))

+
λ

2
(Ld(zi1, zi2) + Ld(zi2, zi1))

(7)

where both Lg and Ld are the cosine similarity losses. The
former represents the global optimization and the latter in-
dicates the deformation consistency quantification. Com-
pared to the classical cosine similarity loss, the presence

of gradient stopping strategies renders the loss asymmet-
ric, necessitating the swapping of paired views to compute
the loss twice and average them accordingly. This objective
is extremely flexible and extensible, greatly enriching our
proposed DASC approach for self-supervised panoramic se-
mantic segmentation. Additionally, λ is the loss weight to
balance the two components of Equation 7, which is set to
1.0 by default in our subsequent experiments.

Once self-supervised training is completed, the weights
of pre-trained model will be transferred to the encoder of
panoramic semantic segmentation followed by the decoder
and the segmentation head. Due to the multi-class charac-
teristics of our task, the objective for panoramic semantic
segmentation Lpss adopts the fundamental Cross Entropy
Loss, which can be written as

Lpss = −
N∑
i=1

pi log (pi) (8)

where pi represents the predicted probability of each class
and Lpss indicates the concrete loss for the main task. Note
that this loss is identical to the one defined in the FCN [23]
model, which is commonly employed as the foundational
model for the panoramic semantic segmentation task, to
provide fair experimental results.

4. Experimental Results
4.1. Datasets and Implementation Details

Datasets and Metrics. We conduct pretraining on Ima-
geNet1000 dataset, which is a subset of ImageNet-1K con-
taining all categories with about 34K images following ex-
isting self-supervised methods on panoramic images [9,18].
Moreover, in accordance with previous studies [9, 18], we
then perform the panoramic semantic segmentation task on
three datasets below.

SUN360E [12]. The SUN360E dataset expands the
SUN360 [36] dataset by adding segmentation labels to 666
panoramic images (418 bedroom and 248 living room) for
semantic segmentation. Each image of 1024 × 512 resolu-
tion is annotated with 14 different categories.

Standford2D3DS [1]. The Stanford2D3DS dataset in-
cludes 1413 panoramic images for 2D semantic segmenta-
tion across 13 categories, with a resolution of 4096× 2048.

CVPG-Pano [26]. The CVPG-Pano dataset is an out-
door panoramic image dataset consisting of 600 images
with a resolution of 1664×832, where 524 images are used
for training and the rest for testing. The dataset defines 20
categories and groups them into 7 major categories.

We employ mean accuracy (mAcc) and mean Intersec-
tion over Union (mIoU) as our evaluation metrics. While
mAcc is used to evaluate the overall classification perfor-
mance, and mIoU handles imbalanced class distributions.
Both metrics are higher for better performance.
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Table 1. Comparison with different approaches on three panoramic datasets. These approaches are listed as superivsed, planar, panoramic
methods and ours. Experiments are evaluated by using mAcc and mIoU metrics.

Method SUN360E Standford2D3DS CVPG-Pano
mAcc mIoU mAcc mIoU mAcc mIoU

Supervised 66.14 51.59 50.43 40.44 83.32 78.10

Plane
MoCov2 [15] 69.19 (+3.05) 55.98 (+4.39) 50.46 (+0.03) 40.90 (+0.46) 83.75 (+0.43) 78.60 (+0.50)

SimCLR [3] 69.80 (+3.66) 56.19 (+4.60) 49.47 (–0.96) 40.21 (–0.23) 82.26 (–1.06) 76.61 (–1.49)

BYOL [14] 51.34 (–14.80) 38.46 (–13.13) 46.89 (–3.54) 37.63 (–2.81) 75.40 (–7.92) 70.44 (–7.66)

DenseCL [33] 70.12 (+3.98) 57.05 (+5.46) 51.72 (+1.29) 42.56 (+2.12) 83.88 (+0.56) 78.11 (+0.01)

Barlowtwins [41] 61.30 (–4.84) 46.91 (–4.68) 49.06 (–1.37) 39.53 (–0.91) 79.86 (–3.46) 74.86 (–3.24)

SimSiam [4] 70.37 (+4.23) 57.64 (+6.05) 51.37 (+0.94) 42.42 (+1.98) 85.18 (+1.86) 80.14 (+2.04)

VICRegL [2] 69.05 (+2.91) 54.32 (+2.73) 49.58 (–0.85) 40.96 (+0.52) 80.78 (–2.54) 76.03 (–2.07)

Panorama
360VAM [9] 65.13 (–1.01) 51.26 (–0.33) 49.25 (–1.18) 40.16 (–0.28) 81.82 (–1.50) 76.17 (–1.93)

PPS [18] 71.35 (+5.21) 58.13 (+6.54) 52.03 (+1.60) 42.56 (+2.12) 83.41 (+0.09) 78.42 (+0.32)

Ours
DASC-SPT 73.02 (+6.88) 60.76 (+9.17) 52.25 (+1.82) 42.95 (+2.51) 86.29 (+2.97) 80.74 (+2.64)

Implementation Details. We adopt the pretraining set-
ting of SimSiam [4] for our self-supervised pretraining ex-
periments. Specifically, we utilize SGD as our optimizer
with initial learning rate of 0.05, and we set the weight de-
cay and momentum to 1e-4 and 0.9. In our SPT, we set the
projection latitude range [±30, ±60], field of view [60, 80]
and scale [0.5, 1]. In our DASC-SPT, we set α to 1 and
β to 0. Each model is trained on 4 RTX 3090 GPUs with
a batch size of 128. Other comparative methods are either
implemented through MMSelfSup [7] or based on its source
code. As with them, ResNet-50 [16] is used as our encoder.
The Supervised method in Table 1 means the encoder is
pre-trained on the ImageNet1000 with supervision. For the
panoramic semantic segmentation, we follow the strategy
of MMSegmentation [6] and fine-tune the FCN [23] with a
batch size of 16. We randomly crop images to 512 × 1024
and train for 20k iterations to get the results.

4.2. Main Results

Quantitative Comparison. Given that DASC-SPT is
built on SimSiam, our baseline naturally aligns with Sim-
Siam [4]. For a fair comparison, we set three groups of
approaches: 1) a supervised approach for reference, 2) self-
supervised methods for planar images, 3) self-supervised
methods for panoramic images. We conduct a compre-
hensive comparison between our DASC-SPT and exist-
ing methods of three groups on panoramic datasets. As
shown in Table 1, our method outperforms the state-of-
the-art methods on all three datasets, demonstraing the ef-
fectiveness of our method. For mAcc and mIoU on the
SUN360E [12], our method is 1.67% on mAcc and 2.63%
on mIoU higher than the second-best method PPS [18]. For
the Standford2D3DS [1] and the CVPG-Pano [26] with less
object distortions, our method can also achieve satisfactory

Table 2. Comparison of sta-
bility between ours and the
baseline.

Methods mAcc mIoU

Baseline 70.37 ± 0.20 57.63 ± 0.33
Ours 73.02 ± 0.27 60.42 ± 0.41

Table 3. Ablation study on ef-
fectiveness of different com-
ponents.

SPT DASC mAcc mIoU

70.37 57.64

✓ 72.46 (+2.09) 59.56 (+1.92)

✓ ✓ 73.02 (+2.65) 60.76 (+3.12)

performance compared with the arts, which highlights the
competence of our DASC-SPT in handling the inherent dis-
tortion problem. To mitigate uncertainty, we run methods
5 times and record standard deviations in Table 2, showing
the stability of our method with minimal fluctuations.

Qualitative Comparison. We conduct qualitative com-
parison between the baseline and our method on SUN360E
dataset as an example in Figure 4. The baseline tends to
produce incomplete masks due to serious distortions (e.g.,
the bed) as highlighted by the red dashed boxes. However,
our method products more complete and precise semantic
masks against the baseline. In addition to the distortion
problem, there are some texture-closer semantic categories
(e.g., the screen). It can be observed that the baseline prod-
ucts some inaccurate masks with similar textures as high-
lighted by the white dashed boxes. In contrast, our method
shows decent performance in the face of such problem.

4.3. Ablation Study

In this section, we conduct extensive ablation studies
on different components of DASC-SPT and their hyper-
parameters on SUN360E dataset to verify the effectiveness.

Effects of proposed SPT and DASC. To validate the
effect of the SPT strategy and the DASC framework, we
evaluate two components and results are shown in Table
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Figure 4. Qualitative Results between the baseline and our proposed DASC-SPT on the SUN360E dataset.

Table 4. Ablation study
on comparison of different
spherical projection schemes.

scheme mAcc mIoU

chord 73.18 60.26
arc 72.42 59.74

tangent 73.02 60.76

Table 5. Ablation study on
comparison of different Scale
intervals in the SPT strategy.

Scale mAcc mIoU

[0.1, 1.0] 72.61 60.29
[0.5, 1.0] 73.02 60.76
[0.1, 0.5] 71.48 58.77
[0.5, 1.2] 71.92 59.39

MoCov2 DenseCL SimSiam
Method

55

56

57

58

59

60

m
Io

U

w/o SPA
w SPA

Figure 5. Histogram of compar-
ison of different methods w or
w/o our proposed SPT strategy.

[0, ± 60] [± 30, ± 60] [±30, ±90] [0, ±90]
Latitude Interval

59.00

59.25

59.50

59.75

60.00

60.25

60.50

60.75
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m
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U

70.0

70.5

71.0

71.5

72.0

72.5

73.0

73.5

74.0

m
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cc

Figure 6. Evaluation on com-
parison of the different latitude
range of the SPT strategy.

3.We can observe that the SPT component can gain 2.09
mAcc and 1.92 mIoU improvements compared to the base-
line. When the DASC and the SPT are combined, the per-
formance is significantly boosted to 73.02 mAcc and 60.76
mIoU, demonstrating the superiority of each component.

Ablation study on the SPT strategy. As illustrated in
Section 3.2, there are three main schemes of the SPT strat-
egy called chord, arc and tangent. To compare the effect
among them, we give the ablation study shown in Table
4. The spherical projection by tangent has reached 73.02
mAcc and 60.76 mIoU, which is comparable to chord and
surpasses arc with a large margin. This may be because
the tangent projection closely approximates the true distor-
tions and provides greater information content compared to
the corresponding arc, particularly for large projection an-
gles. We also attempt to verify that the SPT strategy can
bring gains among different self-supervised learning meth-

Table 6. Ablation study on
comparison of different Fov
intervals in the SPT strategy.

Fov mAcc mIoU

[50, 80] 73.48 60.62
[60, 80] 73.02 60.76
[60, 90] 71.89 58.94
[50, 90] 71.27 59.11

Table 7. Ablation study on
paradigm of offset convolu-
tion settings.

Offset Conv mAcc mIoU

shared 71.86 59.87
separated 73.02 60.76

Table 8. Ablation study on
comparison of DASC losses.

Loss mAcc mIoU

MSE 72.67 60.06
CE 70.36 57.72

Cosine 73.02 60.76

Table 9. Ablation study on
different paradigms of offset
mapping w or w/o the origi-
nal location Imn.

Identity mAcc mIoU

zero (w/o Imn) 72.51 60.16
zero (w Imn) 73.02 60.76

border (w/o Imn) 71.71 59.65
border (w Imn) 72.46 59.88

Table 10. Ablation study on comparison of deformation hyper-
parameters.

Index α β mAcc mIoU

(a) 1 0 73.02 60.76
(b) 1

2
|x|+|y|

4 73.05 60.60
(c)

√
x2 + y2 + 1

2 0 72.42 59.86
(d) 1

2 −x
2/−

y
2 71.27 59.12

ods for panoramic images. Figure 5 is provided to present
the performance with or without the SPT strategy. It obvi-
ously attains +1.24, +2.43, +1.92 mIoU gains for Mocov2,
DenseCL and Simsiam, which illustrates that the SPT strat-
egy is beneficial when applied to general methods.

Ablation study on hyper-parameters of SPT. For the
SPT strategy, there are three hyper-parameters, i.e., Lat, Fov
and Scale, where Lat denotes the latitude range that domi-
nates the extent of distortions, and Fov and Scale determines
the size of the projected view and the resolution of the re-
gion by center crop. The ablation study on Lat is shown in
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Figure 6, where the results show that [±30,±60] Lat setting
yields higher performance on SUN360E dataset, which im-
plies it necessary to constrain the latitude within a certain
range for a better model. In addition, the ablation study on
Scale in Table 5 shows that using a scale range that is either
too small or too large for center crop yields poor results. On
one hand, a scale range like [0.1, 0.5] causes the distorted
view to contain insufficient information from the image. On
the other hand, the result of the scale range [0.5, 1.2] in
the distorted view includes excessive background regions,
which interferes with training. Compared to these condi-
tions, setting the scale range to [0.5, 1] achieves higher per-
formance. Besides, the ablation study on Fov in Table 6
indicates that the [60, 80] Fov setting yields a higher mIoU,
while the [50, 80] Fov setting achieves a higher mAcc.
However, when the Fov range is expanded to 90, the perfor-
mance significantly decreases. This is because increasing
the Fov from 80 to 90 results in the cropped image not con-
taining sufficient information from the original image with
more invalid features that leads to the degration.

Ablation study on the DASC framework. We conduct
ablation studies to delve into different parts of our DASC
framework. First, the ablation study is conducted to differ-
ent types of the offset convolution. In Table 7, the offset pre-
diction with the separated is superior to the shared, which
is because the separated one allows independent optimiza-
tion for the paired views with discrepancies of distortions.
Second, the loss of the DASC framework is substituted by
MSE loss or CE loss and the results are shown in Table 8,
which demonstrates that the Cosine Similarity Loss is still
indispensable and surpasses other two losses by 0.70 and
3.04 mIoU. At last, Table 9 compares alternative paradigms
of offset mapping in grid sample. We employ two sampling
modes named zero and border, where zero sets pixels out-
side the boundary to zero while border takes the pixel val-
ues at the boundary. We also carry out the ablation study on
whether to perform offset in the original location, i.e., w or
w/o Imn. The results show that using zero mode in the orig-
inal location achieves better, as it imposes constraints on the
offset to facilitate learning more meaningful knowledge.

Ablation study on hyper-parameters of DASC. As
mentioned in Section 3.3, we can affect the offset range by
manipulating α and β. The different settings of the hyper-
parameters is given in Table 10. From results we can con-
clude that adopting a larger deformation range for the center
region and a smaller range for edges can yield better re-
sults to self-supervised panoramic semantic segmentation,
as shown in (a) and (b) in contrast to settings in (c) and (d).

Different quantities of data. Focusing on the planar im-
ages for pretraining in panoramic images, we naturally won-
der the generalization ability of our method in such expan-
sion and then explore by further manipulating the pretrained
dataset. Thus we conduct the evaluation by setting different
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Figure 7. Evaluation on comparison of
different quantities of the training data.

Table 11. Ablation study
on the effectiveness of ap-
plying our approach to
CMAE.

Method mAcc mIoU

CMAE 54.81 40.66
CMAE + Ours 55.85 (+1.04) 41.92 (+1.26)

quantities of data between the baseline and our DASC-SPT,
i.e., 9k, 18k and 35k. As shown in Figure 7, our method
comprehensively exceeds the baseline at all quantities for
both mAcc and mIoU metrics, revealing the scalability and
robustness of our method, which has the potential to effec-
tively mitigate the impact of distortions on panoramic se-
mantic segmentation in various practical applications.

Ablation study on CMAE. Since the backbone of our
experiments is based on CNNs, in the era where transformer
methods prevail, we are also very curious whether our idea
can be applied to the recent MIM-based methods. We apply
the SPT strategy and the DASC framework to the CMAE
[17] method. For DASC, we improve the way of predict-
ing offsets by adding a prediction head to predict soft labels
for each patch after the feature decoder. Each patch is then
linearly combined with its soft label to induce offset, align-
ing with the features from the Momentum Encoder. Finally,
we optimize the L1 distance between the two features. The
experimental results are shown in Table 11, which shows
that our proposed method brings significant improvements
to the CMAE. However, we notice that the overall metrics
of the method are not high enough. Based on results from
the ViT [10], we reckon that the issue may be related to the
dataset size not reaching the millions level.

5. Conclusion

In this work, we propose a practicable and effective solu-
tion for self-supervised panoramic semantic segmentation.
To be specific, a Spherical Projection Transformation (SPT)
strategy is introduced by randomly projecting planar images
onto various locations of the panoramic sphere with center
crop to enhance the learning of representations through con-
trastive learning. Besides, a Deformation-aware Sampling
Consistency (DASC) framework is constructed to quantify
the consistency on the paired views with different distor-
tions for training an adaptive and scalable model. With
these components, our DASC-SPT achieves the state-of-
the-art performance for self-supervised panoramic seman-
tic segmentation. In the future, we hope that our proposed
approach will be further applied in various fields.
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