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Abstract

While the performance of deep neural networks is
rapidly developing, their reliability is increasingly receiving
more attention. Explainability methods are one of the most
relevant tools to enhance reliability, mainly by highlight-
ing important input features for the explanation purpose.
Although numerous explainability methods have been pro-
posed, their assessment remains challenging due to the ab-
sence of ground truth. Several existing studies propose eval-
uation methods from a certain aspect, e.g., fidelity, robust-
ness, etc. However, they typically address only one property
of explanations, and thus more assessing perspectives con-
tribute to a better explanation evaluating system. This work
proposes an evaluation method from a novel perspective
called sensitivity consistency, where the intuition behind is
that features and parameters that strongly impact the pre-
dictions and explanations should be highly consistent and
vise versa. Extensive experiments on different datasets and
models evaluate popular explainability methods while pro-
viding qualitative and quantitative results. Our approach
further complements the existing evaluation systems and
aims to facilitate the proposal of an acknowledged expla-
nation evaluation methodology.

1. Introduction
Deep Neural Networks (DNNs) are widely applied in a

wide range of fields, such as computer vision [11], robotics
[19], etc., due to the excellent fitting ability and outstand-
ing predictive performance. However, agnosticity is one of
the most threatening concern for DNNs with complex ar-
chitectures. Due to the uninterpretability of the predictions,
applications in areas where human life is at stake, such as
autonomous driving [10] or healthcare [8], are severely re-
stricted. To alleviate this concern, explainable AI researches
[7, 40] have been proposed and have increasingly become
one of the popular topics in recent years. There are two ma-
jor directions in explainability researches, which are A) pre-
dicting through refined data and interpretable (linear) mod-
els [29] and B) designing post-hoc explainability methods

to explain the predictions [31]. The interpretable models
are straightforward and intuitive, but emulating DNNs with
linear models under complex tasks struggles to reproduce
their performances and the data for these tasks (e.g., high-
resolution images) can barely be refined accurately. There-
fore, the application scenarios of interpretable models are
limited.

Post-hoc explainability methods are mainly split into two
broad categories: black and white-box approaches. The
former does not access the internal structure of the model
and infers feature attribution by observing the effect of in-
put perturbations on the predictions [23, 26–28], whereas
the latter leverages information within the model (e.g., gra-
dients) to summarize the important portions of the inputs
[5, 34, 35, 38]. However, almost all explainability meth-
ods suffer from plausibility flaws, including A) irrelevance
of explanations to model parameters [1], B) the out-of-
distribution perturbation issue [17], C) sensitivity to base-
line choices [20], D) robustness deficiency [12] and E) lack
of ground truth.

The most popular approach is feature removing [44],
based on the idea that eliminating features with the highest
attribution in the explanations would severely disrupt pre-
dictions. Recently, assessment metrics from multiple per-
spectives have been proposed, such as sensitivity to model
parameters [1], human comprehensibility [2,25], and gener-
alizability [39], which complement the other necessary con-
ditions for plausible explanations. Nevertheless, we believe
that the properties of explanations have not been fully ex-
ploited. more evaluation perspectives may facilitate deeper
understandings of explainability methods.

This work proposes a novel evaluation metric for ex-
planations, called Sensitivity Consistency (SenC), based on
the idea that predictions and explanations are expected to
be sensitive to the identical input features. In addition,
we extend this perspective to model parameters, assessing
sensitivity consistency by observing whether those groups
of neurons that play important roles in prediction would
have similar impacts on explanations. Our contributions are
mainly as follows:

• We propose a novel explanation evaluation metric
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SenC that assesses whether an explanation is reliable
by comparing the discrepancy between the sensitiv-
ity of predictions and explanations to input features or
neurons. SenC is a black-box approach that is applica-
ble to all explainability methods.

• We quantitatively evaluate popular explainability
methods on various datasets and models through ex-
tensive experiments, and verify the consistency of
SenC with human intuition through a user study.

2. Related Work
In this section we present related work on explainability

methods and their reliability studies.
Explainability Methods. The pioneer of explainability

methods was proposed by [34], which simply observes the
attribution of individual pixels by the gradient of the output
neuron to the input. However, follow-up studies identified
that the gradient failed to faithfully capture attributions and
proposed corresponding improvements, including masking
out the negative channels in forward or backward propaga-
tion [36], adding Gaussian noise to the surrounding pixels to
clarify and smooth out the explanations [35], integrating the
gradient of all interpolations starting from an uninformative
baseline to the input [38] (as well as its approximated ver-
sion [33]). Layer-wise Relevance Propagation (LRP) is an-
other series of gradient-based attribution that starts with the
output and back-propagates the contribution of each neuron
to the input layer [5]. GradCAM generates attributions with
a global average pooling layer that weights and maps the
convolutional output to the input layer [32]. Another type
of explainability approaches require no access to the gradi-
ent, instead considering the model as a black box and ob-
serving the effect of input variations on the outputs, named
perturbation-based methods. LIME achieves interpretabil-
ity by training a linear surrogate models with perturbations
adjacent to the inputs [27]. KernelSHAP [23] efficiently ap-
proximates the Shapley value [13] through weighted pertur-
bations and linear surrogates, which greatly reduces compu-
tational intensity. Recently, RISE [26] was proposed, which
generates input attributions by randomly masking out fea-
tures and weighting the masks according to the outputs.

Evaluation metrics for explanations. Due to the ab-
sence of ground truth, there is no acknowledged metrics.
Sensitivity is one of the most intuitive metrics that assesses
the fidelity of explanations by comparing the difference in
confidence between the predictions after removing the most
attributed feature in the explanation from the input (or in-
sert it in an uninformative baseline) and the original predic-
tions (baselines) [3–5, 9, 20, 30]. [17] argued that hard re-
movals may disrupt the data distribution, resulting that the
model is incapable of predicting effectively for data that has
never been seen before. They propose RemOve And Retrain

to mitigate the OOD problem by retraining after removing
features. However, this in turn raises concerns about ex-
planation fidelity to the model. Explanation robustness is
another assessment perspective, where [3] argues that ex-
planations given to similar inputs should also share a high
degree of similarity. Another perspective that drew atten-
tion was the sensitivity to model parameters, as [1] found
that the quality of the explanations from part of the meth-
ods is not seriously impaired when the model parameters are
highly randomized. Besides, there are approaches that are
not widely employed, such as Pointing Game [42], Gener-
alizability [39], semantic-level perturbations and synthetic
ground truth [16]. User assessment [41,43,45] is a convinc-
ing alternative, which is nonetheless costly and lacks repro-
ducibility due to human subjectivity. In addition, a latest
research [15] integrates explainability evaluation toolkits to
facilitate accessment.

3. Methods
3.1. Sensitivity Consistency (SenC)

Existing studies indicate that different explainability
methods may provide different explanations for identical
models and inputs [1,20]. In addition, recent research argue
that there is a “Rashomon” of explanations, whereby expla-
nations that reasonably demonstrate prediction attributions
may not be unique [22,24]. Due to the lack of ground truth,
it is challenging to authenticate the credibility of inconsis-
tent explanations. However, by considering inputs and ex-
planations as a black-box system, we can assess the plausi-
bility of explanations by observing the relationship between
their variations. We rely on the argument that prediction
confidences and explanations are expected to be sensitive to
identical prediction bases, which is termed sensitivity con-
sistency. The prediction bases are attributed to two factors,
the input features and the model parameters, which are two
aspects of the proposed assessment method. An overview
of SenC is presented in Fig 1.

3.2. Data Sensitivity Consistency

Data sensitivity consistency refers to the proximity of the
degree to which the prediction confidence and explanation
are impacted when part of the features in the input data vary.
Elaborately, if a modification (removal or perturbation) of
a feature significantly interferes with the prediction, while
no serious explanation corruption occurs, the explanation is
considered to lack sensitive consistency, and vice versa. To
statistically measure the proximity of the impacts, we lever-
age a method based on random mask perturbations, which is
inspired by [26]. We segment the input image into several
partitions as input features with image segmentation algo-
rithms to avoid the overwhelming computational intensity
for processing pixel-wise features. Subsequently, we gen-
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Figure 1. An overview of SenC. SenC contains the following main components:(a) Selection of the input features or parameters to
be perturbed. (b) Perturbation of the selected target by randomly generating an extensive number of masks. (c) Re-prediction and re-
explanation with perturbed conponents (inputs or parameters) respectively. (d) Score each mask based on the difference in predictions and
similarity in explanations. (e) Summing the product of all masks with their scores yields the prediction and explanation sensitivity maps,
respectively. (f)SenC is derived by comparing the correlation of the two sensitive maps. Note that the red box in the figure indicates that
SenC applies to either the input or the parameter, rather than in parallel with both.

erate a massive amount of masks to randomly eliminate a
fraction of the features. We predict the original and masked
inputs to yield confidence scores P o and P ′, respectively,
and denote their differences as ∆P = |P o − P ′|. With an
enormous number of masks weighted by ∆P and summed,
the final prediction sensitivity of the kth feature is formu-
lated as:

Spr
fk

=

n∑
i=1

(1−∆Pi)⊙Mf
i (1)

where Mf
i and ∆Pi denote the ith feature mask and its

confidence discrepancy, respectively. The sensitivity of all
m input features to the prediction can be summarized as
Spr
f =

{
Spr
f1
, ..., Spr

fm

}
.

Explanation sensitivity is the degree to which the in-
put features impact the generated explanations. Similar
to predictive sensitivity, we randomize an equivalent num-
ber of masks to eliminate input features and explain the
masked inputs by a specific explainability method. We
weight each mask by comparing the similarity of expla-
nations from the original and masked inputs, and eventu-
ally derive the feature sensitivity to explanations from the
weighted sum. The explanation sensitivity of input features
is Se

f =
{
Se
f1
, ..., Se

fm

}
, where the kth feature is repre-

sented as:

Se
fk

=

n∑
i=1

SC(eo, emf
i
)⊙Mf

i (2)

where eo, emf
i

denote the explanations from the original
and masked inputs, respectively. SC denotes Spearman’s
correlation coefficient, which is formulated as:

ρ(e, e′) =
COV (R(e), R(e′))

σR(e)σR(e′)
(3)

where R(∗), COV and ρ are the rank function, the covari-
ance and the standard deviation, respectively.

Finally, by comparing the proximity of the prediction
and explanation sensitivities, we derive the feature sensi-
tivity consistency:

ρf = SC(Se
f , S

pr
f ) (4)

The detailed algorithm for data SenC is shown in Algo-
rithm 1. ρf is essentially a Spearman’s correlation coeffi-
cient, hence its domain of values is [−1, 1]. However, our
experiments are statistical and the probability of presenting
opposite correlations can be ignored. Therefore, the statis-
tical mean of SenC has a value domain of [0,1], where 0
represents the absence of sensitivity consistency and 1 rep-
resents absolute consistency.

Algorithm 1: Data Sensitivity Consistency (SenC)
for a given data

Input : An input data x, a well-trained model F (·),
an explainability method H(F, x) for the
model F and the number of masks K

Output: Data SenC ρfx of H for input x
1 P o

x = F (x) # Original prediction
2 eox = H(F (x), x) # Original explanation
3 Spr

fx
, Se

fx
= zeros like(x) # Initialization

4 for k = 1 to K do: #Generating masks
5 Mf

k = random like(x)

6 x′
k = x⊙Mf

k #The kth perturbation
7 Sprk

fx
+= (1− |P o

x − F (x′
k)|)⊙Mf

k #Scored
by prediction variation

8 Sek
fx

+= SC(eox, H(F, x′
k)⊙Mf

k #Scored by
explanation similarity

9 end for
10 ρfx =

∑K
k=1 SC(Sek

fx
, Sprk

fx
) # Sum all scores

For input features, we generally pay more attention on
those relevant components, such as the set of pixels con-
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taining objects. Therefore, beside the overall consistency,
we evaluate two additional metrics, which are Top-1 and
Top-3 agreement. Top-K indicates the percent of overlap
for the K features that are most sensitive to predictions and
explanations, which is formulated as:

TAk =

∣∣∣{Topk(Se
f ) ∩ Topk(S

pr
f )

}∣∣∣∣∣∣{Topk(Se
f )
}∣∣∣ (5)

where Topk(S) represents the set of the first k elements
from sorted S. The Top-K metric mitigates the interference
caused by background pixels to some extent, thereby con-
centrating more on the sensitivity assessment of the target
objects.

3.3. Parameter Sensitivity Consistency

Apart from features, parameters are expected to be con-
sistently sensitive as well, which ensures that predictions
and explanations made by the model on a given input are
mainly attributed to the same set of neurons. In contrast
to images (typically C × W × H), parameters are higher
dimensional, which encompass diverse architectural units
and rendering the perturbation more challenging. To avoid
explosive computational intensity, we draw the following
compromises without sacrificing too much performance:

• We compute the parameter similarity for each layer in-
dividually and derive the global similarity by averag-
ing.

• As the majority of the parameters belong to the
weights, we only evaluate the parameters on the
weights of the feature extraction layers (convolutional
and fully-connected layers), ignoring the biases.

• The quantity of parameters on the weights is far greater
than the image pixels, thus requiring a remarkably
larger number of masks to accurately assess the sen-
sitivity, which causes enormous time and computa-
tion costs. To enable the experiment being feasi-
ble, we group the parameters according to the type
of the layer to diminish the amount of masks required
for perturbation. For a convolutional layer with size
Din ×Dout ×Cw ×Ch, we treat an output channel as
a perturbation unit with the size of Din×Cw×Ch. The
reason for not considering an input channel as a pertur-
bation unit is to avoid the possibility that only one per-
turbable term exists when processing uni-channel data
(e.g. MNIST). For a fully connected layer Din×Dout,
we select an input channel as a perturbation unit with
dimension Dout. The argument against treating the
output channel as unit is to prevent masking the la-
bel channel when perturbing the last layer and thereby
losing gradients.

The process of calculating parameter sensitivity is anal-
ogous to that of feature sensitivity. We randomly generate
masks on parameters groups, which partially eliminate the
original weights and turn into new models. Comparing the
differences in prediction confidence and explanation simi-
larity between the original and new models for the identical
inputs allows for the calculation of sensitivity consistency
for each parameter group. The parameter sensitivity consis-
tency is formulated as:

ρpa = SC(Se
pa, S

pr
pa) (6)

where Spr
pa =

{
Spr
pa1

, ..., Spr
pa2

}
denotes the parameter sensi-

tivity for the prediction, in which pak is the kth parameter
group in a certain layer, and Spr

pak
is calculated by the pre-

diction differences, also formulated as Spr
pak

=
∑n

i=1(1 −
∆Pi)⊙Mpa

i (Mpa
i is the ith mask on the parameter groups).

Se
pa is the parameter sensitivity of the explanation, obtained

by Se
pa =

∑n
i=1 SC(eo, empa

i
) ⊙ Mpa

i , where empa
i

is the
explanation generated by the model under mask Mpa

i . The
details of parameter SenC is demostrated in Algorithm 2.
Note that though we need to access the model parameters
when evaluating parameter SenC, we are still interested in
the correlation between input and output, and thus SenC is
still considered to be a black box in a broad sense.

Intuitively, both predictions and explanations are sup-
posed to follow variations in the same set of features and
parameters. Therefore, explanations with higher sensitivity
consistency are considered more plausible. Lastly, due to
the lack of reference, we randomly generate a nonsensical
explanation for each data and equally perform the sensitiv-
ity consistency evaluation on it as the baseline.

4. Experiments
In this section we demonstrate the experimental results.

Our experiments are conducted on three datasets with dif-
ferent complexities, which are the MNIST handwritten
dataset, CIFAR10 and a real-world dataset called German
Traffic Sign Recognition Benchmark (GTSRB) [37], respec-
tively. For better prediction performance, we train models
with different structures on each of the three datasets. For
MNIST, we train a simple four-layer neural network, noted
as ModelCNN, whose structure can be simply summarized
as Conv1 → MP1 → Conv2 → MP2 → FC1 → FC2,
where Conv, MP and FC denote convolutional, max-
pooling and fully connected layers, respectively. Mod-
elCNN achieves 98.5% accuracy on the MNIST test set.
For CIFAR10 and GTSRB, we train a ResNet18 [14] and
a MobileNetV3 [18] as the classifiers, respectively, which
achieve 93.2% and 97.7% accuracy on the test set, respec-
tively. Finally, we conduct a user study on ImageNet to ver-
ify whether the evaluation of SenC is consistent with human
cognition.
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Algorithm 2: Parameter Sensitivity Consistency
(SenC)

Input : An input data x, a well-trained model F (·)
with layer-wise parameters {w1, ..., wn},
an explainability method H(F, x) and the
number of masks K

Output: Parameter SenC ρpa of H
1 P o

x = F (x) #
2 eox = H(F (x), x) #
3 for m = 1 to n do: #Layer-wise process
4 Spr

wm
, Se

wm
= zeros like(wm) # Initialization

with the shape of corresponding parameters
5 for k = 1 to K do:
6 Mwm

k = random like(wm)

7 w′k
m = wm ⊙Mwm

k

8 F ′
w′k

m
= {w1, ..., w

′k
m, ..., wn} #kth

perturbation on mthlayer

9 Sprk
pam

+= 1−
∣∣∣P o

x − F ′
w′k

m
(x)

∣∣∣⊙Mwm

k

10 Sek
pam

+= SC(eox, H(F ′
w′k

m
, x)⊙Mwm

k

11 end for
12 ρpam =

∑K
k=1 SC(Sek

pam
, Sprk

pam
)

13 ρpa =
∑n

m=1
ρpa
m

n #Global parameter SenC

We select the following explainability approaches as
candidates to be evaluated: Vanilla Back-propagation (VB)
[34], Guided Back-propagation (GB) [36], Integrated Gra-
dients (IG) [38], Layer-wise Relevance Propagation (LRP)
[5], GradCAM [32] and DeepLift [33]. Since perturbation-
based evaluation consumes a significant amount of time to
generate and process masks, while surrogate models meth-
ods such as LIME [27] also demand extensive perturba-
tion samples for their explanations, this category will not
be evaluated considering the time and computational costs.
In the experiments, all explainability methods are imple-
mented based on Captum toolkit [21].

The experimental configurations are as follows: When
evaluating the data SenC, we randomly select 1000 in-
stances from the test set, and for each instance the num-
ber of perturbation masks generated is 5000. When eval-
uating the parameter SenC, we select only 100 instances
from the test set but generate 10000 random masks for each
layer of the model to be evaluated, as the number of per-
turbable channels of the parameter is significantly larger
than the number of hyperpixels in the image. In segment-
ing the image, we utilize slic in the scikit-image package
to roughly split every 50 pixels into one superpixel, which
maintains the independence of local features without exces-
sively raising the computational intensity. We chose 0.8 as
the masking rate for the generated masks. The masking rate
is a flexible hyperparameter with appropriate values will not

Figure 2. Visualization of data sensitivity from CIFAR-10 dataset.
Areas rendered in red represent high sensitivity while those in blue
indicate low sensitivity.

significantly impact the evaluation results (detailed analysis
is in Sec. S1.3).

4.1. Sensitivity visualization

In this section we demonstrate two visualization exam-
ples for data and parameter sensitivity consistency, respec-
tively.

Data sensitivity. We show the data sensitivity of a ran-
dom image in CIFAR10 in Fig. 2. The sensitive areas of
prediction can be seen to be centered on the front part of
the body and head of the deer. However, for explainabil-
ity methods, the sensitive fields are partially different: e.g.
the neck of the deer is included in the sensitive regions by
VB, as well as the upper part of the background is labeled
as more sensitive for VB, IG, GradCAM and DeepLift. The
closest match to the prediction sensitivity is LRP, so which
therefore yields the highest sensitivity consistency for this
instance.

Parameter sensitivity. For a simple illustration, we
choose the first convolutional layer (conv1) of ModelCNN
as the object to visualize the parameter sensitivities, which
is shown in Fig. 3. This layer contains 16 output channels,
each represented by a square in the figure, where red and
blue indicate high and low sensitivity, respectively. It can
be observed that for prediction, the first, third and sixteenth
channels are most sensitive. For the explainability meth-
ods, all except Deeplift label the third channel as highly
sensitive, while among them VB,GB and LRP exhibit high
sensitivity on all three channels simultaneously, hence their
sensitivity consistency for the particular input on this layer
is relatively high.

4.2. Quantitative SenC evaluation

4.2.1 MNIST

MNIST is the simplest image dataset, which consists of
60,000 train and 10,000 test instances, each with the size
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Figure 3. Visualization of parameter sensitivity. The layer being
visualized is the first convolutional layer of the ModelCNN, which
contains 16 output channels corresponding to the 16 squares in the
figure. The redder the color of the squares, the higher the sensitiv-
ity and vice versa.

of 784 (28 × 28). For efficient evaluation, we restrict the
number of hyperpixels to 15.

Data SenC. The results of the qualitative assessment of
data SenC are demonstrated in (a) of Fig. 5. As a reference,
we generate a random mask for each instance as a baseline
explanation, whose average SenC is expected to be zero.
The results illustrate that for data with low complexity, al-
most all explainability methods exhibit consistent sensitiv-
ities (mean SenC ρ̄ > 0.6), except for GradCAM, whose
variance is slightly higher (σ2(ρ) = 0.13).

Furthermore, we present the agreement of features with
Top-1 and Top-3 sensitivities in (a) and (d) of Fig. S1, re-
spectively. All explainability methods except GradCAM are
capable of reaching a Top-1 agreement of around 80%. In
the Top-3 metric, again with the exception of GradCAM,
the probability that all three of the most sensitive features
in the explanations generated by the rest of the methods are
all in agreement is higher than 20%, while there are barely
any cases where no intersection exists (percent p < 5%).
In general, for simple datasets like MNIST, almost all ex-
plainability methods achieve highly sensitivity consistency
of input features for predictions and explanations.

Parameter SenC. (a) of Fig. 4 shows the average
SenC of different explainability methods on all layers of
the model (also including the randomized baseline expla-
nation). In the results, GB and IG achieve higher levels
of consistency (ρ̄ = 0.29 and 0.32, respecitively), whereas
the consistency of GradCAM is relatively low (ρ̄ = 0.14)
and unstable (σ2(ρ) = 0.014). The remaining methods re-
veal an intermediate level of sensitivity consistency (ρ̄ ∈
[0.2, 0.3]). Moreover, we analyze each layer individually
and present the results in Fig. S6. We note that the sensi-
tivity consistency of convolutional layers is far superior to
that of fully-connected layers, regardless of which explain-
ability method is applied. We attribute the reason to two
points: a) Convolutional layers are more intuitive as they
directly extract features from the adjacent areas of images,

whereas fully-connected layers are typically treated as la-
tent features, which are highly abstract and may be activated
by features in different regions. b) The channels of convolu-
tional layers are more independent of each other compared
to fully-connected layers, and thus are less impacted under
individual perturbations. Therefore, we recommend choos-
ing the top convolutional layer as the target for evaluating
parameter consistency.

4.2.2 CIFAR-10

CIFAR10 is a small-size (32× 32) image dataset consisting
of 10 categories, which contains 50000 training and 10000
test data. When splitting the hyperpixels, again every 50
pixels are split into a group with a total number of 20 hy-
perpixels per image.

Data SenC. The data SenC is illustrated in (b) of Fig. 5.
Compared to MNIST dataset with low complexity, the data
SenC of CIFAR10 exhibits a significant collapse, especially
for LRP, whose ρ̄ plummets from 0.609 to −0.012, which
implies that when explaining structurally complex data and
models, LRP barely reveals consistency of sensitivity be-
tween predictions and explanations. Besides, GradCAM
still suffers from low consistency ρ̄ = 0.052, which is al-
most on par with randomly generated explanations. In con-
trast, despite the substantial reduction, DeepLift maintains
a relatively high consistency (ρ̄ = 0.351) and is therefore
considered to be the more stable explainability method.

We again evaluate the Top-1 and Top-3 SenC and show
the results in (b) and (e) of Fig. S1, respectively. Agree-
ments for all explainability methods decline significantly
on CIFAR-10, with the most dramatic drop being for LRP,
whose Top-1 agreement falls from nearly 80% on MNIST
to the same level as the randomized explanations. The per-
formance of Top-3 agreement is analogous to that of Top-
1, where VB, GB, IG and DeepLift outperform, with over
60% of their Top-3 sensitivity features sharing at least one
agreement. DeepLift still maintains the best agreement with
more than 40% probability that at least two of its Top-3 fea-
tures overlap. As a conclusion, the complexity of CIFAR-10
is elevated compared to MNIST, resulting in a certain de-
crease in sensitivity consistency for all explainability meth-
ods, while DeepLift maintains the highest consistency.

Parameter SenC. Due to the complicated structure of
ResNet, for clarity, we only demonstrate the consistency
of parameter sensitivities of the first convolutional layer,
the last fully-connected layer, and all the intermediate hid-
den layers belonging to “layer1”. The parameter sensitivity
consistency of ResNet18 is demonstrated in (b) of Fig. 4.
In comparison to MNIST, all explainability methods suf-
fer from various degrees of reduction in consistency, most
notably GB and LRP, which both exhibit a decrease in av-
erage parameter consistency of 0.27, and LRP, whose con-
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Figure 4. Average parameter sensitivity consistency over all selected layers. From left to right are the MNIST,CIFAR-10 and GTSRB
datasets, respectively.

Figure 5. Evaluation of data sensitivity consistency. From top to bottom are the evaluation results on MNIST,CIFAR-10 and GTSRB
datasets, respectively. The x-axis in all plots represents different explainability methods, the y-axis represents Spearman’s correlation
coefficient ρ. Higher ρ denotes more consistent sensitivity.

sistency is already lowered to a comparable level to that of
the random explanation. The consistency of VB and Grad-
CAM degrades 0.17 and 0.13, respectively, to a relatively
insignificant degree, due to their unprominent performance
on MNIST. Despite declining 0.25 and 0.1, respectively, IG
and DeepLift remain in relatively high consistency, with the
average of DeepLift remaining at a high level above 0.1.
The layer-wise SenC analyses are presented in Fig. S7.
The conclusions are aligned with those in MNIST, where
convolutional layers are more consistent compared to fully-
connected layers, and the deeper the layer the more diffi-
cult their sensitivities are to be consistent. Additionally, IG
and DeepLift again outperform the parameter SenC, espe-
cially for the layers conv1 and layer1.0.conv1, which are
remarkably higher than all other explainability methods.

4.2.3 GTSRB

To test the reliability of explainability methods on real-
world datasets, we conduct experiments on the GTSRB
dataset [37]. GTSRB is a dataset consisting of photographs
of 43 different types of traffic signs, which includes 39209
and 12630 training and test data for learning and prediction,
respectively.

Data SenC. The data SenC of GTSRB is shown in (c)

of Fig. 5 and (c), (f) in Fig. S1. No significant fluctua-
tions are observed for all explainability methods compared
to CIFAR-10, except for a significantly decline in SenC for
VB. The trends in Top-1 and Top-3 agreement evaluations
are roughly equivalent, with all methods maintaining com-
parable levels except for VB, which rapidly collapses. In
summary, for data SenC on GTSRB, GB, IG and DeepLift
perform relatively better compared to other explainability
methods.

Parameter SenC. The average and layer-wise parame-
ter sensitivity consistency of GTSRB are exhibited in (c) of
Fig. 4 and Fig. S8, respectively. The results for the av-
erage parameter SenC for GTSRB are comparable to those
of CIFAR-10, except for a relatively noticeable gain in GB
while IG and DeepLift still remain superior. For the layer-
wise evaluation, again due to the computational intensity,
we choose only the first 2 convolutional layers and the last
2 fully connected layers of the network. The final conclu-
sion remains broadly uniform, that IG and DeepLift exhibit
relatively better consistency in the first two layers, whereas
the consistency of VB, LRP, and GradCAM fails to show an
advantage over randomized explanations.
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Figure 6. Quantitative evaluation and user study on ImageNet. (a)
SenC evaluation results and (b) User scores. The Top-1 and Top-3
agreements can be seen in Fig. S2

4.3. Complex model (dataset) and user study

For practical purposes, we perform an evaluation of data
SenC on the SOTA large model while conducting a light
scale user study. We chose VIT [6] as the classifier, train
it on ImageNet and achieves 80.7% accuracy in the testset.
We randomly select 10 out of 1000 categories from Ima-
geNet, first generate explanations with the selected explain-
ability methods (Vanilla LRP is discarded due to incompat-
ibility with VIT), and evaluate their data SenC. In parallel,
we send the generated explanations to the users and let them
score each explanation subjectively based on their experi-
ence and intuition. We invite 21 participants for the study
by showing them the original images and the explanations
generated by the explainability methods, and asking them to
rate each explanation. For those users who do not have ba-
sic knowledge in XAI, we briefly introduce the idea of ex-
plainability methods and their functionality. Explanations
are rated on a scale of 0 to 10, with 0 representing barely
able to provide any information, to 10 where users believe
they can fully understand the basis of model predictions.

We finally combine the evaluations of SenC with user
feedbacks in Fig. 6 to observe whether they are correlated.
The result demonstrates that while IG and GradCAM re-
ceive relatively high ratings from users, their SenC also
wins in quantitative evaluations. On the contrary, VB, GB
and DeepLift suffer from flawed SenC in this dataset, as
well as they receive lower user scores. The result indicates
that the SenC evaluation results are to some extent consis-
tent with the intuitive perceptions of humans.

5. Limitations
This work presents a novel perspective for evaluating ex-

plainability methods. However, we acknowledge that a few
deficiencies remain non-negligible, which fall broadly into
the following three points:

• OOD Perturbations. Hard perturbation that may dis-
rupt the distribution of data is one of the largest chal-
lenges for explainability studies. Though alternatives

have been proposed in recent studies such as [17], they
are not widely accepted and applied due to computa-
tional intensity and fidelity issues. In the assessment
of SenC, perturbing data or parameters with randomly
generated masks is considered as hard perturbation,
which is one of the factors that may threaten the re-
liability of the evaluations.

• Perturbation channels for FC layers. FC layers ex-
hibit much less consistency than convolutional layers
in the evaluation, partially due to the issue of segment-
ing the channels of FC layers. On the one hand, the
FC layers contain an enormous number of parameters,
which if perturbed discretely would require an incal-
culable amount of masks, rendering them almost im-
possible. On the other hand, unlike convolutional lay-
ers with well separated channels, neurons in FC lay-
ers are densely connected, and hard masking any part
may severely impair the remaining ones. Therefore,
a proper splitting and perturbation approach is desired
to balance the assessment accuracy and computational
intensity.

• Computation time costs. Similar to other
perturbation-based methods, SenC sacrifices effi-
ciency for the black-box property. When evaluating
structurally complex data or models, a relatively
large quantity of hyperpixels or channels is required,
which leads to an explosive demand for the number
of masks. Detailed analysis can be found in Sec.
S1.5. Reducing the amount of hyperpixels or channels
effectively mitigates this issue, however will result
in a compromise in evaluation precision, which is a
tradeoff that also needs to be addressed.

6. Conclusion
This work proposes a novel perspective to evaluate

explainability methods. By generating a large number of
masks to perturb inputs or parameters to identify which
components are sensitive to the perturbation and assess
whether they are consistent. We conduct experiments
with three different datasets and models, as well as a user
study on a more complex dataset. The result reveals that
the assessment of SenC is to some extent consistent with
human intuition. For future work, analyzing and refining
the factors that render sensitivities inconsistent is a promis-
ing direction for improving the fidelity of explainability
methods.
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