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Abstract

Development of optical technology has enabled imag-
ing of two-dimensional (2D) sound fields. This acousto-
optic sensing enables understanding of the interaction be-
tween sound and objects such as reflection and diffraction.
Moreover, it is expected to be used an advanced measure-
ment technology for sonars in self-driving vehicles and as-
sistive robots. However, the low sound-pressure sensitiv-
ity of the acousto-optic sensing results in high intensity
of noise on images. Therefore, denoising is an essential
task to visualize and analyze the sound fields. In addi-
tion to denoising, segmentation of sound and object silhou-
ette is also required to analyze interactions between them.
In this paper, we propose sound-field-images-with-object-
silhouette denoising and segmentation (SoundSil-DS) that
jointly perform denoising and segmentation for sound fields
and object silhouettes on a visualized image. We devel-
oped a new model based on the current state-of-the-art de-
noising network. We also created a dataset to train and
evaluate the proposed method through acoustic simulation.
The proposed method was evaluated using both simulated
and measured data. We confirmed that our method can
applied to experimentally measured data. These results
suggest that the proposed method may improve the post-
processing for sound fields, such as physical model-based
three-dimensional reconstruction since it can remove un-
wanted noise and separate sound fields and other object
silhouettes. Our code is available at https://github.
com/nttcslab/soundsil-ds.

1. Introduction

Sound is one of the most important cues to understand-
ing scenes as well as vision. For example, self-driving cars
and assistive robots are equipped with ultrasonic sonars and
microphones, which are used to gather information about
their surroundings. Recently, research has been conducted
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Figure 1. Conceptual diagram of proposed method. (a)
Experimental setup for optical sound measurement, which is
microphone-free sound measurement device. (b) Conceptual di-
agram. Sound field with interacting objects is captured as images
with high-speed camera. Visualized images are converted to de-
noised and segmentation images with a DNN.

on converting sound information into vision information
and vice versa. Lindell et al. have proposed an acous-
tic non-line-of-sight imaging method for resolving three-
dimensional object shapes hidden around corners through
acoustic echoes [18]. Davis et al. have proposed a method
with which sound waves are recovered through object vi-
brations captured using a high-speed camera [7]. Sheinin
et al. have proposed a method of sensing sound at high
speeds through object-surface vibrations [21]. These stud-
ies demonstrated the potential of capturing sound as images,
paving the way for further advancements in the field.

A sound-visualization technique involving directly cap-
turing and visualizing the density variations in air caused
by sound has been proposed [28]. Such acousto-optic sens-
ing can capture sound without any microphones by observ-
ing modulations of the phase of light passing through sound
fields. By using high-speed cameras as sensors, it becomes
possible to create visual representations of invisible sound
waves as images [15, 23]. However, a significant chal-
lenge remains: the phase modulation of light induced by
sound is extremely small, leading to a high level of noise
in the measured images. Ishikawa et al. [14] have pro-
posed deep sound-field denoiser (DSFD), the first denoiser
to use deep neural networks (DNNs) for noise reduction in
sound-field images, demonstrating that DNN-based meth-
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ods achieve superior denoising performance compared with
conventional filtering methods.

With the optical technology and signal processing
method, we can understand the nature of sound propaga-
tion. Therefore, the interaction between sound and objects,
such as reflections and diffractions, can be visualized us-
ing acousto-optic sensing. To analyze such interactions be-
tween sound and objects, both denoising and segmentation
of the sound field and object regions on visualized images
should be done simultaneously.

We propose a method for simultaneous denoising and
segmentation of sound-field images including object silhou-
ettes. A conceptual diagram is presented in Fig. 1. With this
method, optically measured sound-field images with object
silhouettes are denoised and segmented using a DNN. The
sound field on the laser path is captured with a high-speed
camera. The area where the object blocks the laser light can
be visualized as noisy silhouettes in the visualized images.
The visualized images are converted to denoised and seg-
mentation images with the DNN. The DNN is constructed
based on the state-of-the-art (SOTA) denoising network,
which also has the potential for per-pixel feature segmen-
tation. We created a dataset with acoustic simulation since
there is no dataset that includes acoustic scattering by ob-
jects. Denoising and segmentation are expected to (1) en-
able analysis of the propagation, reflection, and diffraction
of sound waves in space and (2) be used as an advanced
measurement technology for sonars in self-driving vehicles
and assistive robots. The contributions of our work are sum-
marized as follows:

• We propose a method for simultaneous denoising and
segmentation of sound-field images with silhouettes.

• We created a dataset considering acoustic scattering
caused by various shapes of objects.

• We confirmed that the proposed method performed ef-
fectively on denoising and segmentation tasks.

2. Related Work
2.1. Acousto-optic Sensing

Acousto-optic sensing detects sounds by illuminating the
sound fields with laser light from a distance, by using the
changes in the refractive index of air due to density vari-
ations caused by sound. Since the method can capture
sound without microphones, it can be useful to measure
sound where microphone cannot be used such as narrow
spaces and inside airflow. This technique has been applied
to various situations such as visualizing sound field gener-
ated from loudspeakers [11,15,20], measuring flow-induced
sounds [22, 25], and microphone calibrations [12, 16]. Us-
ing a high-speed camera to capture sound-field images
provides an intuitive understanding of acoustic phenom-
ena [12, 15, 25].

While they can non-intrusively capture 2D sound fields,
the measured data often contain a significant amount of
noise due to the small modulation of the light phase. An
example of the measured data of visualized images is illus-
trated in Fig. 1. The sound wave propagates from right to
left within the images, with reflections and diffractions oc-
curring at the reflector. The data contain a significant noise;
therefore, the diffracted waves are almost invisible.

2.2. Sound-field-image Denoising

Sound-field images captured by a high-speed camera are
three-dimensional data in two dimensions of space and one
dimension of time. Sound-field-image denoising has been
done for both space and time dimensions.

Classical Filters For more than a decade, classical filters
have been used to reduce noise in sound fields [6, 24, 30].
The most straightforward method involves time-domain fil-
tering [30]. The time-directional signals in each pixel can be
considered similar to microphone signals where 2D sound
fields are captured by high-speed camera. Hence, by apply-
ing time-domain filtering on a per-pixel basis, it becomes
feasible to extract images corresponding to specific frequen-
cies. Although the time-domain filters can remove noise
with frequencies other than that of sound, noise compo-
nents that fluctuate at the same frequency as the sound can-
not be removed. In contrast, by using spatio-temporal fil-
ters [6, 24], we can extract components that satisfy the fre-
quency of sound in both the time and spatial domains.

Deep Sound-Field Denoiser (DSFD) [14] The DNN-
based sound-field denoising method DSFD has been pro-
posed. It is the first attempt at sound-field denoising using a
DNN. The network of DSFD is based on nonlinear activa-
tion free network (NAFNet) [3], which is a network for nat-
ural image denoising. The input data consists of frequency-
domain data obtained by applying Fourier transform (FT)
in the time direction to each pixel of a sound-field video.
The real and imaginary parts of the complex amplitudes at a
specific frequency are treated as two separate images, which
are then stacked along the channel direction, resulting in in-
put data X ∈ RN×C×W×H , where N is the number of im-
ages, C = 2 is the number of channels, and W and H are
the number of pixels in width and height. The training data
has been generated from 2D sound-field simulations in the
frequency domain. Supervised learning is carried out us-
ing the simulated noisy images as inputs. By using DNNs,
denoising can be achieved with higher accuracy compared
with traditional classical filtering methods.

2.3. Image Denoising and Segmentation

As demonstrated with DSFD, 2D sound-field data can be
regarded as images, allowing the application of DNNs com-
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Figure 2. Overview of our approach. (a) Training process. Two channels of noisy sound images are input into network. Output images
have three channels: first two channels are for denoising and last one channel is for segmentation. Loss of denoised and segmented images
is calculated separately for each ground truth image. (b) Inference process. Experimentally measured time sequential images are converted
to frequency domain by Fourier transform (FT). Each frequency complex amplitude is turned into real and imaginary images and input
into trained model. Denoised images of all frequency bins are converted to time-sequential images by inverse FT. Segmentation image at
sound frequency is extracted as final segmentation label.

monly used for RGB/grayscale images. Numerous natural-
image denoising models have been proposed, including
convolutional neural network (CNN)-based [3,9,10,32,33]
and transformer-based models [29, 31]. Denoising models
have been proposed that use lightweight CNNs instead of
transformers. In fact, the top three SOTA denoising mod-
els on the Smartphone Image Denoising Dataset (SIDD) [1]
have used CNNs [3, 9, 33]. These CNN-based models are
designed to retain global information, achieving impressive
accuracy. For instance, Cascaded Gaze Net (CGNet) [9],
which outperforms the NAFNet [3], has achieved a peak
signal-to-noise ratio (PSNR) of 40.39 dB on the SIDD.
Therefore, we believed it better to use this SOTA network
as a base network other than NAFNet in our study.

The task of joint denoising and segmentation, which is
the objective of this study, is explored in the field of mi-
croscopy imaging. DenoiSeg [2], for instance, is a method
that performs both denoising and segmentation on biologi-
cal images. DenoiSeg achieves this multitasking by adding
channels corresponding to the segmentation classes to the
decoder of a denoising network in Noise2Void [17]. Losses
are then calculated for each task, enabling the model to pro-

duce both denoised and segmentation images. The largest
difference of the proposed method is using self-supervised
learning due to the difficulty in obtaining clear images.
Sound-field images can be generated from acoustic simu-
lations, making supervised learning a rational approach.

3. Proposed Methods
To simultaneously carry out denoising and segmentation,

we use the SOTA denoising network, CGNet [9], as a base
network. We increase the number of output channels in
the final layer of CGNet to three channels. The first two
channels are for denoising sound images, that same as with
DSFD. The last channel is for the segmentation of object
silhouettes. By increasing the number of channels in the fi-
nal layer, the proposed method can accomplish both tasks,
resulting in lower computational costs compared with train-
ing denoising and segmentation sequentially.

3.1. Proposed Archtecture

Overviews of training and inference processes are shown
in Fig. 2(a) and Fig. 2(b), respectively. The same as with

4949



DSFD, denoising is carried out in the frequency domain.
To achieve this, frequency-domain data, obtained by apply-
ing a 1D FT in the time direction to time-domain sound-
field videos are used. In the training process ( Fig. 2(a)),
simulated sound-field images with added noise are input to
CGNet. The input channels consist of real and imaginary
parts of the frequency-domain data obtained from 1D FT.
The number of channels of the last layer of the network is
set to three channels: first two channels are for denoising
X̂denoise ∈ RN×2×W×H and last channel is for segmenta-
tion X̂seg ∈ RN×1×W×H . The range of the segmentation
data is converted to X̂ ′

seg ∈ [0, 1] using a sigmoid function.
Segmentation labels are the binary labels obtained by the
thresholding of X̂ ′

seg. The binary labels are 0 for sound and
1 for silhouette class. The loss function is the weighted sum
of Ldenoise and Lseg as

L = Ldenoise + λLseg, (1)

where λ is the weighting coefficient that balances the two
losses. For denoising, the negative PSNR loss function is
used as well as that of CGNet. For segmentation, a com-
bination of binary cross entropy loss and dice loss is used
to reduce the bias in the number of pixels in the sound and
silhouette classes:

Lseg = (1− α)LBCE + αLDice, (2)

where α is the weighting coefficient. These loss functions
are determined based on the result of the preliminary exper-
iment (See details in the supplementary material).

The inference process is shown in Fig. 2(b). To carry out
inference in the frequency domain, noisy time-sequential
images xraw ∈ RW×H×T are converted to noisy complex
amplitude Xraw ∈ CW×H×F with 1D FT along the tempo-
ral axis, where T and F are the number of data samples
in temporal and frequency axes, respectively. Denoising
and segmentation are carried out for each frequency bin of
Xraw. The image in which the real and imaginary parts
of the i-th frequency bin Xraw,i are arranged in the chan-
nel direction is input to the network in the same manner
as in the training process. After carrying out inference for
all frequency bins, denoised images are converted to time-
sequential data with inverse FT. The segmentation image at
the sound frequency is the final segmentation label since the
image at this sound frequency exhibits the highest contrast
between the sound field and silhouettes and is considered to
be easier to separate those two classes.

3.2. Dataset Creation

Since no dataset exists for training the network, we cre-
ated a dataset of sound fields including objects. We used
acoustic numerical simulation to create a training dataset
because it is difficult to collect sound-field data under vari-
ous conditions through experiments.

Simulation Conditions To simulate sound fields includ-
ing objects, we conducted a simulation of the sound fields
in the time domain with MATLAB [13] using the k-Wave
toolbox [27]. The simulation setup is shown in Fig. 3(a).
Following DSFD, to obtain the image size of 128 × 128
pixels, the observation area was set to 1.28 m × 1.28 m,
and observation points were set in a grid pattern at intervals
of 0.01 m. Sound sources were randomly placed outside
the observation area, within a range of 2.56 m × 2.56 m.
Objects were set inside the observation area. The shapes of
objects included ellipses, lines, and polygons, and the pa-
rameters positions were randomly selected. The medium
other than the object was air, and the object was made of
expanded polystyrene (EPS) to enable stable calculations.
Thus, the reflectivity of the object was 93.2%.

The simulation conditions are listed in Tab. 1. The fre-
quency range of sound fs was set to 90 ≤ fs ≤ 2800 Hz,
which corresponds to the wavenumber k being 1.66 ≤ k ≤
51.7 rad/m. The sound frequency for each condition was
fixed, which means each sound source had the same fre-
quency and was randomly selected from a uniform distri-
bution. The amplitude of the first sound source was set
to 1 Pa, and those of the other sound sources were ran-
domly selected from a uniform distribution between 0.1 to
1 Pa. Calculated time-sequential data were converted to the
frequency domain with FT and the data at the sound fre-
quency were extracted. The total amount of images was
55, 000, with 11, 000 images for each number of sound
sources. Sample simulated data are shown in the second
row of Fig. 3(b). Reflections and diffractions were simu-
lated to occur around the silhouettes highlighted in white in
the first row of Fig. 3(b).

Noisy-Data Creation Since the noise characteristics be-
tween sound-field regions and object-silhouette regions can
be different, we added different types of noise. For the
sound-field regions, we added white noise with different
SNRs. The SNRs were randomly selected from a uniform
distribution between −20 to 20 dB. For the silhouette re-
gions, we created noise on the basis of experimentally ob-
tained data. The details of the noisy data creation for sil-
houette regions are in the supplementary material. We es-
timated the probability density function (PDF) from empir-
ical data using kernel density estimation [5]. On the basis
of the estimated PDF, we generated noise for silhouette re-
gions by using the inverse transform sampling method [26].
The SNRs of the noise for silhouette regions were also se-
lected from a uniform distribution between −20 to 20 dB.
However, since clean-image values in silhouette regions are
zero, SNRs were set for signals in the sound-field regions.

Created noisy data are shown in the last row of Fig. 3(b).
Because the SNRs of the silhouette and sound-field regions
were set independently, the intensities of the noise differed.
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row shows GT images. Left ten columns are for denoising and right ten columns are for segmentation. Input images on right ten columns
are same as those in left ten columns. Color indicates real part of complex amplitude.

4. Experiment

4.1. Implementation Details

The network was implemented by PyTorch on the basis
of the official implementation of CGNet [8, 9]. The CGNet
consists of an input layer, four encoder blocks, one middle
block, four decoder blocks, and an output layer. The num-
bers of encoder blocks were set to 2, 2, 4, and 6, respec-
tively, in order of increasing depth. The number of middle
blocks was 10. The number of decoder blocks were set to
2, 2, 2, and 2, respectively, in order of decreasing depth.

The input image size was set to 128×128 pixels, and the
number of channel was two. The weighting coefficient λ of
the loss function in Eq. (1) was set to λ = 10 on the basis
of experiments conducted with a small amount of data. The
α of the loss function in Eq. (2) was set to α = 0.5. The
AdamW optimizer was used where the learning rate was

0.001, weight decay was 0.0, and β1 and β2 were 0.9 and
0.9, respectively. The cosine annealing scheduler was used
where the maximum number of iterations was 400, 000, and
the minimum learning rate was 1e-7. The batch size was 16,
and the number of epochs was 20. The training time was ap-
proximately 3.5 hours with a single NVIDIA GeForce RTX
4090 GPU. The number of training, validation, and evalua-
tion images were 50000, 2500, and 2500, respectively.

The PSNR and structural similarity (SSIM) were used
for denoising, and intersection over union (IoU) was used
for segmentation as the evaluation metrics. The IoUs were
calculated for class 1, i.e., the silhouette regions.

4.2. Compared Models

In our proposed method, we used CGNet as the base
network. To validate the use of CGNet, we also evaluated
the performance when using existing networks as the base
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Parameter Values

Spatial grid size [m] 0.01

Temporal discretization step [s] 1.21× 10−5

Speed of sound in air [m/s] 340

Speed of sound in EPS [m/s] [4] 414

Density of air [kg/m3] 1.21

Density of EPS [kg/m3] [4] 28.0

Number of sound sources S S ∈ {1, 2, 3, 4, 5}
Frequency of sound fs [Hz] 90 ≤ fs ≤ 2800

Amplitude of sound source ps [Pa] 0.10 ≤ ps ≤ 1.0

Table 1. Simulation conditions.

Base Network PSNR [dB] SSIM IoU

DnCNN [32] 16.6 0.603 0.284
LRDUNet [10] 39.6 0.976 0.970

NAFNet [3] 40.8 0.983 0.977
KBNet [33] 42.0 0.986 0.976

CGNet [9] (Ours) 43.2 0.987 0.986

Table 2. Quantitative results. Ours performed best.

network. Compared networks were selected from denois-
ing networks since denoising is more complicated task than
segmentation, which is a two class classification in our task.

The following four conventional denoising networks
were used: denoising convolutional neural network
(DnCNN) [32], lightweight residual dense neural net-
work based on the U-net neural network (LRDUNet) [10],
NAFNet [3], and kernel basis network (KBNet) [33]. Since
all those four networks were for denoising, we changed the
number of output channels of the last layer to be the same as
that of the proposed method. Under the training of DnCNN,
LRDUNet, NAFNet, and KBNet, the λ of the loss function
in Eq. (1) were set to 0.001, 0.01, 0.005, and 0.01, respec-
tively. The batch sizes for DnCNN, LRDUNet, NAFNet,
and KBNet were set to 32, 32, 32, and 16, respectively. The
number of epochs for all models was 20. The implementa-
tion details are in the supplementary material.

4.3. Results

The results are shown in Tab. 2 and Fig. 4. The table
shows that our method, which used CGNet as a base net-
work, recorded the highest scores in terms of PSNR, SSIM,
and IoU. As shown in Fig. 4, both sound-field and silhouette
regions were denoised except for DnCNN. In the segmenta-
tion results, small objects that could not be detected by KB-
Net are successfully detected by ours. From these results,

(a)  (b)  

[33]

[32]

[10]

[3]

Figure 5. Analyses of results. (a) PSNRs of denoised images rel-
ative to SNRs of sound field in input images. PSNRs improved
as input SNR increased except for DnCNN. (b) IoUs of segmenta-
tion images relative to percentage of object silhouettes’ area. IoUs
tended to decrease where areas were small.

we confirmed that using CGNet as a base network was valid
for sound-field-image joint denoising and segmentation.

To analyze denoising ability, we investigated the effect
of the input SNRs of sound-field regions on the PSNRs, as
plotted in Fig. 5(a). The horizontal axis means the input
SNRs for sound-field regions, and the vertical axis means
the output PSNRs. Except for DnCNN (blue dots), the
output PSNRs positively correlated with the input SNRs
for sound-field regions. Although the output PSNRs per-
formed similarly where the input SNRs were low, except
for DnCNN, ours (purple dots) showed improved output
PSNRs at high input SNRs around 10 to 20 dB.

To analyze segmentation ability, we investigated the ef-
fect of the percentages of silhouette areas on the IoUs as
plotted in Fig. 5(b). The percentages of silhouette areas
were calculated as the number of pixels in the object area
divided by the total number of pixels in the image. Except
for DnCNN (blue dots), the number of data points with low
IoUs tended to increase as the size of the object area de-
creased. Ours (purple dots) showed that there are many data
points near 1.0 IoU even where the percentages of silhouette
areas were small around 0 to 10%.

5. Evaluation for Experimental Data
To confirm the applicability to the experimentally mea-

sured data, we applied our method to the following two
types of experimental data: (1) A sound field diffracted with
a thin plate, and (2) a sound field generated with a wooden
finger castanets, a percussive musical instrument. All the
data were captured by parallel phase-shifting interferome-
try (PPSI) [15], which is often used for sound-field imaging
due to its high sensitivity and spatial resolution. PPSI can
capture sound-field images within 100 mm in diameter by
using a high-speed polarization camera [19].

5.1. Sound Field with Reflection and Diffraction

Experimental Setup We recorded a sound field with re-
flection and diffraction where a reflector was set in front of
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Figure 6. Experimental results of sound field with reflection and diffraction. (a) Experimental setup. Reflector was installed 15 cm from
loudspeaker. (b) Frequency spectrum of input data. (c) Experimental results of denoising and segmentation. Top row shows input images
in time domain and other rows show denoised and segmentation results. Color indicates phase of light detected with PPSI.

t=0.00 ms t=0.05 ms t=0.10 ms t=0.15 ms t=0.20 ms t=0.25 ms t=0.30 ms t=0.35 ms t=0.40 ms t=0.45 ms Segmentation
(c)(a)

Measurement area

Laser beam

Castanets

(b)

0

-10

-20

-30

-40

-50

-60

-70

R
el

at
iv

e 
so

un
d 

pr
es

su
re

 le
ve

l [
dB

]

Frequency [kHz]
0 2 4 6 8 10

Input

DnCNN [32]

LRDUNet [10]

NAFNet [3]

KBNet [33]

Ours

Figure 7. Experimental results of castanets sound. (a) Experimental setup. Castanets was located at bottom-left of imaging area. (b)
Frequency spectrum of input data. (c) Experimental results of denoising and segmentation. Top row shows input images in time domain
and other rows show denoised and segmentation results. Color indicates phase of light detected with PPSI.

a loudspeaker. The schematic diagram of the setup is shown
in Fig. 6(a). The loudspeaker (NS-BP200, YAMAHA) was
set outside the measurement area. The reflector was set
inside the measurement area and 150 mm from the loud-
speaker. The dimensions of the reflector were 150 mm in
height, 10 mm in width, and 200 mm in depth. A 20-kHz
sinusoidal wave was emitted from the loudspeaker. The
frame rate of the camera was set to 50000 frames per sec-
ond. A frequency spectrum of captured data was shown
in Fig. 6(b). The spectrum was calculated from a time se-
ries signal at the index of [20, 100], where [·, ·] represents

the pixel coordinates in terms of height and width, respec-
tively. Since the sound emitted from the loudspeaker was a
20-kHz sinusoidal wave, the spectrum exhibited a distinct
peak at 20 kHz.

Results The results are shown in Fig. 6(c). The top row
is the input data from t = 0.00 to t = 0.18 ms with inter-
val of 0.02 ms. The sound wave propagated from right to
left of the imaging area. The reflection and diffraction oc-
curred around the reflector. Since the color range was kept
consistent across all conditions to ensure fair visualization,
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the denoised results of DnCNN were saturated; therefore,
it performed the worst. Although the denoised results of
LRDUNet seemed to clearly visualize the sound wave, the
amplitudes of the diffracted waves seemed larger than in the
input data. Ours showed that noise was effectively removed
while maintaining amplitudes of sound waves close to the
input data. Ours also excelled in denoising silhouette re-
gions compared with the others. The time-series denoised
video is provided as supplementary material. In terms of
segmentation, although there were undetected pixels, ours
could estimate the least number of undetected pixels.

5.2. Sound Field with Sound Source Object

Experimental Setup We also conducted denoising and
segmentation for the sound field including the sound source
object. We used wooden finger castanets, a percussive mu-
sical instrument as a sound source. The schematic diagram
of the experimental setup is shown in Fig. 7(a). The cas-
tanets was installed, the edge of which was included in the
measurement area. The castanets was played by human
hand, and the sound was recorded with a PPSI system at
20,000 frames per second. A frequency spectrum of cap-
tured data was shown in Fig. 7(b). The spectrum was calcu-
lated from a time series signal at the index of [90, 40]. The
spectrum exhibited a broad frequency distribution, indicat-
ing that the signal contained multiple frequencies.

Results The results are shown in Fig. 7(c). The top row
is the input data from t = 0.00 to t = 0.45 ms with inter-
vals of 0.05 ms. The sound-wave propagation from cas-
tanets, located at bottom-left corner, can be seen. Since
the color range was consistent across all conditions, the de-
noised results of DnCNN were saturated. All networks ex-
cept DnCNN could denoise the fine noise, and the sound
wave was smoothed. By KBNet, the wavefront’s shape was
more rounded, which was observed especially at t = 0.10
and 0.30 ms, whereas ours kept the shape of the wavefront.
The time-series denoised video is provided as supplemen-
tary material. Although segmentation did not work well
in all models, ours could capture the edge of the castanets.
Post-processing, such as dilation, would fill the holes.

6. Comparison of Single-tasking and Multi-
tasking

We evaluated how carrying out denoising and segmenta-
tion at the same time would change the accuracy compared
with carrying out each as a single task. To do so, denoising
and segmentation were conducted separately on the basis
of CGNet. The results are shown in Tab. 3. The perfor-
mance of denoising and segmentation by multitasking was
slightly better than those of single-tasking. We also con-
firmed that multitasking can be implemented with minimal

Task PSNR SSIM IoU Inference Model
[dB] time [ms] size [MB]

Denoising 43.1 0.986 - 21.99 1243.87
Segmentation - - 0.984 21.82 1243.74

Ours 43.2 0.987 0.986 22.10 1244.01

Table 3. Comparison of single-tasking and multitasking. Mul-
titasking showed slightly better performance than single-tasking
without a significant increase in inference time and model size.

(a) (b)

Figure 8. Comparison of single-tasking and multitasking results.
(a) PSNRs of denoised images relative to input SNRs of sound re-
gion. Blue and orange dots show results of single-tasking and mul-
titasking, respectively. No significant difference in denoising per-
formance between single-tasking and multitasking were observed.
(b) IoUs of segmentation images relative to percentage of object
silhouettes’ area. Multitasking IoUs (Ours) were higher where sil-
houette regions were small.

impact on inference time of single image and total model
size for single-image input.

For further investigation, PSNRs relative to input SNRs
and IoUs relative to the percentage of object silhouettes’
region are shown in Fig. 8. From Fig. 8(a), there was
no significant difference in denoising performance between
single-tasking and multitasking. On the other hand, accord-
ing to Fig. 8(b), multitasking IoUs (blue dots) tended to be
higher than single-tasking IoUs (orange dots) where object
silhouettes’ areas were less than 10 %.

7. Conclusions
We proposed a denoising and segmentation method for

2D sound-field images with object silhouettes. To handle
the sound fields with acoustic scattering by objects, we cre-
ated a dataset through acoustic simulation. Multitasking
was realized by using the output of the final layer of CGNet
as channels for denoising and segmentation and calculat-
ing the loss function for each task. We confirmed that the
proposed method can be applied to both simulated and ex-
perimental data. We believe that this method can be used
for analyzing sound fields with interacting objects and for
sonars in self-driving vehicles and assistive robots. Future
work includes improving segmentation performance for ex-
perimental data, evaluating with recent segmentation archi-
tectures, and enabling moving-object segmentation.
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