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Abstract

The analysis of individual cells is increasingly auto-
mated through deep learning techniques. This is par-
ticularly relevant for high-resolution whole slide images
(WSIs), which can contain thousands of cells, making man-
ual evaluation impractical. This increase in automation,
however, requires higher levels of standardisation (with re-
spect to the scanning hardware, settings and staining) and
is further aggravated by the dynamics of the underlying cel-
lular processes, rendering unique cell classifications diffi-
cult. To address these difficulties we investigated the entire
processing pipeline (from imaging over annotation to model
training) and study its underlying trade-offs. In particular,
we created a new dataset comprising of more than 6, 300 la-
belled and 500, 000 unlabelled cells scanned using two dif-
ferent scan settings, resulting in fully registered image pairs
with varying level of detail and quality. Using these alter-
native dataset versions we analysed the impact of inter- and
intra-variability between three different annotators and ad-
dressed the challenge of limited labelled data by comparing
the impact of different self-supervised pretraining strate-
gies. Overall, our analyses provide new insights into the de-
pendencies between imaging, annotation, self-supervision
and deep learning-based classification, especially in the
context of continuously developing cells and demonstrate
the beneficial impact of these considerations on the over-
all classification accuracy. Code is available at https:
//zivgitlab.uni-muenster.de/cvmls/icdc
and the data will be shared upon qualified request due to
data privacy laws.
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1. Introduction

In recent years, the application of deep learning-based
methods for the analysis of high-resolution histological
whole slide images (WSIs) has significantly increased.
These analyses extend down to the cellular level, where in-
dividual cells are extracted and classified [22, 23, 36, 37].
However, a key challenge in classification is that WSIs pro-
vide only a snapshot in time, capturing cells within a highly
dynamic developmental system. As a result, cells may be
in transitional states between developmental stages, making
it challenging to classify them into distinct categories, even
for experienced histologists. This has a variety of conse-
quences and implications for the involved imaging, annota-
tion and analysis tasks as shown in Figure 1. For example,
ambiguous labels might be the result of the aleatoric uncer-
tainty intrinsically present in continuously developing cells
aggravating the performance of supervised machine learn-
ing methods due to errors in the ground truth labels. We
chose to use histological whole slide scan imagery depict-
ing human testis tissue for this study, because these tissue
sections provide a cross-sectional view of the seminiferous
tubules, where the spermatogenesis takes place. Spermato-
genesis entails a dynamic interplay of mitotic and meiotic
processes, intricately intertwined with a complex pattern of
germ cell differentiation, hence providing dynamic and of-
ten ambiguous cell stages within one tissue and in close spa-
tial proximity [33] and therefore making the task of classi-
fying cells during spermatogenisis a suitable basis for our
analysis. Figure 2a visually represents this complexity, il-
lustrating the progression from the periphery to the centre
of the tubules. We identify eight distinct cell types involved
in spermatogenesis: peritubular myotic cell (PMC), Sertoli
cell (SC), spermatogonium A dark (Spg Ad), spermato-
gonium (Spg), premeiotic spermatocyte (Pl-Z), pachytene
spermatocyte (P), round spermatid (rsptd), and elongated
spermatid (esptd) (see Figure 2b). Notably, PMC and SC
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Figure 1. Motivation and Overview. Involved steps (top row), illustration (mid row) and technical challenges (bottom row) are indicated.
Our analysis addresses the mentioned challenges and discusses the mutual impact of the steps on the overall reliability for cell classification.

are somatic cells and thus differ from the germ cells that
undergo development in stages.

Figure 1 visualises all of our analyses and the insights
gained at each step. First, we analysed the continuous and
dynamic biological process of cell differentiation and man-
ual cell stage classification by collaborating with experi-
enced biologists. During this analysis, we identified three
properties that biologists found beneficial for manual clas-
sification, namely the relative position of the cell within the
tubule, the tubule’s shape, and the background information.
These properties were integrated and evaluated as additional
information for the neural network. Next, we addressed the
challenge of varying data quality in whole slide imaging.
Different laboratories use various whole slide scanners and
scan settings, which significantly impact the image quality.
We investigated the impact of the data quality on the per-
formance of neural networks by scanning biopsy samples
with two different scan settings, namely the standard set-
tings (typically used in medical practice) and an alternative
setting specifically optimised for higher resolution and bet-
ter focused images. This approach resulted in two datasets
capturing the same areas of interest under different scan
conditions. For optimal comparability, both datasets were
registered to each other. Additionally, in many laboratories,
tissue sections are stained manually, which introduces the
risk of colour variability due to manual biases. Figure 2c
presents a qualitative comparison of the used scan settings
and different staining intensities. In the third analysis step,
we examined the annotation process. Three human annota-
tors with greatly varying experience levels labelled the same
cells in images of different qualities. We analysed inter- and
intra-variability and the influence of scan settings on anno-
tation. In a final step we visualised three self-supervised
learning (SSL) techniques and analysed their impact as pre-
training methods for our task. In an extensive evaluation, we
pretrained six commonly used backbones of varying types,
namely ResNet [16] and Vision Transformers (ViT) [10],
and sizes using three self-supervised pretraining methods -
one of which could only be applied to ViTs - across two scan

settings, yielding a total of 30 pretrained models. These
models, along with a baseline that was either trained from
scratch (ResNets and Vision Transformers) or pretrained
on ImageNet (ResNets), were subjected to 5-fold cross-
validation across various training parameter configurations,
resulting in 660 models trained in 132 different configura-
tions.

(a) (b)

(c)

Figure 2. (a) Schematic of spermatogenesis, depicting the stages
of male gamete production: differentiation of spermatogonia into
spermatocytes, meiotic division yielding four spermatids, and mat-
uration of spermatids into spermatozoa. (b) Examples of the eight
nucleus classes utilised in this work. (c) Comparison between
the two utilised scan profiles (Single Z-Plane (SZP) and Extended
Focus Imaging (EFI)) and demonstration of staining differences
caused by manual biases.

2. Related Work
With the advent of deep learning algorithms, numerous

studies have integrated these techniques into the automatic
classification of cells in histological slides [34, 38]. It is
often necessary to first detect and extract cells from the im-
ages. One approach is to use end-to-end models for simul-
taneous cell detection and classification [35]. Alternatively,
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deep learning models can be integrated processing pipelines
for cell image extraction which often also use classical (in-
termediate) image processing and analysis routines [22,23].
With Cellpose [29, 36] a foundation model for cell-type ag-
nostic segmentation was published, that enables retraining
on specific datasets and therefore serves as a versatile model
for both, end-to-end and pipeline-based approaches. How-
ever, research on the classification of continuously develop-
ing cells in WSIs remains limited.

In parallel to the developments in deep learning, whole
slide scan imagery has become increasingly popular for
the digitisation in pathology [30]. Being a cost-effective
technology for automatised high-throughput data genera-
tion these images are frequently used as the input for au-
tomatic image analysis algorithms [8, 19]. However, histo-
logical slides can be very heterogeneous. For example, dif-
ferent staining protocols or section slicing thicknesses can
lead to severe differences in WSIs. Moreover, varying digi-
tisation processes can introduce artifacts such as colour and
contrast variations or out-of-focus regions. These artifacts
can lead to ambiguous annotations, diagnostic errors and
adversely affect the performance of automated analysis al-
gorithms [24,26]. As a consequence, large amounts of con-
sistently annotated data, especially for rare pathologies, are
still scarce, which further aggravates the utilisation of deep
learning models for WSI analyses.

To overcome this limitation self-supervised learning
techniques appear to be a promising candidate. While self-
supervised learning had its first breakthrough in the context
of language models [3, 9], similar techniques were success-
fully adapted to images. Contrastive methods like SimCLR
[6] or DINO [5] emerged, that rely on comparing heavily
augmented image views during training to learn suitable
representations. Reconstructive approaches on the other
hand are tasked to restore an image from an augmented ver-
sion. For example, Masked Autoencoders (MAE) [14] aim
to reconstruct an image that has been masked with a high
masking ratio, while AIM [11] tries to predict the correct
order of randomly shuffled patches of an image. The ap-
plicability of these techniques has also been studied in the
context of medical data and histopathology [1,18,20]. How-
ever, literature on self-supervision for cell classification is
still underrepresented.

3. Method

3.1. Dataset Acquisition

All testis biopsies were bouin-fixed, paraffin embedded,
stained with Periodic Acid-Schiff (PAS) [2] and scanned by
using an Olympus VS120 slide scanner in two different scan
settings, namely the standard and an optimised setting. In
the standard setting, from now on referred to as 20×20×20× SZP, a
single z-plane was scanned at 20× magnification. This set-

ting is commonly used in everyday medical practice to save
time and storage space. In the optimised setting, multiple
z-planes were scanned at an increased 40× magnification
while utilising the Extended Focus Imaging (EFI) function.
The EFI function captures images of samples that extend
beyond the depth of focus of the objective and combines
them into a single, fully focused image. This optimised
setting is hereafter referred to as 40×40×40× EFI. Note that the
40× EFI setting not only increases resolution but also en-
hances overall image quality by providing improved focus
compared to 20× SZP (see Figure 2c).

We used 68 WSIs from 21 different patients to create our
datasets. Ethical approval was obtained (Ethics Committee
of the Medical Faculty of Münster and State Medical Board
no. 2008-090-f-S), and all participants provided written in-
formed consent. The scans had an average size of 10, 421×
10, 229 pixels (range, 4, 997− 20, 851× 4, 291− 18, 887)
using 20× SZP setting and 23, 126× 23, 422 pixels (range,
11, 039−45, 483×8, 666−48, 618) using 40× EFI setting.
Each pixel had a physical size of 0.34 × 0.34µm2 for 20×
SZP and 0.17 × 0.17µm2 for 40× EFI. Storage require-
ments for the scans in PNG format were approximately 9.4
GB (20× SZP) or 39.6 GB (40× EFI).

Data Preprocessing for Scan Quality Analysis Initially,
we converted the original VSI scan files into PNG files us-
ing Bio-Formats [25]. Subsequently, we segmented all nu-
clei contained within the tubules using the cyto model from
the Cellpose model zoo [29, 36] that was fine-tuned using
25, 935 segmented nuclei from out specific data domain.
The WSIs were initially annotated by an annotator with
three years of experience in testicular histology (referred to
as Annotator 1) using the 40× EFI scan settings, according
to the previously mentioned eight cell classes. To assess the
impact of different scan settings and resulting image quality,
such as focus, on performance, these annotations were au-
tomatically mapped to the 20× SZP WSIs. Due to manual
selection of scanned regions, direct transfer of annotations
was not feasible. Instead, we calculated homography ma-
trices to facilitate the mapping between corresponding im-
age pairs. To achieve this, we employed ORB features [32]
to detect and compute keypoints and descriptors. Matches
were calculated using the Hamming distance based on these
descriptors. Subsequently, we used the matched keypoints
to compute the homography matrix using RANSAC [12]
with a threshold of 5.0. Afterwards, we cropped images to
sizes of 40× 40 pixels or 80× 80 pixels, corresponding to
the scan settings for each annotated nucleus. Additionally,
for each cell, we extracted a segmented version, in which
only the nucleus of interest is visible and everything else,
including other cells, is masked. In our experimental Sec-
tion 4, we refer to this difference as trained with or without
background.
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PMC Spg Ad Spg Pl-Z P rsptd esptd SC all
train/val 355 231 459 826 1,097 665 951 616 5,200

test 103 48 121 132 224 184 197 142 1,151
unlabeled - - - - - - - - 503,189

Table 1. Overview of our datasets.

Resulting Datasets In total, we created three distinct
datasets for this study. The first train/validation dataset
comprises 5, 200 single cell images and was used for all
cross-validation experiments. The second dataset was used
for testing and contains 1, 151 cells from a separate WSI.
The third dataset consists of 503, 189 cells extracted using
the fine-tuned Cellpose model. This third dataset is separate
from the train/validation and test datasets and was used to
study the impact of self-supervised pretraining. A detailed
overview of our datasets is given in Table 1.

3.2. Integrating Additional Bio-Inspired Variables

In an initial qualitative assessment of the underlying cell
differentiation process we collaborated with domain experts
and investigated their strategies when analysing cells from
testicular sections. These analyses revealed three important
features used for manual cell stage classification, namely
the relative position of the cell within the tubule, the tubule’s
overall shape, and the cell background information. To in-
corporate the cell’s localisation, we calculated the minimum
distance from a nucleus to the corresponding tubule outer
wall as an additional input feature for the neural network
(see Figure 3). Note that this distance has a direct physio-
logical interpretation since cell differentiation of spermato-
genesis is organised from the tubule’s outer wall to the cen-
tre (lumen; see Figure 2). Given that annotated tubules in
our dataset vary in shape and size, we normalised the dis-
tance value using minimal bounding box width

2∗compactness as a factor. The min-
imal bounding box width refers to the width of the small-
est bounding box that can enclose the tubule. The term
compactness = 4π Area

Perimeter2 [31], which serves as a
measure of the roundness of the tubule, provides insights
into the incision type. The impact of background infor-
mation is evaluated by training networks with and without
masking the cell neighbourhood using cell segmentations.

Metrics Reflecting Intermediate Cell Stages In consid-
eration of the dynamic nature of cell development, where
cells may exist in intermediate stages complicating precise
classification, we used additional metrics to assess classi-
fication accuracy beyond standard Top-1 accuracy (Top-1
Acc) to provide a more nuanced evaluation. Specifically,
we used the following metrics:
Top-2 Acc: considers a prediction as correct if the true class
appears within the top two predicted probabilities.
Adjacent-1 Acc: correct classification includes not only

exact matches but also predictions of predecessor or suc-
cessor classes in the developmental sequence, if applicable.
Cells with no intermediate developmental stages (PMC and
SC) must be predicted exactly to be considered correct.
Adjacent-1 Dynamic Acc: Similar to Adjacent-1 Acc, but
restricted to evaluating accuracy only among cell labels that
undergo intermediate developmental stages.

...
... ...

...

Figure 3. From the 20× SZP setting and 40× EFI WSIs, individ-
ual cell crops are extracted, either with (w bg) or without (w/o bg)
background. A classification network is trained on the resulting
single-cell dataset. Three self-supervised approaches are evalu-
ated. The resulting embedding is optionally combined with the
extracted and compactness-normalised minimal distance informa-
tion of the cell, then classified according to eight class labels.

3.3. Self-Supervised Learning

In recent years it has been shown that self-supervised
learning methods can increase a model’s performance in
several medical tasks, especially in scenarios such as ours
where there is an abundance of raw image data, but only
a small amount of labels [1, 18, 20]. We analysed the im-
pact of three frequently used yet technically different self-
supervision approaches, namely SimCLR [6], DINO [5]
and MAE [14], on our dynamic cell classification task.

SimCLR [6] is a contrastive learning technique in which
pairs of augmentations of an image are compared to them-
selves and all other samples in the current batch. The repre-
sentation similarity between the augmentations of the same
image is maximised and the similarity to any other sample
is minimised to prevent representation collapse.

DINO [5] is often considered to be a contrastive self-
supervised learning technique, although it does not com-
pare samples with counterexamples from the current train-
ing batch. Instead it combines findings from other previ-
ous works such as SwAV [4], BYOL [13] and MoCo [15]
into a knowledge distillation [17] framework with no labels.
DINO generates several global and local augmented views
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of the same image. It feeds the global views to a frozen
teacher network, whose parameters are set to the exponen-
tial moving average of the student network, which is fed
with the local views. The student is then trained by align-
ing its output with the centred and sharpened output of the
teacher network, thereby avoiding representation collapse.
It is therefore not necessary to compare to negatives sam-
pled from the same training batch.

MAE [14] was introduced to exploit properties of
Vision Transformers during a reconstruction-based self-
supervision approach and is therefore not considered a
contrastive learning technique. During training, random
patches of the images are masked and the remaining patches
are fed into a transformer encoder. Afterwards a smaller
transformer decoder aims to reconstruct the original im-
age by filling in token representations of missing image
patches. Since the encoder does not consider tokens of
missing patches and the decoder can be small this frame-
work allows for very efficient pretraining.

4. Experiments
4.1. Analysis of Annotation Process

To analyse the reliability of our ground truth data regard-
ing the six dynamic cell classes and the annotator confi-
dence, we selected eight cells from each class of the test
dataset and had them labelled by three different annotators
in their respective 20× SZP and 40× EFI versions. We en-
sured that exactly the same cell images were labelled sepa-
rately by each annotator. To account for different levels of
experience we selected the following annotators: Annotator
1 (previously mentioned with three years of experience in
working with testicular histology WSIs); Annotator 2 (more
than 30 years of experience as a histologist routinely work-
ing with scans with standard scan settings); Annotator 3 (no
prior experience, using reference images). For evaluating
annotator confidence, we introduced intermediate labels in
addition to the six dynamic class labels. Annotators could
use these intermediate labels when they believed a cell was
between two stages, resulting in a total of 11 label options
for this experiment. During the labelling process, we used
40 × 40 px (20× SZP setting) or 80 × 80 px (40× EFI
setting) image crops with background. No additional local-
isation information was given to ensure annotations based
on the cell appearance and close neighbourhood only.

20x SZP samples 40x EFI samples
A1 A2 A3 A1 A2 A3

A1
Top-1 45.8 56.2 64.5 66.6 64.5 52.0

Adj.-1 Dyn. 93.7 83.3 81.2 95.8 87.5 89.5
Adj.-2 Dyn. 97.9 93.7 87.5 1.0 93.7 95.8

A2
Top-1

- -
50.0

- -
50.0

Adj.-1 Dyn. 70.8 81.2
Adj.-2 Dyn. 83.3 93.7

Table 2. Inter- and intra-variability for
samples in different scan qualities.

Top-1 Adj.-1
Dyn.

Adj.-2
Dyn.

A1 60.4 93.7 1.0
A2 58.3 79.1 89.5
A3 50.0 89.5 93.7

Table 3. Scan quality
Intra-variability.

Table 2 presents the results for intra-variability, mea-
sured for Annotator 1, who annotated the data twice, and
inter-variability among all three annotators. We used the
following metrics: Top-1 Acc, the previously described
Adjacent-1 Dynamic (Adj.-1 Dyn.) Acc (which includes
the classes immediately before and after the correct class),
and an extended Adjacent-2 Dynamic (Adj.-2 Dyn.) Acc
(which includes two classes before and after), similar to
the previous Adjacent-1 Dynamic Acc on six classes due to
the introduction of intermediate labels. The investigation of
intra-variability reveals significant differences within the la-
belling process, with a Top-1 Acc of 45.8% for the 20× SZP
data and 66.6% for the 40× EFI data. Inter-variability, mea-
sured across all annotators, also indicates noticeable differ-
ences and uncertainties, though these are less pronounced
for the 40× EFI dataset. The average Adjacent-2 Acc for
the 20× SZP data is 88.1%, while for the 40× EFI dataset,
it is 94.4%. Overall the results indicate that despite the ex-
perience of the annotator, it is impossible to provide unam-
biguous labels due to the complexity of the task.

Additionally, we examined the intra-variability concern-
ing the different image qualities for each annotator (see Ta-
ble 3 and Figure A.1). This analysis shows significant dif-
ferences in cell evaluations depending on the scan settings.
The Top-1 Acc ranges only from 50% to a maximum of
60.4% and even for a highly experienced testis histologist,
the difference in Adjacent-2 Acc exceeds 10%. This anal-
ysis further demonstrates that the quality of the data has a
substantial impact.

4.2. Influence of Additional Bio-Inspired Variables
and Scan Settings

In our initial baseline experiments, we trained six differ-
ent network architectures and analysed the impact of incor-
porating distance information as an additional input, vary-
ing levels of scan quality, the effect of masking background
information in cell images, and the influence of ImageNet
pretraining [7]. For all experiments, we employed a 5-fold
cross-validation (see Table A.1).

The ResNet (18, 50, 101) and Vision Transformer
(T,S,B) architectures were used for all experiments. In our
experiments we chose a Vision Transformer patch size of
8 for the 40× EFI and a patch size 4 for the 20× SZP
WSIs. Each token therefore covers the same real world
area. We analysed the impact of out-of-domain pretraining
by comparing ImageNet pretrained versions of the ResNet
variants with the models trained from scratch. While pre-
trained ViT models exist, the specific image and patch size
combinations we utilised are not available. Consequently,
we trained the ViTs from scratch for this experiment. Input
images were normalised with channel mean and standard
deviation of the respective fold’s training data to maintain
consistency across the dataset. To enhance the model’s ro-
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bustness and generalisation, we applied random horizontal
and vertical flip, random rotation with a maximum angle of
180 degrees and random translation up to 1% along both
axes. If applicable, we employed distance information aug-
mentation by setting the distance values randomly to −0.5
with a probability of 10%. Training was carried out with the
AdamW [27] optimiser, a learning rate scheduler starting at
10−3 with a reducing factor of 0.5 and a patience of 10 and
a batch size of 128, over a total of 100 epochs. The ViT-S
and B models started out with a lower learning rate of 10−4.
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Figure 4. Top-1 Acc of different backbones and scan settings: val
(a) , test (b); only with background; with and without distance in-
formation (180 models in 36 distinct configurations). The legend
of (a) also applies to (b). Comparison of Top-1 Acc training with
and without background in both scan settings: val (c), test (d);
only ResNets; with and without distance information (240 models
in 48 distinct configurations). The legend of (c) also applies to (d).

All aggregated Top-1 Acc, Top-2 Acc, Adjacent-1 Acc
and Adjacent-1 Dynamic Acc values for validation and test
set are presented in detail in Tables A.5 (from scratch) and
A.6 (ImageNet). Figures 4a and 4b demonstrate that Vision
Transformers generally perform worse when trained from
scratch compared to ResNets, which is consistent with cur-
rent research given the relatively small size of the labelled
portion of our dataset [21]. ResNets pretrained on Ima-
geNet outperform those trained from scratch, albeit by a
smaller margin. Utilising the enhanced scan settings of 40×
magnification and EFI resulted in a performance increase
on validation and test, except for the networks trained from
scratch, whose test performance declined (see Figure 4b).

Background information appears to be generally benefi-
cial for the classification task (see Figures 4c and 4d). This
is likely because other cells visible in the background pro-
vide additional contextual information in uncertain cases.

Incorporating distance information generally improves per-
formance, though some of the best performing configura-
tions on test are achieved without using distance informa-
tion (see Figures 6a and 6b). We attribute this to the rela-
tively small size of the labelled dataset, which can introduce
slight biases that are not always advantageous in the test set.

4.3. Self-Supervised Pretraining

We chose the same backbones described in 4.2 for Sim-
CLR and DINO. MAE is a technique entirely based on the
transformer architecture. We therefore only chose the ViT
variants (T,S,B) as the backbones for this approach. All
self-supervised algorithms were trained with similar mem-
ory requirements on the nucleus dataset without labels us-
ing the AdamW [27] optimiser and validated on the train-
ing/validation dataset (see Table 1). The learning rate was
reduced by a factor of 0.25 when reaching a plateau in the
validation loss (patience 10 epochs). The model with the
best validation loss after 200 epochs was chosen as the final
pretrained model for any given configuration.

The augmentation settings for the different SSL ap-
proaches can be found in A.2.1 (SimCLR), A.2.2 (DINO)
and A.2.3 (MAE), while batch sizes are displayed in Tables
A.2 (SimCLR), A.3 (DINO) and A.4 (MAE). The initial
learning rates for training were set to either 10−3 (SimCLR,
DINO) or 1.5 ∗ 10−4 (MAE).

Visualisation We visualised the ViT-B embedding of
the self-supervised pretraining on the 40× EFI images (with
background) in Figure 5 using UMAP [28]. As previous
work suggests [14], the contrastive approaches DINO and
SimCLR lead to a clearer separation in the embedding space
compared to MAE. However, all approaches have difficul-
ties to cluster the same cell type with vastly different stain-
ing intensities, indicating an impact on the classification
task. Figure A.2 shows reconstructions of ViT-B MAE on
20× SZP and 40× EFI images. The reconstructions closely
resemble the original despite the high masking ratio, with
no artificial artefacts being visible in our evaluations.

Fine-Tuning Building on the baseline results shown
in Tables A.5 and A.6 our fine-tuning analysis focuses
solely on images with background information. All
pretrained models were fine-tuned following the train-
ing/validation/test split and augmentations described in
Sections 4.2. Each model was trained for 30 epochs with
AdamW optimiser, a batch size of 128 and a learning rate
of 10−4. The pretrained backbones were frozen for the first
epoch and afterwards unfrozen with an initial learning rate
of 10−6. The learning rate for the backbone was exponen-
tially increased by a factor of 2 until it reached the learning
rate of the classifier and kept at 10−4 until epoch 22, after
which it was exponentially reduced again by a factor of 0.5
each epoch until the end of the training.
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(a) (b)

(c) (d)

(e)

peritubular myotic cell

sertoli cell

spermatogonium A dark

spermatogonium
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(f)

Figure 5. Test set UMAP embeddings of ViT-B SimCLR (a, b),
DINO (c, d) and MAE (e, f), using 40× EFI, with background.
The legend in (f) also applies to (b) and (d).

The training results are displayed in Table A.7 and Fig-
ures 6, 7 and A.3. Like the baseline, models pretrained with
SSL gain from additional distance information; however,
as demonstrated in Figure 6b, the top-performing model
regarding the test Top-1 Acc was actually trained without
this supplementary information. The self-supervised learn-
ing methodologies examined in this study lack mechanisms
to integrate additional distance information during the pre-
training phase. This constrains the potential benefits that
distance information could confer within this context.

As illustrated in Figure A.3 (and Figure 7), Vision
Transformers tend to derive greater advantage from self-
supervised pretraining relative to ResNet architectures.

Increasing model size does not always lead to better per-
formance, given that the best overall model considering test
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Figure 6. Influence of distance information on val (a) and test
(b) Top-1 Acc for the scan settings and pretraining types. SSL
represents the combined results of SimCLR, DINO and MAE. 480
models trained with background only in 96 distinct configurations.
The legend of (a) also applies to (b).

Top-1 Acc is a DINO ViT-T and not a ViT-B (see Figure 7d).
However, ViT-Bs tend to be the best models regarding the
validation metrics and are also often within the top models
when it comes to the metrics on the test set. DINO ViT-
B models for example exhibit comparable or better perfor-
mance in test Adjacent-1, test Adjacent-1 Dynamic and val-
idation accuracy measures when compared to DINO ViT-
T models, suggesting that worse test Top-1 Accuracies are
primarily due to misclassifications occurring in borderline
cases. We therefore hypothesise that increasing the model
size while also pretraining on large amounts of data is ben-
eficial in most cases, which coincides with prior work on
self-supervised learning [5, 6, 14].

For the 20× SZP setting MAE generally performs best
as it scores highest in most validation and test metrics (see
Figures 7a and 7d). We hypothesise that because numer-
ous cells in the 20× SZP setting are already blurred and
out of focus, applying additional augmentations - integral
to the efficacy of methods such as SimCLR and DINO -
may prove detrimental on this data, resulting in subopti-
mal priors. This effect can be observed even when com-
pared to a pretrained ImageNet baseline from an out-of-
domain context, which generally outperforms SimCLR and
DINO in the 20× SZP setting with ResNet backbones.
Reconstruction-based methods on the other hand require
less aggressive data augmentation strategies and are there-
fore more adept at preserving detailed textural features. The
increased Adjacent-1 Dynamic Acc of SimCLR and DINO
are likely related to textural details being less important than
the general shape of the cell for this specific metric.

For the higher quality 40× EFI images the trend of MAE
outperforming SimCLR and DINO changes, especially in
the case of test accuracies (see rightmost part of Figures 7a
to 7f). Here MAE leads to worse results than SimCLR and
DINO in Top-1 Acc and Adjacent-1 Dynamic Acc. While
MAE’s validation accuracies do improve in the 40× EFI
setting, the test Top-1 Acc and Adjacent-1 Dynamic Acc
decrease compared to the 20× SZP setting. Based on the
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Figure 7. Boxplots of validation (a-c) and test (d-f) Top-1, Adjacent-1 and Adjacent-1 Dynamic Acc of all cross-validation models for
every configuration with background. 360 models trained with background only in 72 configurations. Legend of (a) also applies to (b)-(f).

assumption that more information, through higher magnifi-
cations and cellular details, enhances performance, we plan
to explore this finding further in future research. DINO gen-
erally performs best on the 40× EFI test and very similar
to the other self-supervised methods on 40× EFI valida-
tion sets. For these higher quality images, SimCLR’s and
DINO’s augmentation-heavy approach becomes an advan-
tage instead of a disadvantage, as they both generalise well
to the test set. In the 40× EFI setting with ResNet back-
bones, both SimCLR and DINO surpass the ImageNet base-
lines on the test set, which previously held an advantage in
the 20× SZP setting.

5. Conclusion
In this paper, we examined the problem of classify-

ing cells within a dynamic developmental process in static
WSIs. We conducted various analyses, starting from the
creation of the underlying data, which allowed us to gain
several new insights which were progressively utilised for
the training of neural networks. We performed an analy-
sis of inter- and intra-annotation variability, quantitatively
studied the impact of scan quality on the performance of
the classification networks and extensively evaluated differ-
ent deep learning techniques and their impact on task per-
formance. Inter- and intra-variability can be accounted for
when classifying into potentially ambiguous cell stage la-

bels, e.g. by metrics such as the Adjacency-1 Accuracy.
The deep learning models generally performed better with
as much (context) information as possible, whether from
sharper textures of higher quality images, background, or
distance information. We showed that the data quality has a
high impact on classification performance, that can be par-
tially alleviated by using reconstruction based MAE as pre-
training. When the quality and resolution of the data is high,
however, the augmentation based approaches SimCLR and
DINO yield better results. The results also show that Vi-
sion Transformers and larger model sizes are in most cases
more suitable for the self-supervision techniques evaluated
on our data. Overall our analyses provide new insights into
the training of classification networks for dynamically de-
veloping cells, but also into aspects that influence the per-
formance of different SSL techniques on histological image
data of varying qualities.
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