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“A stand-alone building, crafted with organic architecture and ceramic detailing, features large windows. It is depicted in a photorealistic style from a 
two-point perspective, nestled in an autumn setting and bathed in direct sunlight.”
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“A futuristic building with a prominent large glass window, set in a desert landscape surrounded by a variety of cacti and desert flora, bathed in sunset.”

“A stand-alone house, crafted with high-tech architecture and composite materials, features openings. It is depicted in a photorealistic style from a side 
view at a street corner, bathed in the glow of the northern light.”
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Figure 1. Existing methods for 3D synthesis blend background into foreground textures and create overly complex geometries (left) [48,
53, 61]. In contrast, our method (right) creates varied, consistently styled designs with clean geometries, facilitating idea communication
and rapid iteration for the early design stage.

Abstract

We introduce a 3D synthesis method for architectural de-
sign to allow for the efficient generation of diverse and real-
istic building designs. In spite of advances in 3D synthesis,
current off-the-shelf 3D synthesis techniques are inappro-
priate for architectural design: they are trained primarily
on isolated objects, have limited diversity, blend building
facades with background and produce overly complex ge-
ometry that is difficult to edit or manipulate, a major issue

in an iterative design process. We propose an alternative
pipeline that integrates auto-generated coarse models with
segment-wise texture inpainting and semantics-based edit-
ing, resulting in diverse, style-consistent, and shape-precise
designs. We show through qualitative and quantitative ex-
periments that our pipeline generates more diverse, visu-
ally appealing architectures with clean geometries without
the need for any extensive training. Project page: https:
//itingtsai.github.io/syn_arch_2025/

This WACV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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1. Introduction
With the advent of diffusion models, we have seen rapid

advances in 3D synthesis [1, 9, 18–20, 28–34, 39, 40, 45, 48,
49, 51, 53, 61], paving the way for a variety of downstream
creative applications. However, much of the focus has been
on entertainment applications and virtual reality. Here, we
focus on untapped potential in a novel domain: architectural
design.

In architectural design, AI in general can be extremely
useful in uncovering patterns and generating innovative so-
lutions that might not be apparent to human designers [26].
However, past work has mostly focused on the generation
of 2D layouts [4, 37, 42]. With the advent of more capa-
ble image diffusion models, there is interest in using these
new models in other aspects of the design process [16]. But
buildings are 3D artifacts, not 2D images. How these 2D
generative models can produce useful 3D designs in an ar-
chitectural design pipeline remains an open research ques-
tion.

Unfortunately, current 3D synthesis techniques are un-
suitable for architectural design. For one, they are trained
on object datasets and so cannot produce buildings [11].
The alternative is to use 2D generative models trained
on more general datasets, and leverage Score Distillation
Sampling (SDS) [39] and neural fields to synthesize 3D
shapes [9,28,29,34,48,51,53,61]. However, this line of ap-
proaches suffers from three fundamental limitations. First,
SDS is prone to mode collapse and as such limits diversity,
undermining the design process (Fig. 1 left) [52]. Second,
the resulting generations often feature textures inconsistent
with the underlying building structure, such as background
textures painted on building facades (Fig. 1 left). Third,
neural field optimization results in overly complex geome-
tries with bumps and other artifacts (Fig. 1 left). These un-
necessary details not only complicate edits but also get in
the way of communication, decision-making and rapid iter-
ation, which are vital in the early stages of design.

In this paper, we address these limitations and introduce
the first 3D synthesis method specifically tailored for ar-
chitectural design. Our approach begins by first creating
a coarse 3D model (called a “massing model” in architec-
ture [3]) by aggregating a sequence of randomly generated
primitives. This approach leads to diverse generations while
incorporating domain knowledge about building designs.

We then paint textures on the 3D massing model using
2D generative models and user-defined prompts. We pro-
pose a novel facade-by-facade approach that ensures that
the generated facade matches the building structure and is
stylistically consistent. Specifically, we use ControlNet [58]
to produce the first facades conditioned on the depth map,
then generate the other facades one-by-one using an in-
painting model [43] with a novel visual prompt to ensure
stylistic consistency. This approach produces a more realis-

tic facade than SDS-based approaches.
Finally, we propose a new semantically guided approach

to refine the original coarse 3D geometry based on the gen-
erated facades. Concretely, we use open-vocabulary object
detection models [36] to add facade details to the underlying
coarse models only where necessary in specific semantic
regions (e.g., windows and doors). Unlike SDS-generated
3D models with unnecessary complexity, our approach en-
hances facades selectively, maintaining clean geometry and
ensuring easier downstream edits and design development.

In summary, our contributions are as follows:

• We introduce the problem of 3D synthesis for architec-
tural design, and demonstrate that existing 3D synthe-
sis approaches are not up to the task.

• We propose a novel pipeline that processes geome-
try, texture, and detail elements separately resulting
in superior architectural design outcomes compared to
a single-step process using SDS optimization. This
separation allows for more precise control and higher
quality results in each aspect of the design.

• We demonstrate through both qualitative and quanti-
tative results that our pipeline produces diverse, inno-
vative and useful designs that can be easily edited or
manipulated by the designer.

2. Related Work
2.1. Generating Textured 3D Artifacts

The dominant approach to generating fully textured 3D
shapes is to use Score Distillation Sampling (SDS) [39],
where a 3D neural field is optimized to ensure that each
rendered viewpoint is “high probability” according to a 2D
diffusion model. More advanced 3D synthesis models have
further refined SDS, leveraging both 2D [20, 28, 29, 33, 53]
and 3D [18, 19, 30–32, 40, 45, 48, 49] priors to enhance
text-guided and image-guided models. SDS-based genera-
tion can also leverage diffusion models that are conditioned
on one view, as developed in novel view synthesis tech-
niques [22, 23, 44, 60].

We find that SDS-based techniques are often insufficient
for architectural design needs: Generated buildings lack di-
versity, appear unrealistic due to background blending with
foreground, and produce overly complex geometry with un-
necessary facade bumps, complicating downstream edits
(Figs. 1 and 2). Our pipeline also uses 2D diffusion mod-
els, but eschews the SDS-based optimization in favor of a
facade-by-facade texture painting approach combined with
a separate process for generating coarse geometries.

2.2. 3D Shape Synthesis

Some methods focus solely on synthesizing high-
resolution 3D shapes without textures [10, 12, 27, 46, 50,
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“A concrete structure with mechanistic features and large windows, depicted in a true-to-life style. Nestled in a dense forest and bathed in natural light, 
the windows enhance its connection with the wilderness.”

“A futuristic building with a prominent large glass window, set in a desert landscape surrounded by a variety of cacti and desert flora, bathed in sunset.”

“A photorealistic modern wooden house, designed in an industrial style, set on grassland.”
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Figure 2. Diverse Designs. In contrast to prior work [48, 53, 61] (left) that produces repetitive design, our approach (right) generates
diverse and varied building designs.

54, 59]. While these approaches produce complex geome-
tries, they lack the capability to visualize design ideas with
textures, limiting their effectiveness in enhancing design
communication and inspiration. Our approach addresses
this limitation by producing both diverse geometries and
detailed textures, making it more suitable for visualizing
and communicating design ideas and aiding in the decision-
making process. Additionally, 3D generative models must
be trained on 3D data, which is difficult to acquire for build-
ings. Our work avoids this limitation by leveraging 2D dif-
fusion models instead.

2.3. Texture Synthesis

Another line of research focuses solely on texture syn-
thesis, utilizing 2D diffusion models to texture input 3D ob-
jects [8, 14, 55–57]. While these methods enhance visual
fidelity, they typically apply to isolated objects with well-
defined geometries. Furthermore, these approaches usually
require the complete, complex geometry as input. In con-
trast, our approach synthesizes both texture and geometry
for the new space of buildings.

2.4. Shape-guided 3D Synthesis

Closely related to our work is the line of work on shape-
guided synthesis, which starts with a basic 3D structure and
uses both text and geometry to influence the final result.
This method allows users to input custom geometry and of-
fers editable controls through text-based guidance.

The sketch-shape method in Latent-NeRF [34] employs
coarse geometry and text inputs to generate 3D geometries,
using NeRF [35] to define surface details based on point-
to-surface distances. Fantasia3D [9] employs DMTet [47]
for geometry optimization and models appearance with a
BRDF, with SDS supervising both processes. These ap-
proaches are based on optimization and thus inherit the limi-
tations of SDS-based approaches, including overly complex
geometries and unrealistic textures (Fig. 6). Furthermore,
the use of global optimization precludes the ability to mod-
ify specific regions or elements. In contrast, we propose
a pipeline that avoids SDS optimization and introduces a
novel approach for adding geometric details to specific re-
gions and elements.
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Figure 3. Generating Coarse Geometry. We generate 3D ge-
ometry using Constructive Solid Geometry (CSG), starting with
an initial cuboid and iteratively adding cubes to create a “building
massin” model. Each column shows a step in the generation. The
last column shows the final generation after texturing.

3. Methodology
Our goal is to streamline the schematic design phase of

the architectural design workflow [2]. During this months-
long phase, involves iterative design changes as architects
create preliminary drawings or visual materials to illustrate
design concepts, including spatial relationships, scale, and
form and communicate with owners to define project goals
and requirements. Typically, even generating a single de-
sign proposal can take weeks. Our goal is to speed up
this early decision-making process by allowing architects to
generate numerous design options in a short period. Clients
can also use our system to generate the designs they like
and share them with architects, fostering collaboration and
alignment.

Overview of approach: Our approach first builds a
coarse 3D model (Section 3.1), where we achieve design
complexity and variation by aggregating a sequence of ran-
domly generated primitives. We then use segment-wise tex-
ture inpainting and projection to ensure consistent facade
styles (Section 3.2). Finally, we apply object detection and

segmentation to add details such as window openings to the
facade (Section 3.3).

3.1. Generating Coarse Geometry

Current techniques optimize the geometry by minimiz-
ing the SDS loss [39] which penalizes unrealistic 2D projec-
tions (according to 2D generative models) of the 3D object
being synthesized. However, SDS optimization is prone to
mode collapse [52], which limits the diversity of the gener-
ated models. Furthermore, because the underlying 3D ge-
ometry being optimized is often represented as a NeRF [35],
the resulting model has no prior for planar surfaces. This,
in conjunction with slight imperfections in the rendered 2D
views results in bumpy, non-planar surfaces that are often
not perpendicular to each other (Fig. 1).

Instead of relying on SDS to directly yield a diverse set
of meaningful 3D models, we use a simple procedural ap-
proach to create coarse 3D geometry, optimizing for diver-
sity. Specifically, we start by randomly sampling an initial
cuboid. Additional cuboids are added iteratively by ran-
domly selecting a previously generated cuboid as an an-
chor and attaching the new cube to one of its faces. We
inject some domain knowledge into the generation process
by defining three kinds of buildings – low-rise, mid-rise, or
high-rise – and constraining generated cuboid dimensions
based on the user-defined building type. For instance, the
height of the initial cuboid for a low-rise building is con-
strained to be between one and two times the width of the
base dimensions. The precise constraints are defined in the
supplementary material.

The final coarse 3D model is the union of the gener-
ated cuboids. Such a model, referred to as “building mass-
ing” in architecture, provides a simplified 3D representa-
tion that can be used to examine a building project’s overall
shape, form, and spatial organization during the early de-
sign stages [3].

Variations: Users can also input their own customized
coarse 3D models for unique variations. The user-input ex-
amples in Fig. 3 were designed in Blender [7].

3.2. Synthesizing Textures

While SDS-based optimization yields good results for
painting isolated objects with texture [8, 55–57], these fall
short when applied to architecture. They project back-
ground textures onto building facades, or merge distinct
facades into a single facades (Fig. 5). Unfortunately, the
unrealistic building textures generated by these prior tech-
niques are still photoconsistent and produce realistic im-
ages when viewed from different viewpoints. As such, SDS
optimization-based techniques cannot improve upon these
generations. To generate realistic building textures, we need
to constrain the generation process further.

We propose an alternative approach where we synthesize
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"A stand-alone house, crafted with high-tech architecture and composite materials, features openings. It is depicted in a photorealistic style from a side 
view at a street corner, bathed in the glow of the northern light."
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Figure 4. Synthesizing Textures. To generate realistic building textures, we propose a novel facade-by-facade approach, constraining
the generation process for each individual facade. We utilize a 2 × 2 visual prompt as input (Eq. (1)), providing a learnable context for
the inpainting model to effectively learn and apply textures to the coarse 3D model. The facade-by-facade approach ensures cross-face
continuity, mitigating the Janus problem [39] and producing consistent 3D-aware textures. The fully textured views of this example are
provided in Fig. 7.

textures for the course model one facade at a time. This pre-
vents the diffusion model from merging facades. It also pro-
vides enough geometric context at each step to the 2D dif-
fusion model, ensuring that textures are applied accurately
and appropriately, without arbitrary landscape elements in-
terfering with the facades. In addition, the facade-by-facade
approach mitigates the multi-face Janus problem [39] be-
cause each facade is painted in the context of other facades.
Our texture synthesis process can be broken down into the
following steps:

A. Generate Initial View. After creating the massing
model, we automatically select a viewing direction at 45◦

to one of the facades (thus including two facades in the
view). This viewpoint captures two neighboring facades,
and renders it. The camera is positioned at a fixed distance
from the mesh, using default intrinsic parameters with ba-
sic Lambertian shading and ambient lighting. The field of
view is automatically adjusted to ensure the initial view is
fully captured without any truncation. This rendered view is
input to ControlNet [58], conditioning on depth estimation
to generate the initial image. Including two facades in this
initial view ensures that the output image contains sufficient
design and style information for subsequent inpainting.

B. Map The Texture. The output image is subsequently

mapped as a texture from 2D back onto the 3D massing
model. We perform this texture mapping by dividing the
facade into smaller faces logarithmically and mapping ver-
tex colors to the nearest texture colors. The finer mesh
enables automatic texture-dependent geometry editing later
(Sec. 3.3).

C. Texture Untextured Facades. Given this initial tex-
ture, we next use an inpainting diffusion model to texture
the remaining parts of the structure. To do so, we consider
viewpoints at 45◦ increments in both directions from the
initial viewpoint: while for simple cuboidal buildings, 90◦

increments are enough, for more complex geometries there
may be extrusions that occlude parts of the facade, and so a
finer increment is necessary. Concretely, we consider view-
points at 45◦,−45◦, 90◦,−90◦, 135◦,−135◦ and 180◦ in
order from the initial viewpoint, and iteratively texture any
untextured regions that are visible from each viewpoint.

For each viewpoint, we first identify the hitherto untex-
tured parts of the image by comparing a render of the tex-
tured model with a render of the original model without
texturing. Any pixels with identical colors in the two ren-
ders have likely not been textured. We then create a mask
with this set of pixels and use an inpainting model to fill
in these regions. Crucially, to give the inpainting model
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“A stand-alone house, crafted with high-tech architecture and composite materials, 
features openings. It is depicted in a photorealistic style from a side view at a street 
corner, bathed in the glow of the northern light.”
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Figure 5. Texture Synthesis Comparison. Our approach (right)
generates diverse design options from the same coarse geome-
try (Shape 1 and Shape 2, as shown in Fig. 3) and identical text
prompts, while maintaining consistent styles. In contrast, existing
methods [9, 34] (left) produce similar, low-quality, and unvaried
results, often blending backgrounds into facades or rendering parts
of the geometry invisible by blending into the sky. λSDS ≈ 0 for
these techniques implies that the initial geometry is preserved.

enough stylistic context, we propose a novel visual prompt
where we lay four views of the building out in a 2× 2 grid:

Icomposite =
I1(θ1) I2(θ2)
I3(θ3) I4(θ4)

(1)

Here, θ1 = 0◦, θ2 = +45◦, θ3 = −45◦ and θ4 is the view-
point to be generated. The masks are laid out in a corre-
sponding manner to produce a composite mask Mcomposite
(when texturing the +45◦ (or −45◦) viewpoint, we use
θ4 = 0◦). The composite image and mask are then fed
into an inpainting model [43]. The output of this inpainting
model is texture mapped back onto the 3D model as above
before moving on to the next viewpoint. We found experi-
mentally that this grid structure provided enough context to
the inpainting model and led to more stylistically consistent
generations.

In spite of the finer 45◦ increments, occlusion may still
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“A concrete structure with mechanistic features and large windows, depicted in a true-
to-life style. Nestled in a dense forest and bathed in natural light, the windows enhance 
its connection with the wilderness.”

View1 View2Geometry

“A minimalist modern house with large glass windows and a concrete structure, elevated 
on stilts in a snowy forest. Bare trees covered in light snow create a serene winter scene.”
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Figure 6. Specifying Facade Details. We apply open-vocabulary
recognition to automatically detect specific elements using key-
words (here, “windows”) allowing us to edit details (here, pushing
windows inward) precisely where needed, compared to global ed-
its of past work [9, 34].

cause a challenge when it results in one viewpoint having
multiple untextured adjacent faces with different orienta-
tions. In such cases, we found that the inpainting model
struggles to distinguish faces with different orientations and
may texture them in a manner inconsistent with their ori-
entation. To address this, we group untextured faces that
share the same orientation into facade sets. We then iter-
ate through all the facade sets in each viewpoint, inpainting
them separately.

Further details and handling of some edge cases are pro-
vided in the supplementary material.

3.3. Specifying Facade Details

Once our coarse building model has been textured, we
add further details to the geometry conditioning on the
generated texture. Existing shape-guided synthesis tech-
niques [9, 34] are limited to whole-geometry modifications
and cannot adjust specific regions or elements. Addition-
ally, they produce bumpy surfaces, complicating further de-
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Method (Text-guided) FID↓ KID↓ Avg. CLIP ↑ CLIP Accuracy↑ Precision↑ Recall↑
Ours 222.45 0.10±1.58 0.271 0.990 0.19 0.30
DreamFusion-Hifa [61] 259.90 0.13±2.31 0.256 0.970 0.11 0.07
ProlificDreamer [53] 288.88 0.16±2.16 0.222 0.810 0.01 0.14
MVDream [48] 340.31 0.25±1.57 0.264 0.970 0.01 0.00
TextMesh [51] 315.98 0.14±1.79 0.203 0.680 0.00 0.01
Magic3D [29] 355.60 0.19±1.78 0.182 0.490 0.00 0.00

Table 1. Quantitative Evaluation. We quantitatively evaluate our model and other text-guided baselines using metrics including FID [17],
KID [6], CLIP [41], CLIP Accuracy, and Precision-and-Recall [25].

Method (Text-guided) More Diverse ↑ More Realistic ↑ More Fitting to the Prompt ↑
Ours 95.0% 84.3% 50.3%
DreamFusion-Hifa [61] 5.0% 15.7% 49.7%

Table 2. User Study Results. Preference percentages for diversity, realism, and prompt alignment were evaluated across 10 prompts,
with a total of 20 comparisons assessed by 20 participants (designers and the general public), resulting in 400 instances. Our method
significantly outperforms DreamFusion-Hifa, the strongest competitor in quantitative assessments.

sign manipulation. We propose an alternative that yields
localized, semantics-based edits that preserve clean geome-
try.

In our proposed appproach, the user specifies which ar-
chitectural elements to edit: windows, doors, balconies etc
and how to edit them (e.g., intrusion or extrusion). We
use off-the-shelf open-vocabulary object detectors [36] to
detect these architectural elements on the rendered views.
We use the midpoints of the detected boxes as prompts
for SAM [21] to generate precise masks. Finally, we edit
the geometry under these masks by intruding or extruding
based on user input (intrusion/extrusion can be performed
by moving the corresponding mesh vertices in the direction
of the face normal). Fig. 6 shows an example of such edits,
where we have automatically intruded the windows into the
facade, in contrast to the global edits of prior work.

4. Experiments
To evaluate our proposed 3D synthesis pipeline, we con-

ducted experiments to measure the quality and diversity of
generated images, the alignment between images and text
descriptions, and style consistency across different views of
a building design.

We compared our method with text-guided mod-
els (MVDream [48], Prolificdreamer [53], Dreamfusion-
Hifa [61], Magic3D [29], TextMesh [51]), image-guided
models (Magic123-Hifa [61], DreamCraft3D [49], Real-
Fusion [33], SyncDreamer [32], Stable Zero123 [1], Ze-
roNVS [44]), and shape-guided models (Latent-nerf [34],
Fantasia3D [9]). Some of the baselines are from the three-
studio library [15].

Prompts for generation were manually created with as-

sistance from ChatGPT [38] to ensure that they have suffi-
cient detail for good generation.

4.1. Quantitative Evaluation

Realism and diversity: We first evaluated the realism and
diversity of generated models vis-a-vis the real world. To
do so, we used 10 prompts to generate 10 examples each,
selecting one viewpoint for each example, resulting in 100
images. For comparison, we searched for corresponding
building images using the same set of prompts on Bing Im-
age [5] and Google Image [13]. We then used the generated
and real images and computed the Frechet Inception Dis-
tance (FID) [17] and Kernel Inception Distance (KID) [6]
between the generated images and real buildings from the
same prompt. Tab. 1 shows the average (across prompts)
FID and KID scores for our approach and other text-guided
baselines. Our FID and KID scores were the lowest among
the models, indicating higher quality, realism, and diversity.

We also evaluated Precision (fraction of generations that
are realistic) and Recall (how much of the real manifold is
captured by generations) [25] using an InceptionV3 feature
extractor [24]. Once again, on both metrics our approach
performs the best, indicating that our approach produces
more realistic and more varied generations.
Adherence to style/prompt: We used CLIP [41] to eval-
uate the alignment between images and the corresponding
prompt. We report both the average CLIP score as well as
a “CLIP Accuracy”: the fraction of generated images that
achieve CLIP score higher than a threshold. We used as a
threshold the lowest CLIP score from our real image data.
Both metrics measure how closely the generated images ad-
here to the provided prompt. Our approach yields the high-
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“A stand-alone house, crafted with high-tech architecture 
and composite materials, features openings. It is depicted 
in a photorealistic style from a side view at a street corner, 
bathed in the glow of the northern light.”
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Figure 7. Image-guided Models Comparison. We compare to
image-guided methods [1,32,33,44,49,61] by providing them our
first generated view as input. Existing image-guided models pro-
duce artifacts such as non-flat floors, sky blending into facades,
or solid walls without openings, and overly simplistic forms. In
contrast, our approach (top) generates realistic and varied archi-
tectural designs.

est score on both metrics, indicating that we match the re-
quested style the best.

Finally, since the true arbiter of generated designs
should be humans, we conducted a user study. We com-
pared our approach to the strongest text-guided baseline,
DreamFusion-Hifa [61]. In our user study, 20 participants,
including designers and the laypeople, evaluated the diver-
sity, realism, and prompt alignment of 20 pairs of genera-
tions from 10 prompts (2 pairs per prompt). For each com-
parison, participants reviewed 2 outputs from each method

side by side and selected the result that best met the criteria.
The order of all outputs were randomized to prevent bias.
Overall, 400 evaluation instances were collected. As shown
in Tab. 2, annotators overwhelmingly preferred our gener-
ations in terms of diversity and realism. There was less of
a difference in terms of adherence to the prompt, which is
understandable since our proposed approach is not aimed at
improving prompt alignment per se.

4.2. Qualitative Evaluation

Qualitative comparisons to text-guided techniques [48,
53,61] are shown in Figs. 1 and 2. As already demonstrated
by the quantitative results and the user study, our approach
produces more diverse and more realistic buildings. Im-
portantly, where prior work produces simplistic forms with
bumpy surfaces and uneven walls, our approach yields so-
phisticated forms with clean geometry that can be edited
through the design process.

We also compare our approach for texture synthesis and
adding facade details to prior work on shape-guided synthe-
sis [9, 34] in Figs. 5 and 6. Prior work produces repetitive,
unrealistic textures with background artifacts (Fig. 5) and
introduces bumps and uneven surfaces (Fig. 6). In contrast,
our approach yields clean geometry, realistic and diverse
textures, and allows for simple, localized editing.

Finally, we also compare to image-guided (e.g.,novel
view synthesis) techniques [1, 32, 33, 44, 49, 61] by provid-
ing them as input the first textured view from our pipeline
(Fig. 7). Even with a provided view, these techniques pro-
duce blurry, plain or unrealistic textures, and result in un-
even, unrealistic geometry. Once again, we obtain sharp
views as well as clean geometry.

5. Limitations and Conclusion
We introduce the first approach for 3D synthesis for ar-

chitectural design, with the goal to enable rapid generation
of design options in the early stages of the design process.
Our approach uses coarse 3D model generation from prim-
itives to enhance design diversity, a facade-by-facade tex-
turing approach to ensure stylistic consistency and realism,
and open-vocabulary recognition to accurately detect and
detail specific elements.

Our proposed approach significantly increases diversity
and realism compared to baselines while maintaining clean
geometry. In terms of limitations, the method’s perfor-
mance is sensitive to hyperparameters such as the thresh-
olds for facade-element detection, and the prompts and out-
puts from ControlNet and the inpainting model. Lastly, our
geometry generation is limited to non-free-form structures,
which still encompass most architectural designs.
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