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Abstract

Most video restoration networks are slow, have high
computational load, and can’t be used for real-time video
enhancement. In this work, we design an efficient and
fast framework to perform real-time video enhancement for
practical use-cases like live video calls and video streams.
Our proposed method, called Recurrent Bottleneck Mixer
Network (ReBotNet), employs a dual-branch framework.
The first branch learns spatio-temporal features by tok-
enizing the input frames along the spatial and temporal
dimensions using a ConvNext-based encoder and process-
ing these abstract tokens using a bottleneck mixer. To fur-
ther improve temporal consistency, the second branch em-
ploys a mixer directly on tokens extracted from individual
frames. A common decoder then merges the features form
the two branches to predict the enhanced frame. In addi-
tion, we use a recurrent training approach where the last
frame’s prediction is leveraged to efficiently enhance the
current frame while improving temporal consistency. To
evaluate our method, we curate two new datasets that em-
ulate real-world video call and streaming scenarios, and
show extensive results on multiple datasets where ReBot-
Net outperforms existing approaches with lower computa-
tions, reduced memory requirements, and faster inference
time. Code: https://github.com/jeya—maria—
jose/rebot-net.

1. Introduction

Video enhancement has several use-cases in surveil-
lance [11,[47,|51]], cinematography [24,(68]], medical imag-
ing [29L/56], virtual reality [20,/44,|66L(71]], sports stream-
ing [9,/87], and video streaming [86]]. It also facilitates
downstream tasks such as analysis and interpretation [48]],
e.g., it improves accuracy of facial recognition algorithms,
allows doctors to diagnose medical conditions more accu-
rately, and helps in better sports analysis by understanding
player movements and tactics. Also, the recent rise of hy-

“Parts of the work was done during an internship at Google.

Andeep Toor'!  Xin Tong!  Weijuan Xi'

Anne Menini'
3Johns Hopkins University

brid work has led to an immense increase in video confer-
encing, where poor video quality due to a low quality cam-
era, poor lighting conditions, or a bad network connection
can obscure non-verbal cues and hinder communication and
increase fatigue [13|]. Thus, there lies a significant interest
in developing methods that can perform real-time video en-
hancement.
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Figure 1. A comparison between the performance of ReBot-

Net with state-of-the art video restoration networks across differ-
ent FLOPs regimes on a NVIDIA A100 GPU for PortraitVideo
dataset.

Unlike individual restoration tasks like denoising [[15}
60], deblurring [49L|85]], super-resolution [37}/74] which fo-
cus on restoring videos affected by a single degradation;
generic video enhancement techniques focus on improving
the overall quality of videos and make them look better [77].
In this setup, there are multiple degradations that can inter-
act in a complex way, e.g., compression of a noisy video,
camera noise, motion blur etc. mirroring the real world sce-
narios. Video restoration methods can be adopted for video
enhancement by training on a dataset that includes multi-
ple degradations. However, from our experiments we found
that they are computationally complex and have a high in-
ference time and are not suitable for real-time applications.
Also, many methods take past and future frames as input
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which will introduce latency in streaming video.

In this paper, we develop an efficient video enhancement
network that achieves state of the art results and enables
real-time processing. At the core of our method is a novel
architecture using convolutional blocks at early layers and
MLP-based blocks at the bottleneck. Following [|55[] which
uses a convolutional encoder for initial feature extraction
followed by a transformer network in the bottleneck, we
propose a network where the initial layers extract features
using ConvNext [39] blocks and a bottleneck consisting
of MLP mixing blocks [62]. This design avoids quadratic
computational complexity of vanilla attention [67]], while
maintaining a good performance. We also tokenize the in-
put frames in two different ways to enable the network to
learn both spatial and temporal features. Both these token
sets are passed through separate mixer layers to learn depen-
dencies between these tokens. We then use a simple decoder
to predict the enhanced frame. To further improve efficiency
and improve temporal consistency, we exploit the fact that
real world videos typically have temporal redundancy im-
plying that the prediction from previous frame can help cur-
rent frame’s prediction. To leverage this redundancy, we use
a frame-recurrent training setup where the previous predic-
tion is used as an additional input to the network. This helps
us carry forward information to the future frames while be-
ing more efficient than methods that take a stack of mul-
tiple frames as input. We train our proposed network in
this recurrent way and term our overall method Recurrent
Bottleneck Mixer Network (ReBotNet).

To evaluate our method, we curate and introduce two
new datasets for video enhancement. The existing video
restoration datasets focus on a single task at a time, e.g.,
denoising (DAVIS [30], Set8 [58]], etc.), deblurring (DVD
[I57]I, GoPro [42], etc.), and super-resolution (REDS [41],
Vid4 [35]], Vimeo-90k-T [77], etc.). These datasets do not
emulate the real-world case where the video is degraded by
a mixture of many artifacts. Also, rise in popularity of video
conferencing calls for datasets that have semantic content
similar to a typical video call. Single image enhancement
methods are often studied on face images [27,38]] because
human perception is very sensitive to even slight changes in
faces. However, a comparable dataset for video enhance-
ment research has yet to be established. To this end, we cu-
rate a new dataset called PortraitVideo that contains cropped
talking heads of people and their corresponding degraded
version obtained by applying multiple synthetic degrada-
tions. The second dataset, called FullVideo, contains a set of
degraded videos without face alignment and cropping. We
conduct extensive experiments on these datasets and show
that we obtain better performance with less compute and
faster inference than recent video restoration frameworks.
In particular, our method is 2.5x faster while either match-
ing or in some cases obtaining a PSNR improvement of 0.2

dB over previous SOTA method. This shows the effective-

ness of our proposed approach and opens up exciting pos-

sibilities of deploying them in real-time applications like
video conferencing, also illustrated in Figure
In summary, we make the following major contributions:

* We work towards real-time video enhancement, with a
specific focus on practical applications like video calls
and live streaming.

* We propose a new method: Recurrent Bottleneck Mixer
Network (ReBotNet) , an efficient deep neural network
architecture for real-time video enhancement.

* We curate two new video enhancement datasets: Por-
traitVideo, FullVideo which emulate practical video en-
hancement scenarios.

* We perform extensive experiments where we find that Re-
BotNet matches or exceeds the performance of baseline
methods while being significantly faster.

2. Related Works

Image and video restoration [12}|16}/17,{79-81}88] is a
widely studied topic where CNN-based methods have been
dominating over the past few years. For video restora-
tion, most CNN-based methods take a sliding window ap-
proach where a sequence of frames are taken as input and
the center frame is predicted [57,/58]]. To address motion
between frames, many methods explicitly focus on tem-
poral alignment [5|6,/89]], with optical flow being a pop-
ular alignment method. Dynamic upsampling filters [26],
spatio-temporal transformer networks [31]], and deformable
convolution [61]] have been proposed for multi-frame opti-
cal flow estimation and warping. Aside from sliding win-
dow approaches, another widely used technique is a re-
current framework where bidirectional convolutional neu-
ral networks warp the previous frame prediction onto the
current frame [5,(7,/1921},/23]]. These recurrent methods
usually use optical flows to warp the nearby frames to cre-
ate the recurrent mechanism. Unlike these works that re-
quire optical flow, we develop a simple and efficient frame-
recurrent setup with low computational overhead. As most
of these methods use synthetic datasets, recent works have
looked into adopting these methods for real-world applica-
tion [8|78] One recent work attempted to solve multiple
degradation problem that includes blur, aliasing and low
resolution with one model [4] but it is still computationally
intensive.

Video restoration transformer (VRT) introduced a par-
allel frame prediction model leveraging long-range tem-
poral dependency modelling abilities of transformers [33]].
Recurrent video restoration transformer (RVRT) [34] in-
troduced a globally recurrent framework with processing
neighboring frames. At the time of writing, it is worth men-
tioning that RVRT stands as the SOTA method for most
video restoration datasets. Unlike above methods, we fo-
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cus on developing real-time solutions for generic video en-
hancement with a focus on practical applications like live
video calls.

3. Method
3.1. Recurrent Bottleneck Mixer

Transformers [[14] form the backbone of current state
of the art video restoration methods [33}/34] due to their
ability to model long-range dependencies but suffer from
high computational cost due to the quadratic complexity
of attention mechanism. Attention with linear complex-
ity [28170,/84] reduces performance while still not achiev-
ing real-time inference. On the other hand, [36} /69, 83|
show that attention can be replaced by other mechanisms
with marginal regression in quality, e.g., [62] replaces self-
attention with much more efficient token mixing multi-layer
perceptrons (MLP-Mixers). Mixers have been subsequently
shown to be useful for multiple tasks [40, 46,6365 82].
However, Mixers do not work out-of-the box for video
enhancement, as (i) they lead to a significant regression
in quality (in our experiments in supplementary material)
compared to transformer-based approaches, and (ii) while
more efficient, they still do not yield real-time inference
on high resolution imagery. Also, videos are processed us-
ing transformers by either representing them as tubelets or
patch tokens [|1]. However, tubelet tokens [[1] and image to-
kens [14] can be complementary with different advantages
and disadvantages. Tubelet tokens can compactly repre-
sent spatio-temporal patterns. On the other hand, image
tokens or patch tokens extracted from an individual frame
represents only spatial features without spending capacity
on modeling motion cues. These issues motivate us in de-
veloping a new backbone for video enhancement with mix-
ers at its core while combining tubelets and image tokens in
a single efficient architecture.

An overview of ReBotNet can be found in Fig.[2] ReBot-
Net takes two inputs: the previous predicted frame (y;—1)
and the current frame (x;). We use an encoder-decoder ar-
chitecture where the encoder has two branches. The first
branch focuses on spatio-temporal mixing where we tok-
enize the input frames as tubelets and then process these
spatio-temporal features using mixers in the bottleneck.
The output features of this mixer block has information pro-
cessed along both the spatial and temporal dimensions. The
second branch extracts just the spatial features using lin-
ear layers from individual frames. These tokens contain
only spatial information as the frames are processed inde-
pendently. These spatial features are forwarded to another
mixer bottleneck block which learns the inter-dependencies
between these tokens. This mixer block captures tempo-
ral information by extracting the relationship between to-
kens from individual frames, thereby encoding the tempo-

ral dynamics. The resultant features from both branches
are added and are forwarded to a decoder which consists
of transposed convolutional layers to upsample the feature
maps to the same size as of the input. We output a single
prediction image (y;) which is the enhanced image of the
current frame (z).

3.2. Encoder and Tokenization

Tokenization is an important step in pre-processing data
for transformer-based methods as it allows the model to
work with the input data in a format that it can understand
and process [45]. For our network, we use two different
ways of doing tokenization: i) tubelet tokens and ii) image
tokens.

Branch 1 - Tubelet tokens: Tubelet tokens are extracted
across multiple frames, in our case, the current frame and
the previous predicted frame, and encode spatio-temporal
data. Convolutional layers can be advantageous in extract-
ing tokens as they can capture more informative features
compared to linear layers due to their inductive bias [76].
Hence, we stack the input images: w;_1, x; across the
channel dimension and directly forward them to ConvNext
blocks [39], which are more efficient and powerful than
vanilla convolutional layers. Each ConvNext block con-
sists of a depth-wise convolution layer [10]] with kernel size
of 7 x 7, stride 1 and padding 3 followed by a layer nor-
malization [2]] and a point-wise convolution function. The
output of this is activated using GeLU [22]] activation and
then forwarded to another point-wise convolution to get the
output. More details of this why this exact setup is fol-
lowed can be found in supplementary. We also have down-
sampling blocks after each level in the ConvNext encoder.
These tubelet tokens compromise the first branch of ReBot-
Net where we do spatio-temporal mixing. These tokens are
further processed using a bottleneck mixer to enhance the
features and encode more spatio-temporal information.

Branch 2 - Image tokens: The individual frames y;_1,
x; are from different time steps. Although tubelet tokens
encode temporal information, learning additional tempo-
ral features can only improve the stability of the enhanced
video and help get clearer details for enhancement. We do
this by extracting individual image tokens and learn the cor-
respondence between them. To this end, we tokenize the
images individually by converting them into patches and
using linear layers like in ViT [[14]]. In this branch, we use
linear layers instead of ConvNext blocks for the sake of effi-
ciency although ConvNext blocks extract more representa-
tive and useful features. The main goal of this block is to en-
sure that the temporal features of the input data remain con-
sistent. Note that high quality spatial features necessary for
enhancing spatial quality, is handled in the first branch. To
this end, the mixer bottleneck learns to encode the tempo-
ral information between these image tokens extracted from
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Figure 2. Overview of the proposed Recurrent Bottleneck Mixer Network. The inputs to the network are the previous frame prediction and
the current input frame. These are tokenized in two different ways: Tubelet tokens and image tokens . The tubelet tokens are processed
using a Mixer to learn spatio-temporal features while image tokens are processed using a Mixer to learn temporal features. These features
are passed through an upsampling decoder to get the output enhanced frame.

individual frames.

We ensure that the tubelet tokens and image tokens have
the same dimensions of N x C, where N is the number
of tokens and C' is the number of channel embeddings. To
achieve this, we max-pool image tokens to match the di-
mensions of tubelet tokens.

3.3. Bottleneck

The bottleneck of both the branches consist of mixer net-
works with the same basic design. The mixer network takes
in tokens 7" as input and processes them using two differ-
ent multi-layer perceptrons (MLPs). First, the input tokens
are normalized and then mixed across the token dimension.
The process can be summarized as:

Try = MLPry (LN (Tin)) + Tin, (D
where T7); represents the tokens extracted after Token
Mixing (TM), T;,, represents the input tokens, and LN rep-
resents layer normalization [2]. Note that there is also a skip
connection between the input to the mixer and the output
from token mixing MLP. Token mixing encodes the rela-
tionship between individual tokens. Afterwards, the tokens
are flipped along the C' axis and fed into another MLP to
learn dependencies in the C' dimension [62]. This is called

channel mixing and is formulated as follows:

Tout = MLPcy (LN (Trar)) + T, 2
where Ty, represents the output tokens and C'M denotes
channel mixing. The MLP block comprises of two linear
layers that are activated by GeLU [22]. The initial lin-
ear layer converts the number of tokens/channels into an
embedding dimension, while the second linear layer brings
them back to their original dimension. The selection of the
embedding dimension and the number of mixer blocks for
the bottleneck is done through hyperparameter tuning.

3.4. Recurrent training

Recurrent setups generally refer to a type of configura-
tion or arrangement that is repeated or ongoing [52]]. In real-
time video enhancement, the original video stream has to
be enhanced on-the-fly which means we have the informa-
tion of all the enhanced frame till the current time instance.
The enhanced frames from the previous time step has valu-
able information that could be leveraged for the current pre-
diction for increased efficiency. Leveraging previous frame
prediction can also help in increasing the temporal stability
of the predictions as the current predictions gets conditioned
on the previous predictions. Although it is possible to use
multiple previous frames in a recurrent setup, we have cho-
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sen to only use the most recent prediction for the sake of
efficiency.

In the following, we elucidate how we leverage the re-
current setup to output the enhanced frame. Let us define
the original input stream as X = {zo,x1,....,2¢} Where
X denotes the video and x denotes the individual frames.
The frames start from the initial frame g to the current
time frame z;. Similarly, we also define the enhanced video
stream represented as Y = {yo, y1, ...., Yr—1 } where ¥ de-
notes the enhanced video stream and y denotes the individ-
ual enhanced frames. These enhanced frames go from the
initial time step yo to the previous time frame y;_;. So,
to find the enhanced prediction of the current frame y;, we
make use of current degraded frame z; and the previous en-
hanced frame y;_;. These images are sent to the network to
output ;. In the context of training, a single feed forward
step involves using the input values x; and y;_1 to make a
prediction for the output value y;. When processing a video,
multiple feed forward steps are used in a sequential manner
to predict the output values for all frames in the video. Sim-
ilarly, during backpropagation, the gradients are propagated
backwards through the network, starting from the last frame
and moving towards the first frame of the video. Note that
there is a corner case for the first frame while predicting .
To circumvent it, we use just duplicate the first frame as the
initial prediction to kick-start the training.

4. Experiments and Results
4.1. Datasets

As we focus on the problem of generic video enhance-
ment of live videos, presence of multiple degradations is
very common. Also, a major use case for real-time video
enhancement is video conferencing where the video actu-
ally contains the torso/face of the person. To reflect these
real-world scenarios, we curate two datasets for the task of
video enhancement: i) PortraitVideo and ii) Full Video.
PortraitVideo: We build PortraitVideo on top of Talking-
Heads [72] which is a public dataset. Here, the frame is
fixed allowing only the movement of the head to be cap-
tured, which simulates a scenario where the camera is fixed
during video calls. The face region is then is cropped sim-
ilar to face image datasets like FFHQ [27]. Also, we note
that TalkingHeads consists of a lot of non-human faces like
cartoons and avatars as well. Further, a lot of videos are of
very low quality and hence unsuitable for training or eval-
uation of video restoration. So, we curate PortraitVideo by
skipping low quality videos and pick 113 face videos for
training and 20 face videos for testing. We fix the resolu-
tion of the faces to 384 x 384. The videos are processed
at 30 frames per second (FPS) with a total of 150 frames
per video. We use a mixture of degradations like blur with
varying kernels, compression artifacts, noise, small distor-

tions in brightness, contrast, hue, and saturation. The exact
details of these degradations can be found in the supple-
ment.
FullVideo: We develop this dataset using high quality
videos. The video IDs are taken from TalkingHeads dataset
however we do not use any of the pre-processing techniques
from the TalkingHeads dataset so that the original informa-
tion of the scene is maintained. We also manually filter to
keep only high quality videos. There are 132 training videos
and 20 testing videos, and all videos are 720 x 1280, 30 FPS
and 128 frames long. We apply similar degradations as Por-
traitVideo for this dataset. The major difference is that this
dataset is of a higher resolution and captures more context
around the face, including the speaker’s body and the rest
of the scene.

We tabulate the difference of our curated datasets with
existing datasets in the following Table I}
Table 1. Comparison of newly curated datasets with previous
datasets. Y=Yes / N=No

PortraitVideo/FullVideo | Existing Datasets

High Quality
Live Scenarios
Focus on Humans
Multiple Degradations

~oK
zZz~<

4.2. Implementation Details

We prototype our method using PyTorch on NVIDIA
A100 GPU cluster. ReBotNet is trained with a learning
rate of 4e~* using Adam optimizer, and a cosine anneal-
ing learning rate scheduler with a minimum learning rate of
le~7. The training is parallelized across 8 NVIDIA A100
GPUs, with each GPU processing a single video. The model
is trained for 500,000 iterations. For fair comparison with
existing methods, we only use the commonly used Charbon-
nier loss [3] to train all models. More configuration details
of the architecture can be found in the supplementary.

4.3. Comparison with previous works

We compare ReBotNet against multiple recent methods.
Recurrent Video Restoration Transformer (RVRT) [34] is
the current SOTA method across many tasks like deblur-
ring, denoising, super-resolution, and video-frame interpo-
lation. We also compare against Video Restoration Trans-
former (VRT) [33]], the SOTA convolution-based video
super-resolution method BasicVSR++ [8[], and the fastest
deblurring method FastDVD, as well as other recent works
like FR-VSR, RT-VD [53]], DAP [18], RSDN [25]], CKBG
[75] for fair comparison. We retrain all these methods on the
new datasets PortraitVideo and FullVideo using their pub-
licly available code.

Initially, we conducted experiments on the new datasets
PortraitVideo and FullVideo using the default configura-
tions of VRT, RVRT, BasicVSR++, and FastDVD, as pro-
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Table 2. Comparison of quantitative results of ReBotNet with previous methods. t represents the default configuration from paper and
public code. S, M, L represent the small (~10G), medium (~50G), and large (~400G) FLOPs regimes.

Method GFLOPs (})  Latency (in ms) (}) PSN%"E%*‘”\Q‘;‘;‘\’/I o PSNRF(%IV“;'ESOIM “
FastDVDNet [59] T | 367.81 36.23 2888 08516 2956 08577
VRT [33] T 2054.32 781.15 3170 08835 3349 09140
BasicVSR++ [7] 157.53 49.55 3126 08739 3310 09078
FR-VSR [50] 1 86.5 10.58 2795 08498  29.12  0.8502
RT-VD [53] 1 201.89 20.99 3052 08698 3200  0.8956
DAP [18] t 330.0 26.3 3046 08681 3207  0.8885
RSDN [25] t 7132 15.9 3168 08805 3324 09147
CKBG [75) t 124.63 6.52 3103 08705 3294 09057
RVRT [34] £ 396.29 52.30 3192 08870 3379 09191
FastDVDNet (S) 15.85 30.51 2797 08384 28.16 08459
VRT (S) 15.22 48.73 30.80 08681 3185  0.8901
BasicVSR++ (S) 19.05 29.08 3090 08705 3278 0.8950

RVRT (S) - - ; ; - -

RebotNet () 13.02 13.15 3125 08778 3345 09113
FastDVDNet (M) 6451 33.89 2852 08405 2935 08528
VRT (M) 60.18 58.89 3098 08701 3235  0.8987
BasicVSR++ (M) 60.93 41.18 3119 08729 33.04 09051
RVRT (M) 62.42 35.93 3160 08821 3359 09145
RebotNet (M) 56.06 15.02 31.85  0.8865 3345 09168
FastDVDNet (L) 416.90 37.14 2893 08537 2968 0.8593
VRT (L) 41932 91.74 3109 08729 3268 09014
BasicVSR++ (L) 403.22 73.32 3140 08775 3331 09126
RVRT (L) 396.29 52.30 3192 08870 3379 09191
RebotNet (L) 363.76 19.98 3213 08902 3365 09199

vided in their publicly available code as seen in the first few
rows of Table[2] It is important to mention that these models
have different levels of floating-point operations (FLOPs).
Therefore, to ensure a fair comparison, we assessed the per-
formance of ReBotNet in different FLOP regimes in com-
parison to the previous methods. This approach helped us
gain a comprehensive understanding of the performance of
these models across different levels of FLOPs. We pick the
embedding dimension across different levels of the network
as the hyper-parameter to change the FLOPs [32]. We ac-
quire different configurations of FLOPs regimes of Small
(10Gs), Medium (50Gs), and Large (400Gs). The exact
configuration details can be found in the supplementary ma-
terial. Note that RVRT does not have a S configuration as
it is infeasible to scale down the model near 10 GFLOPs
due to its inherent design. It should also be noted that for
each configuration, we ensured that the computational com-
plexity of ReBotNet remained lower than that of the other
models being compared. To provide an example, when eval-
uating models in the medium regime, we compared ReBot-
Net, which had a complexity of 56.06, with VRT, which
had a complexity of 60.18, and RVRT, which had a com-
plexity of 62.42. In all of our experiments, we used a con-
sistent number of frames, which was set to 2 for all mod-
els except for FastDVD, which was designed to process 5
frames. To evaluate the models, we compute the PSNR and
SSIM for each individual frame of a video, and then aver-
age these values across all frames within the video. We then

calculated the mean PSNR and SSIM across all videos and
present these results in Table [2| Additionally, we measure
the inference time for each method by forwarding 2 frames
of dimensions (384,384) through the network. To obtain
the latency, we perform GPU warm-up for 10 iterations and
then feed-forward the clip 1000 times, reporting the aver-
age. The latency was recorded on a NVIDIA A100 GPU.

Table 2] demonstrates that our method outperforms most
previous approaches in terms of PSNR and SSIM, while us-
ing less computational resources across most regimes for
both datasets. A significant advantage of our model is its
fast inference speed, which is 2.5x faster than the previ-
ous best performing method, RVRT. These gains can also
been seen in the chart illustrated in Figure [5[(a). We also
note that we get better results than the original implemen-
tations which have way more computations (as seen in first
few rows of Table [2). The efficiency of ReBotNet comes
because of its effective design while also employing to-
ken mixing mechanisms by using mixers. The main contri-
bution towards computation in transformer-based methods
like RVRT and VRT come from the self-attention mecha-
nism acting at original scale of the image. Note that we
do not use self-attention but replace it with a careful design
choice that matches (or even exceeds) its performance.

In Figures [3| and 4] we present qualitative results from
PortraitVideo and FullVideo dataset. It can be observed
that our method is better than previous methods in terms
of quality. The enhanced details are much visible in ReBot-
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net when compared to other methods. The results are taken
from the medium configurations of each model. More re-
sults can be found in the appendix.

4.4. Comparison on public datasets

We also conduct experiments on single degradation pub-
lic datasets like DVD, GoPro and report the results in Table
[l For this, we use ReBotNet (L) and compare against the
default configurations of previous methods. It can be ob-
served that we obtain a competitive performance in spite of
low latency of our model, which can be seen in Table@

Table 3. Comparison of ReBotNet with previous methods on pub-
lic datasets. Numbers correspond to PSNR / SSIM. Please note
that we achieve competitive performance while being efficient.

Method DVD [57] GoPro [42]
DeepDeblur [42] | 29.85/0.8800 | 38.23/0.9162

EDVR [73] 31.82/0.9160 | 31.54/0.9260

TSP [43] 32.13/0.9268 | 31.67/0.9279

PVDNet [54] 32.31/0.9260 | 31.98/0.9280

VRT [33] 34.24/0.9651 | 34.81/0.9724

RVRT [34] 34.30/0.9655 | 34.92/0.9738

ReBotNet 34.35/0.9670 | 34.98 /0.9740

4.5. User Study

To validate the perceptual superiority of ReBotNet for
video enhancement, we conducted a user study on the M
configuration models on PortraitVideo dataset. We com-
pare our approach to each competing method in a one-to-
one comparison. We recruited experts with technical expe-
rience in conference video streaming and image enhance-
ment. Each expert evaluated on average 80 video compar-
isons across four baseline methods. For each comparison,
we showed output videos of our method and one competing
method, played both videos simultaneously and asked the
user to rate which video had a higher quality with the corre-
sponding scores ("much worse”, -2), ("worse”, 1), ("same”,
0), ("better”, 1) and ("much better”, 2). We calculated the
mean score and 95% confidence intervals for paired samples
and report them in Table[d The user study demonstrates the
superiority of our method. Despite RVRT being the closest
second, our method is still preferred over it while also being
more efficient and faster.

Table 4. User study results on PortraitVideo dataset.

Method Preference for ReBotNet | 95% Confidence Interval
FastDVDNet + 1.83 0.059
VRT + 1.61 0.088
BasicVSR++ + 1.63 0.105
RVRT + 0.08 0.073

5. Discussions

FPS and Peak Memory Usage: In Figure [5| we provide
a comparison of ReBotNet’s frames per second (FPS) rate
and peak memory usage with previous methods. For this
analysis, we consider feed forward of 2 frames of resolu-
tion 384 x 384 and consider RebotNet (L) configuration
with original implementations for the previous methods. It
can be observed that our method has a FPS that is real-time
while also not occupying much memory. We note that 30
FPS is considered real-time for applications like video con-
ferencing. Also, ReBotNet has one of the least memory
requirements compared to other methods due to its efficient
design and implementation.

Analysis on ReBotNet: In order to elucidate our de-
sign decisions for ReBotNet, we carry out a set of exper-
iments using various parameter configurations, which af-
fect both the performance and computational aspects of
the model. These experiments are conducted on the Por-
traitVideo dataset, using ReBotNet (M) as the base config-
uration and are reported in Table 5] We analyze the per-
formance along with computation and latency on differ-
ent configurations of embedding dimension in Mixer (Table
[la), depth of the bottleneck (Table [5]b), and the number of
frames (Table[5c).

Ablation Study: In order to investigate the contribution
of each component proposed in the work, we conduct an
ablation study using the PortraitVideo dataset. The results
of these experiments are shown in Table @ First, we use
the Tubelet tokens extracted from spatio-temporal branch
where we use ConvNext encoder directly with a decoder to
get the prediction. Then, we consider a configuration where
we use image tokens extracted using linear layers from the
spatial branch directly forwarded to decoder to get the pre-
diction. This configuration obtains the best latency how-
ever suffers from a significant drop in performance. Next,
we fuse features extracted from both these branches and use
the common decoder. This shows a relative improvement in
terms of performance without much addition in computa-
tion. Note that here the FLOPs of fused configuration is not
direct addition between FLOPs of tubulet tokens and image
tokens as the decoder’s computation was common in both
the previous setups. Next, we add the bottleneck mixers
which obtains an improvement in performance with little
increase in compute. Finally, we add the recurrent train-
ing setup which adds no increase in compute but improves
the performance. Our findings indicate that each individual
component in ReBotNet plays a vital role.

6. Conclusion

In this paper, we proposed a novel approach for real-time
video enhancement by proposing a new framework: Recur-
rent bottleneck mixer network (ReBotNet). ReBotNet com-
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Figure 3. Qualitative Results on PortraitVideo dataset. Please zoom in for better visualization.

Degraded Frame
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Figure 4. Qualitative Results on FullVideo dataset. Please zoom in for better visualization.

Table 5. Analysis on the (a) number of embedding dimension in Mixer (b) depth of the bottleneck (c) number of frames taken.

Embedding | PSNR (1) SSIM (1) GFLOPs (]) Latency () Depth | PSNR (1) SSIM (1) GFLOPs ({) Latency ({) Frames | PSNR (1) SSIM (1) GFLOPs ({) Latency ({)
128 31.79 0.8851 55.50 14.85 2 31.83 0.8864 55.50 14.67 1 29.56 0.8586 55.50 14.85
256 31.85 0.8865 56.06 15.02 4 31.85 0.8865 56.06 15.02 2 31.85 0.8865 56.06 15.02
512 31.90 0.8869 56.60 15.27 6 31.87 0.8866 57.14 1531 3 31.88 0.8871 57.14 15.16
728 31.89 0.8869 57.14 15.36 8 31.81 0.8861 58.08 16.34 4 31.92 0.8874 58.08 15.40
(@) (b) ©
— S — Table 6. Ablation study on PortraitVideo dataset.
e g N
q Tubelet Tokens | Image Tokens | Bottleneck Mixer | Recurrent Setup | PSNR () SSIM (1) GFLOPs () Latency (1)
Basicvs -+ | ' Basicvsk [ % x x x 3124 08768 54.94 1427
' ’ x v x x 2801 08295 41.94 5.63
R i T — v v x x 3141 08792 55.50 14.67
renone | ReBoiNer [ v v v x 3159 08822 56.06 15.02
—————— oy S —— v v v v 3185 08865 56.06 15.02
Frames per second (FPS) Peak Memory Usage (in GB)
(a) (b)

Figure 5. (a) Comparison chart of ReBotNet (L) against default
configurations of previous methods for Frames Per Second (FPS)
and (b) Peak Memory Usage (in GB), as measured on NVIDIA
A100 GPU for 2 x 3 x 384 x 384 input resolution.

bines the advantages of both recurrent setup and bottleneck
models, allowing it to effectively capture temporal depen-
dencies in the video while reducing the computational com-
plexity and memory requirements. Further research could

explore the potential applications of the proposed network
for other video processing tasks.
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