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Abstract

The importance of quantifying uncertainty in deep net-
works has become paramount for reliable real-world appli-
cations. In this paper, we propose a method to improve un-
certainty estimation in medical Image-to-Image (I2I) trans-
lation. Our model integrates aleatoric uncertainty and em-
ploys Uncertainty-Aware Regularization (UAR) inspired by
simple priors to refine uncertainty estimates and enhance
reconstruction quality. We show that by leveraging simple
priors on parameters, our approach captures more robust
uncertainty maps, effectively refining them to indicate pre-
cisely where the network encounters difficulties, while be-
ing less affected by noise. Our experiments demonstrate
that UAR not only improves translation performance, but
also provides better uncertainty estimations, particularly in
the presence of noise and artifacts. We validate our ap-
proach using two medical imaging datasets, showcasing its
effectiveness in maintaining high confidence in familiar re-
gions while accurately identifying areas of uncertainty in
novel/ambiguous scenarios.

1. Introduction

The significance of quantifying the uncertainty embed-

ded in the learning process of deep neural networks has be-

come increasingly important for identifying the blind spots

[20] and biases [13] in models before their application in

the real world. Despite the quest for learning from datasets

that are larger, more diverse and representative, it has be-

come evident that not all data points will adhere to the as-

sumed distribution, leaving room for potential inaccuracies

and biases in model predictions. Model uncertainty as a

measure can serve to be a very useful tool for identifying

the limitations to our model predictions and accounting for

instances where real data may lie outside the learning dis-

tribution. Considering critical application domains such as

healthcare, military, criminal justice or automated driving

for deep learning models, model performance, albeit high

in isolation, is being considered grossly insufficient for their

adoption in practice [26]. The inability to isolate scenar-

ios where a model isn’t confident about its decision and the

causes underlying that poses a significant barrier to trust and

reliability in these safety-critical domains.

This article discusses uncertainty in the context of med-

ical I2I translation. I2I is the problem of transforming an

image from one domain into a corresponding image in an-

other domain while maintaining semantic consistency and

information preservation during translation. In traditional

endoscopy, narrowband imaging (NBI) is used alongside

standard imaging for enhanced visualization of abnormal-

ities. However, if a region is not captured with NBI dur-

ing the procedure, the enhanced information is unavailable

post-procedure, limiting its use in retrospective diagnosis.

Models that translate standard images to NBI are therefore

critical, offering a valuable tool for post-hoc analysis when

NBI was not captured. While similar functionality would

be highly beneficial in capsule endoscopy, constraints like

device size and battery limit real-time acquisition. Vir-

tual chromo-endoscopy (e.g., FICE) can be applied post-

capture to enhance abnormalities [25], making I2I transla-

tion particularly relevant in endoscopic imaging. Despite

advancements, deep learning methods for I2I translation of-

ten produce outputs with inherent uncertainties, particularly

in ambiguous or unseen scenarios. Moreover, attempts at

generalization exacerbates this uncertainty, as variations in

datasets or slight shifts in capture modalities can rapidly es-

calate uncertainty levels. Since, medical image acquisition

is often prone to noise and modality-specific artifacts, it is

paramount to faithfully quantify and convey model uncer-

tainty to ascertain the extent of generalization achievable.

Delineating the model’s confidence levels and identifying

domain gaps where it struggles, allows to effectively dis-

cern where and how to apply the model.

Model uncertainty is broadly composed to two types,

the epistemic or uncertainty regarding the model parame-

ters and aleatoric resulting from noise inherent in the data

[9, 17]. The epistemic uncertainty assumes a prior distri-

bution over model parameters and often approximated as

the variance in predictions from multiple forward passes

through the network with different dropout masks applied

for example. The aleatoric uncertainty, on the other hand,

assumes a distribution on the models outputs and is approxi-

mated using Maximum a Posteriori (MAP) estimation [21].
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It has been shown that incorporating aleatoric uncertainty

during learning can provide useful guidance for learning,

especially in high-data regimes [17].

In this work, we aim to develop an end-to-end model for

I2I translation that incorporates aleatoric uncertainty. Our

primary goal is to demonstrate that imposing regulariza-

tion constraints on the assumed prior distribution can im-

prove estimation of aleatoric uncertainty during the transla-

tion process. Additionally, we show that this regularization

not only provides more robust uncertainty maps but also im-

proves the overall reconstruction quality (Table 5) , affirm-

ing that uncertainty-estimation effectively serves as guid-

ance for improved translation [17]. This approach offers

an advantage over previous multi-stage architectures [29]

by eliminating the need for sequential uncertainty estimates

between models. Instead, we aim to incorporate a cost-

effective regularization term directly into the optimization,

facilitating concurrent and mutually beneficial refinement

of uncertainty and image translation within a single model.

Our main contributions are (a) a simple and model-

agnostic Uncertainty-Aware Regularization (UAR), and (b)

a new paired dataset for I2I translation from RGB to FICE

in capsule endoscopy. Despite its simplicity, UAR not only

improved translation performance (Sections 4 and 5) but al-

lows a more faithful estimation of data-driven uncertainty in

the face of commonly encountered noise-corruptions (Sec-

tion 4). Finally, UAR shows improved uncertainty pre-

diction in the presence of unforeseen structures/artifacts

(Section 4.1). To understand the effects of various design

choices, we conduct ablation experiments in Section 5.

2. Related Work
Medical image-to-image translation has seen significant

advancements through the use of generative adversarial net-

works (GANs) and its variants. Typical application in medi-

cal I2I include modality translation [5, 32], image synthesis

[35], segmentation [22] and super-resolution [12]. Modal-

ity translation using CycleGAN [36] has been particularly

influential, enabling unsupervised translation by employing

cycle consistency losses to ensure that translated images can

be mapped back to the original modality. Similarly, condi-

tional GANs [15] have allowed generation preconditioned

on inputs such as anatomical labels [4], modality [8] or

priors useful to generation [3]. Another class of models

includes diffusion models [14, 16] that utilize parameter-

ized Markov chains to iteratively refine data, optimizing the

lower variational bound on the likelihood function [18, 10].

In WCE, image translation has been most commonly ap-

plied for image super-resolution [2, 27]. Uncertainty quan-

tification in medical I2I has been relatively less explored.

In [23] authors argue the usefulness of uncertainty estima-

tion in MR to CT translation for detecting synthesis fail-

ures. They use traditional formulations where epistemic

uncertainty is estimated by sampling from a variational dis-

tribution using dropout, and the aleatoric component is de-

rived from the variance of the predicted distribution. Au-

thors in [6] and [7] utilize variations of test-time augmen-

tation for estimating uncertainty. Ayhan et al. [6] generate

augmented examples for each test case to approximate the

predictive distribution, whereas Baltruschat et al. leverage

predictions from multiple 2D slicing planes instead of aug-

mentations for the same goal. Our work is most closely re-

lated to [29, 30, 28] that model predictive distributions using

generalized Gaussian distributions. However, unlike [29],

which employs multiple sequential GANs to iteratively re-

duce aleatoric uncertainty, we introduce a lightweight reg-

ularization term that achieves this within a single model.

As a result, our uncertainty estimates can differentiate be-

tween familiar versus newer or significantly larger sources

of uncertainty, overcoming the drawback of previous meth-

ods that treat all uncertainty sources equally.

One of the primary challenges in medical I2I translation

problems is the inherent ambiguity associated with image

capturing mechanisms and its effect on a model’s perfor-

mance. Consider the case of WCE where images are often

captured using low-resolution cameras under myriad distor-

tions [33, 1], requiring significant post-processing before

they are suitable for diagnosis. Noise and compression ar-

tifacts encountered during transmission further degrade the

quality [11]. The cumulative impact of these factors can

manifest subtly as deviations from the anticipated model

performance, potentially leading to misdiagnoses. As dis-

cussed prior, one approach to mitigating this is to quantify

the uncertainty associated with model predictions. Mea-

suring the uncertainty allows detecting unaccounted shifts

that can be addressed proactively. Despite relevance, uncer-

tainty quantification and refinement is relatively nascent in

I2I translation problems.

3. Methodology
We introduce both the conventional and probabilistic for-

mulations of paired I2I translation, highlighting their limi-

tations. Subsequently, we present the proposed UAR for

improving uncertainty estimation and guidance.

3.1. I2I Translation Formulation

Consider a collection of input images from a domain

A denoted as XA := {xa
1 , x

a
2 , ..., x

a
n}, and another set of

paired images originating from a domain B, expressed as

XB := {xb
1, x

b
2, ..., x

b
n}. The dataset D comprises pairs

(xa
i , x

b
i ) drawn from the respective domains A and B. The

objective is to learn the underlying conditional distribution

PB|A facilitating the translation of images from A → B.

As shown in Fig.1, this can typically be achieved by

minimizing the point estimate for per-pixel residual at jk,

δjk = ||x̂b
jk−xb

jk||2 between the reconstructed and ground-
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Figure 1. Non-probabilistic image translation (green) optimizes point-estimates for the residuals between the predicted and the target

images. On the contrary, the probabilistic approach (orange) models the residuals with a distribution, allowing the variance of errors to

change spatially. Our method takes this a step further (purple) by regularizing the predicted variances (or distribution parameters) to achieve

more precise uncertainty estimation (The discriminator is omitted from the diagram for simplicity).

truth image from domain B. However, in pixel reconstruc-

tion tasks, the solution space is often multimodal, meaning

that multiple outputs can yield acceptable solutions. Thus,

relying solely on point-wise estimation fails to adequately

represent the distribution PB|A over the output space, as

well as estimate the uncertainty associated with the recon-

struction process. The probabilistic remedy for this is to

relax the constraint on the residual by modeling it as a distri-

bution instead of a point estimate, the optimal parameters of

which are learned from the data, thus allowing an estimation

of the uncertainty. As an example, consider a deep learning

model F(D; θ) parametrized by θ to be trained for translat-

ing images from domain A → B. While one conceivable

distribution for δ might be an isotropic standard Gaussian,

presuming a fixed variance not only imposes an assump-

tion of independence and identical distribution (i.i.d.) on the

residuals, which can be easily compromised by slightly out-

of-distribution samples [17, 29], but also eliminates the abil-

ity to model heteroscedasticity in predictions. Alternatively,

the distribution over δ can be heteroscedastic Gaussian [29]

with zero mean and spatially varying-learnable standard de-

viation σjk as in Eq. 1,

x̂jk = xjk+δjk, δjk ∼ N (0, σ2
jk); x̂jk ∼ N (xjk, σ

2
jk)
(1)

The parameters of the network F(D; θ) can be optimized

by maximizing the likelihood given by:

L(D; θ) :=

n∏
i=1

PB|A(xb
i ; {x̂b

i , σ̂i})
θ∗ := argmax

θ
L(D; θ)

= argmax
θ

n∏
i=1

PB|A(xb
i ; {x̂b

i , σ̂i})

θ∗ = argmax
θ

n∏
i=1

1√
2πσ̂2

i

e
− |x̂b

i−xb
i |2

2σ̂2
i

(2)

where we omit spatial indices jk for simplicity. The nega-

tive log likelihood is,

θ∗ = argmin
θ

n∑
i=1

{ |x̂b
i − xb

i |2
2σ̂2

i

+
log(σ̂2

i )

2

}
. (3)

Assuming that the residuals follow a normal distribu-

tion simplifies uncertainty estimation, as the per-pixel vari-

ance σ2
i itself is the aleatoric uncertainty in prediction.

This formulation for modeling aleatoric uncertainty can be

improved by assuming a more lenient Generalized Nor-

mal Distribution (GND) with zero mean over the residu-

als [29, 28]. The parameters governing the shape (β) and

scale (α) of the predicted distribution not only accommo-

date the heteroscedastic variations in residuals, but also en-

able heavier-tails, which are beneficial for handling outliers.

δjk ∼ GND(δ; 0, αjk, βjk) (4)

As before, the likelihood can be written as:

L(D; θ) :=

n∏
i=1

PB|A(xb
i ; {x̂b

i , α̂i, β̂i})
θ∗ := argmax

θ
L(D; θ)

θ∗ = argmax
θ

n∏
i=1

β̂i

2α̂iΓ(
1
β i
)
e
−
(

|x̂b
i−xb

i |
α̂i

)β̂i

(5)

Therefore, the negative likelihood is,

θ∗ = argmin
θ

n∑
i=1

⎧⎨
⎩
( |x̂b

i − xb
i |

α̂i

)β̂i

− log
β̂i

α̂i
+ log Γ(

1

β̂ i

)

⎫⎬
⎭

(6)

We refer to this loss as the negative likelihood loss Lnll,

in next sections. The aleatoric uncertainty for x̂b
i can be

98783967



Without Uncertainty-aware regularization

Effect of Uncertainty-aware regularization

 

 

Figure 2. The figure shows the shape β parameter and predicted aleatoric uncertainty of an image at different epochs during the training.

Without regularization (first row), the variances in the predictions (uncertainty) remain relatively the same throughout training. In contrast,

with regularization (second row), the predicted uncertainty gets progressively less noisy and more semantically refined over the course of

the training.

written down as the variance of this distribution, given

by
α̂2

i Γ(3/β̂i)

Γ(1/β̂i)
. The generalized normal distribution proves

highly effective in encapsulating uncertainties arising from

shifts due to noise and changes in modality, which often

manifest as outliers within datasets. The loss in Eq.6 con-

sists of a fidelity term along with general constraints on the

shape and scale of the residual distribution to prevent di-

vergence to infinity. But, given that I2I translation can be

characterized by a lack of a unique stable solution, incorpo-

rating explicit constraints on the parameters of the residual

distribution into the objective function, typically in the form

of a penalty benefits to progressively refine uncertainty es-

timation. This is discussed in the next section.

3.2. Uncertainty-Aware Regularization

We operate under the benign assumption that for good

reconstructions pixel-residuals exhibit piece-wise continu-

ity similar to images, implying that since adjacent pix-

els within one image region show minimal discrepancies

their residuals should also be similar, unless influenced by

noise. Therefore, large residuals can come from pixels of

two types, the pixels that the network actually finds hard

to reconstruct to due to lack of knowledge or data drifts,

and, the spurious pixels that might not strictly correspond

to difficulty in reconstruction but end up having high val-

ues. To illustrate this better, we simulate this effect by in-

jecting a small amount of noise in an image (Fig. 3), such

that the corruption is visually imperceptible in the image

and predict the uncertainty. As expected, the aleatoric un-

certainty map is adversely affected, even with comparable

reconstructions. Although sensitivity to noise in input data

is generally advantageous, excessive sensitivity within the

anticipated noise spectrum can result in unreliable and in-

accurate uncertainty predictions. We propose to suppress

this spurious component for a more accurate estimation of

uncertainty by penalizing large differences in the predicted

residual distributions for neighboring pixels.

Original Small Noise

Figure 3. Uncertainty estimate is sensitive to small changes in in-

put and network parameters, resulting in potentially noisy maps.

This prior assumption can be incorporated by adding a

penalty/regularization term that discourages significant de-

viations between the predicted residual distributions of ad-

jacent pixels, inline with the expectation that neighboring

pixels in an image are likely to have similar residuals, unless

there is noise or an edge. Further, while enforcing the above

constraint, it is crucial to prevent accidentally suppressing

those deviations that occur as a result of the network’s inca-

pacity/lack of knowledge to reconstruct an input. This is the

interesting case when the network is unsure how to recon-

struct the output for one or more regions. Thus, we propose

to impose a total-variation based penalty on the estimated

shape parameter β̂ during the learning process, to smooth

out noise in the estimated parameters across neighboring

pixels while preserving regions of true uncertainty.

For a predicted β̂i image corresponding to input xb
i , the

total variation is shown in Eq. 7.

TV (βi) =

∫
v

|∇β̂i(v)|dv (7)
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The approximation in two dimension yields,

Rβi
=

∑
jk

√
(β̂ij+1k − β̂ijk)2 + (β̂ijk+1 − β̂ijk)2 (8)

To prevent derivative singularity, a small positive constant

ε = 10−7 is added, introducing some blurring,

Rβi =
∑
jk

√
ε2 + (β̂ij+1k − β̂ijk)2 + (β̂ijk+1 − β̂ijk)2

(9)

Fig.2 shows the impact of Eq.9 on uncertainty-estimation

over the course of training, highlighting in contrast to its

absence. Without regularization, as expected although the

parameters α and β are predicted, they are not subsequently

optimized, even as the image reconstruction continues to

improve (due to pixel-wise and GAN loss terms in the ob-

jective, equations 10-12). On the other hand, in the regu-

larized variant, residual errors continue to reduce the in tan-

dem with optimizing for parameters α and β, resulting in

cleaner and visually more interpretable uncertainty maps.

One notable effect of the UAR penalty on the map is the

accentuation of edges around uncertain structures, owing to

the edge-preserving nature of total-variation. This facili-

tates visual interpretation of uncertainty maps, as they cor-

respond to image structures and their uncertainty levels.

Model

Our model is composed of a single conditional GAN

consisting of a generator G(·; θG), and a discriminator

D(·; θD). The discriminator follows the commonly used

patch architecture [15, 18] while the generator is based on

U-Net [24]. Like [29], the generator outputs spatially vary-

ing α and β, along with the output image from domain B.

In addition to the negative log likelihood loss (Eq. 6) and

chosen variation-based regularization (Eq. 8), the genera-

tor is trained using the adversarial loss Ladv defined as a

mean-squared error between the discriminators predictions

for the generated image (Eq. 10) against the label vectors

of ones. This formulation is an alternative to the commonly

used cross-entropy loss.

Ladv =
1

n

∑
i

MSE(x̂b
i , 1) (10)

Finally, an additional L1-fidelity term, L1 = |xb
i − x̂b

i | is

added to enforce pixel-level reconstruction fidelity between

the image and its reconstruction. Thus, the total loss for the

generator is given by

LG = wL1
L1 + wadvLadv + wnllLnll + λRβi

(11)

where wL1 , wadv , wnll and λ are the respective weights for

each term. The discriminator is trained using the above-

mentioned mean-squared error, with target vectors one for

real images and zeros for the generated images.

LD =
1

2

[
1

n

∑
i

MSE(x̂b
i , 0) +

1

n

∑
i

MSE(xb
i , 1)

]
(12)

3.3. Training Details and Evaluation Metrics

We test UAR on two datasets, a new WCE dataset and

a public colonoscopy CPC-paired dataset [19]. From the

WCE dataset, 5,000 images were utilized for training, and

5,000 for validation. All results are reported on a test-

set of another 5,000 image pairs, which is further divided

into three subsets for comprehensive evaluation. The train-

ing and validation images are sourced from WCE videos

of seven patients, while the test images are obtained from

three new patients, potentially containing new or different

abnormalities. The hyperparameters optimized on the WCE

dataset were also effective for the CPC-paired dataset. Con-

sequently, the CPC-paired dataset was split into training and

testing subsets (80:20), with results reported on the test set.

Both the discriminator and generator utilize the Adam

optimizer with an initial learning rate of 10−4, following a

cosine annealing schedule for learning rate adjustment. The

outputs of the discriminator are passed through an average

pooling layer before applying the MSE loss (equations 10

and 12). We found that results improved when the variation-

based regularization (Eq. 8) was activated a little later in the

initial learning phase, giving the network a chance to predict

unregularized values for α and β. Thus, the total variation

regularization is activated around epoch 5. Through exper-

imentation, we found that a value of 10−12 for the regular-

ization weight, λ in Eq. 11 yielded satisfactory results, with

room for further optimization and performance improve-

ments (more details in Section 5). Other weights in Eq.11

are wL1 = 1, wadv = 10−3 and wnll = 10−4. All models

were trained with an image size of 490 × 490 and a batch

size of 4, using twin-titan RTX GPUs with 48 GB of RAM,

achieving a processing speed of approximately 20 images

per second. The UAR term can be integrated with minimal

computational overhead, as it involves only element-wise

operations on the grayscale maps of β resulting in execu-

tion speeds comparable to those of L1 loss.

To assess the quality of the generated images, we re-

port the results on four metrics, namely Peak Signal-to-

Noise Ratio (PSNR), Structural Similarity Index (SSIM)

[31], Relative Root Mean Squared Error (RRMSE) and

Learned Perceptual Image Patch Similarity (LPIPS) [34].

While, SSIM, PSNR and RRMSE are more common, we

use LPIPS additionally as it has shown to correlate better

with human visual perception [34] over pixel-wise metrics.

3.4. Dataset

In this work, we introduce a new paired image-to-image

translation dataset for capsule endoscopy. The dataset fa-
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Noise, 2 = 0.0001 Noise, 2 = 0. Noise, 2 = 0.1

b

Figure 4. Impact of noise on uncertainty prediction and image reconstruction. The figure illustrates the impact of varying levels of Gaussian

noise on image reconstruction and predicted aleatoric uncertainty. Row (a) depicts the non-regularized version, whereas row (b) shows

the regularized variant. In the presence of noise, the non-regularized version is more significantly affected, with uncertainty maps rapidly

diverging from the original regions of uncertainty. In contrast, the regularized version demonstrates greater robustness to noise.

cilitates the translation between original WCE images and

their corresponding Flexible Spectral Imaging Color En-

hancement (FICE) mode images, and vice versa.

The images were collected during capsule endoscopy tri-

als conducted on patients at Innlandet Hospital, Norway.

The trials involved the use of a capsule endoscope to capture

images of the gastrointestinal tract in established patients,

which were later converted to their corresponding FICE ver-

sions using a WCE diagnostic software called rapid reader.

The dataset comprises over 15,000 pairs of carefully curated

WCE images, which can be employed for paired as well as

unpaired image-translation methods. The dataset is avail-

able at https://doi.org/10.18710/BSXNA1.

4. Results

This section presents the qualitative and quantitative

evaluation of our method on the two datasets. The approach

is tested on three types of commonly occurring noises:

Gaussian, Uniform and Impulse (also called salt and pep-

per noise) at different levels. The baseline corresponds to

I2I-translation without regularization as in [29].

Fig.4 shows the qualitative effect of increasing levels

of noise on the predicted uncertainty and reconstruction.

Comparing the reconstructed image, it is seen that the reg-

ularized variant results in a more visually coherent recon-

struction even at high noise levels, as compared to the non-

regularized method.

Fig.5 shows, the residual errors and the uncertainty maps

derived from the two methods, under the impact of noise.

As seen in columns 4 and 7 (σ2), UAR generates less

noisy uncertainty maps, consistent with the distinctive fea-

tures within the images, while reducing the residual errors

(columns 3 and 6 (||x− x̂||2)).

Given the consistent capture modality and similar pa-

tient population, the primary source of noise in the data

is the added noise itself. If the predicted uncertainties ac-

curately reflect this, they should be low for familiar image

structures and higher in noise-affected regions. Uncertainty

maps generated using UAR adhere to this expectation. Con-

versely, in the absence of regularization, the uncertainties

are uniformly high, obscuring relative differences in uncer-

tainty and hindering interpretability. Further, we analyze

the quantitative impact of UAR on reconstruction quality in

Table 1 and 2. It is seen that the effect of UAR is overall

positive on image reconstruction with equivalent or better

SSIM and PSNR values, across different noise types and

levels. The regularization also consistently improves the

LPIPS and RRMSE metrics, across both datasets.

4.1. Impact of Artifacts

Additionally, we evaluate the performance of uncertainty

estimation by systematically introducing more pronounced

artifacts into the image. Fig.6 illustrates images with cir-

cular artifacts. The UAR variant prominently displays high

uncertainty across the entire artifact region, with compar-

atively lower uncertainties in other areas of the image. In

contrast, the baseline method fails to differentiate the net-

work’s confidence between these two regions effectively.

Fig.7 replaces the circular artifact with a ring artifact to

examine behaviors near the artifact boundaries. Here again,

the baseline method significantly underestimates the uncer-

tainty associated with the artifact, whereas UAR accurately

delineates uncertainty regions with precise boundaries (no-

tice last row in Fig.7).
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Figure 5. Qualitative Comparison. As can be seen from columns 3

and 6, while the regions of residual errors are consistent between

the regularized and non-regularized variant, UAR shows consis-

tently low residual errors. Correspondingly, the uncertainty maps

are less-noisy and more structurally coherent.

5. Ablation

Ablation I: Other variation-based losses. Given that

the primary goal of the regularization term is to attenuate

spurious variances between nearby pixels, other types of

variation-based losses are also conceivable. We experiment

with two other variations, and analyze their effect on the

uncertainty estimation. We hypothesize that, at a minimum,

imposing similar penalties should not negatively affect the

reconstruction quality for more faithful uncertainty maps.

One such penalty could be simply to penalize the squared

L2-norm of gradients of the β map. This modifies Eq.9 so

that it is differentiable and avoids singularity. However, it

comes at the cost of reduced invariance to sharp features, in

other words it introduces slight smoothing in the uncertainty

map. This variant is referred to as UARL2.

Rβi =
∑
jk

(
(β̂ij+1k − β̂ijk)

2 + (β̂ijk+1 − β̂ijk)
2

)
(13)

Next, we test the regularization of the anisotropic variant of

total variation. This is the L1-norm on the gradients of βi

Approach SSIM ↑ PSNR ↑ LPIPS ↓ RRMSE ↓

-
Baseline 0.925 28.714 0.128 0.174

UAR (Ours) 0.931 29.34 0.126 0.148

G
au

ss
ia

n

N
(0
,0
.0
01

)

Baseline 0.639 26.610 0.275 0.212

UAR (Ours) 0.650 27.04 0.261 0.204

N
(0
,0
.0
1)

Baseline 0.310 22.240 0.452 0.399

UAR (Ours) 0.309 22.023 0.431 0.372

U
n
if

o
rm

U(
0,
0.
1) Baseline 0.680 27.007 0.287 0.212

UAR (Ours) 0.695 26.421 0.268 0.208

U(
0,
0
.0
1) Baseline 0.912 28.14 0.135 0.173

UAR (Ours) 0.928 29.38 0.134 0.161

Im
p
u
ls

e

I(
0
.0
05

)

Baseline 0.735 26.63 0.380 0.226

UAR (Ours) 0.724 26.91 0.371 0.216
I(

0.
01

) Baseline 0.601 25.23 0.442 0.268

UAR (Ours) 0.5847 25.26 0.440 0.256

Table 1. Impact of uncertainty-guidance on reconstruction qual-

ity. UAR consistently achieves lower LPIPS and RRMSE values

across various types and levels of noise, with comparable or supe-

rior SSIM and PSNR metrics.

Model SSIM↑ PSNR↑ LPIPS↓ RRMSE↓
Baseline 0.891 35.358 0.410 0.291

UAR (Ours) 0.925 38.297 0.289 0.221
Table 2. Impact of uncertainty-guidance on reconstruction quality

on CPC-dataset [19]. Further results in the supplementary.

given in its discrete form by,

Rβi
=

∑
jk

(√
(β̂ij+1k − β̂ijk)2 +

√
(β̂ijk+1 − β̂ijk)2

)
(14)

We compare the effects of these different penalty formu-

lations on the reconstruction quality (Table 3) (as well as

qualitatively on the generated uncertainty maps in supple-

mentary). Imposing these constraints does not negatively

impact the reconstruction quality, as seen in Table 3. As

expected, The uncertainty maps for UARL2 are smoother

compared to UAR and UARAniso. This is because, while the

TV variant prioritizes preserving edges around the uncertain

structures, the edges in UARL2 have been smoothed out,

though the regions of uncertainty remain consistent. The

choice of the best variant may depend on the application’s

demands or the user preference.
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Baseline UA-Regularization

SSIM : 0.93 SSIM : 0.94

SSIM : 0.92 SSIM : 0.93

SSIM : 0.94 SSIM : 0.94

SSIM : 0.93SSIM : 0.92

SSIM : 0.89 SSIM : 0.91

SSIM : 0.95 SSIM : 0.96

SSIM : 0.81 SSIM : 0.87

2 2

Figure 6. UAR distinctly identifies regions affected by the artifi-

cially introduced artifact as having high uncertainty, contrasting

with relatively lower uncertainty in unaffected areas. In contrast,

the baseline approach shows similar uncertainty levels across dif-

ferent regions, failing to differentiate between previously unseen

and unseen image structures.

Overall, each of the regularization results in significantly

less noisy maps than those without regularization. Given

that the testing dataset is similar to the training dataset, low

uncertainties are expected, except in the presence of unseen

artifacts, as shown in Figures 6 and 7. For qualitative com-

parison, please refer to the supplementary material.

Model SSIM↑ PSNR↑ LPIPS↓ RRMSE↓
Baseline 0.925 28.714 0.128 0.174

UARL2 0.922 27.283 0.126 0.149

UARAniso 0.927 29.825 0.133 0.215

UAR 0.931 29.340 0.126 0.148
Table 3. Effect of different variation-based penalties on WCE data.

Ablation II : λ. We conducted experiments with three

values, 10−12, 10−7 and 10−4, to capture behaviors across

a wide range. For a high value of λ = 10−4, the regular-

ization effect on β is excessively strong. This causes the

predicted β values to become too similar, suppressing any

disparities. Conversely, λ = 10−7 strikes a balance, offer-

ing effective regularization without excessively homogeniz-

ing the β values. In contrast, using λ = 10−12 as employed

in this study reflects a cautious approach, yielding satisfac-

tory results. We anticipate that the optimal value for λ to be

SSIM : 0.93

SSIM : 0.42

SSIM : 0.98

SSIM : 0.91

SSIM : 0.40

SSIM : 0.54 SSIM : 0.40

SSIM : 0.93

SSIM : 0.96

SSIM : 0.97

SSIM : 0.97

SSIM : 0.91

SSIM : 0.91 SSIM : 0.91

B B

asel inUl A- Rgl ur iszntson2U

Figure 7. Synthetic artifact and its effect on uncertainty. The un-

certainty estimation provided by UAR faithfully reflects the pres-

ence of the injected artifact. In the last row, where the artifact is

subtle, it induces low uncertainty except around edges in the Base-

line method. However, UAR accurately identifies it as an unseen

region with high uncertainty.

within the range [10−7, 10−12] (details in supplementary).

6. Conclusion and Limitations
In this work, we presented an end-to-end model for I2I

translation that integrates an uncertainty-aware regulariza-

tion. UAR aims at ensuring that the model’s confidence

levels are clearly delineated and easily interpretable while

improving the overall reconstruction quality, thereby fa-

cilitating better decision-making in safety-critical applica-

tions. Through systematic evaluation and ablation stud-

ies, we demonstrated that our approach maintains high fi-

delity in familiar regions while accurately identifying and

quantifying uncertainty in novel situations. This paper em-

ploys a basic conditional GAN for I2I translation, but more

advanced architectures and improved reconstruction losses

could enhance translation quality. Since UAR is model-

agnostic, it can be seamlessly integrated with these im-

provements. Additionally, we plan to involve more clinical

experts to assess the quality of uncertainty maps, comple-

menting the current qualitative and quantitative evaluations

in the future.
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[11] Pål Anders Floor, Ivar Farup, Marius Pedersen, and Øistein

Hovde. Error reduction through post processing for wireless

capsule endoscope video. EURASIP Journal on Image and
Video Processing, 2020:1–15, 2020.

[12] Yuchong Gu, Zitao Zeng, Haibin Chen, Jun Wei, Yaqin

Zhang, Binghui Chen, Yingqin Li, Yujuan Qin, Qing Xie,

Zhuoren Jiang, et al. Medsrgan: medical images super-

resolution using generative adversarial networks. Multime-
dia Tools and Applications, 79:21815–21840, 2020.

[13] Jessica Guynn. Google photos labeled black peo-

ple’gorillas’. USA today, 1, 2015.

[14] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising dif-

fusion probabilistic models. Advances in neural information
processing systems, 33:6840–6851, 2020.

[15] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A

Efros. Image-to-image translation with conditional adver-

sarial networks. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 1125–1134,

2017.

[16] Amirhossein Kazerouni, Ehsan Khodapanah Aghdam,

Moein Heidari, Reza Azad, Mohsen Fayyaz, Ilker Haci-

haliloglu, and Dorit Merhof. Diffusion models in medical

imaging: A comprehensive survey. Medical Image Analysis,

page 102846, 2023.

[17] Alex Kendall and Yarin Gal. What uncertainties do we need

in bayesian deep learning for computer vision? Advances in
neural information processing systems, 30, 2017.

[18] Chuan Li and Michael Wand. Precomputed real-time texture

synthesis with markovian generative adversarial networks.

In Computer Vision–ECCV 2016: 14th European Confer-
ence, Amsterdam, The Netherlands, October 11-14, 2016,
Proceedings, Part III 14, pages 702–716. Springer, 2016.

[19] Weijie Ma, Ye Zhu, Ruimao Zhang, Jie Yang, Yiwen Hu,

Zhen Li, and Li Xiang. Toward clinically assisted colorectal

polyp recognition via structured cross-modal representation

consistency. In International Conference on Medical Image
Computing and Computer-Assisted Intervention, pages 141–

150. Springer, 2022.

[20] NHTSA. Pe 16-007 technical report, u.s. department

of transportation, national highway traffic safety admin-

istration. https://static.nhtsa.gov/odi/inv/
2016/INCLA-PE16007-7876.PDF, Jan 2017. [Ac-

cessed 22-Feb-2023].

[21] David A Nix and Andreas S Weigend. Estimating the mean

and variance of the target probability distribution. In Pro-
ceedings of 1994 ieee international conference on neural
networks (ICNN’94), volume 1, pages 55–60. IEEE, 1994.

[22] Moritz Platscher, Jonathan Zopes, and Christian Federau.

Image translation for medical image generation: Ischemic

stroke lesion segmentation. Biomedical Signal Processing
and Control, 72:103283, 2022.

[23] Jacob C Reinhold, Yufan He, Shizhong Han, Yunqiang Chen,

Dashan Gao, Junghoon Lee, Jerry L Prince, and Aaron

Carass. Validating uncertainty in medical image translation.

In 2020 IEEE 17th International Symposium on Biomedical
Imaging (ISBI), pages 95–98. IEEE, 2020.

[24] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-

net: Convolutional networks for biomedical image segmen-

tation. In Medical image computing and computer-assisted
intervention–MICCAI 2015: 18th international conference,
Munich, Germany, October 5-9, 2015, proceedings, part III
18, pages 234–241. Springer, 2015.

[25] Yasushi Sato, Tamotsu Sagawa, Masahiro Hirakawa, Hi-

royuki Ohnuma, Takahiro Osuga, Yutaka Okagawa, Fu-

mito Tamura, Hiroto Horiguchi, Kohichi Takada, Tsuyoshi

Hayashi, et al. Clinical utility of capsule endoscopy with

98843973



flexible spectral imaging color enhancement for diagnosis

of small bowel lesions. Endoscopy international open,

2(02):E80–E87, 2014.

[26] David Schneeberger, Karl Stöger, and Andreas Holzinger.
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