












Training scheme Unet++ [67] DV3+ [8] UperNet-Tiny [62]
Dice(↑) IOU (↑) HD (↓) Dice (↑) IOU (↑) HD (↓) Dice (↑) IOU (↑) HD (↓)

Real with no-aug 0.50±0.03 0.36±0.01 101.03±0.12 0.50±0.01 0.36±0.01 115.36±3.82 0.56±0.01 0.47±0.02 118.37±6.62

Real with color-aug 0.52±0.01 0.38±0.02 98.95±2.05 0.53±0.01 0.39±0.01 101.54±0.19 0.59±0.01 0.45±0.01 110.93±1.42

Real with color+spatial-aug 0.61±0.05 0.49±0.04 109.09±0.52 0.58±0.01 0.45±0.01 108.14±1.07 0.61±0.04 0.50±0.05 108.63±1.51

Ours only Syn 0.53±0.03 0.40±0.01 110.65±1.31 0.53±0.01 0.41±0.02 108.66±1.18 0.56±0.01 0.44±0.01 109.41±2.09

Ours-SS-Syn + Real 0.67±0.01 0.54±0.01 107.10±0.49 0.64±0.05 0.51±0.05 95.86±8.25 0.65±0.03 0.53±0.02 95.76±2.49

Ours-Syn + Real 0.64±0.03 0.51±0.01 101.96±1.43 0.68±0.01 0.56±0.01 95.93±6.89 0.67±0.01 0.54±0.01 99.97±2.24

Table 3. Evaluation on CholecSeg8K dataset using different segmentation models (T1:Multi→Multi). A 10% improvement was
noticed in the segmentation scores with combined training Syn+Real. The best scores are highlighted in bold.

Figure 4. The generated images using simulated masks (SS). By
using SS masks, we can generate surgical images other than the
train datasets as the organ shapes differs with a similar organ tex-
ture to real datasets.

Method CFID (↓) KID (↓) CMMD(↓) LPIPS(↓)
SPADE [38] 382.55±2.32 0.35±0.05 2.08±0.04 0.70±0.04

Pix2PixHD [61] 347.75±4.12 0.39±0.04 3.81±0.10 0.82±0.04

ControlNet-SE [65] 380.68±3.41 0.32±0.05 2.09±0.03 0.85±0.03

T2i-Adapter-CY [35] 409.16±3.67 0.34±0.05 1.07±0.05 0.78±0.03

Ours-SS-Syn 351.09±2.70 0.39±0.05 0.69±0.03 0.69±0.04

Ours-Syn 369.62±8.15 0.31±0.01 0.57±0.02 0.68±0.01

Table 4. Image quality comparison on HeiSurf dataset. The im-
ages generated from our method shows better image quality than
other methods.

dicates that our approach is better in maintaining realism of
the images. For such smaller datasets, other image synthe-
sis methods suffer to generate images suitable for the ap-

Training scheme Unet++ [67] DV3+ [8]
Dice(↑) IOU (↑) HD (↓) Dice (↑) IOU (↑) HD (↓)

Real with no-aug 0.40±0.02 0.29±0.01 148.36±2.56 0.30±0.05 0.20±0.07 239.57±9.69

Real with color-aug 0.42±0.01 0.30±0.02 165.76±2.02 0.42±0.01 0.30±0.02 180.41±3.61

Real with color+spatial-aug 0.45±0.01 0.32±0.01 247.21±8.15 0.40±0.02 0.31±0.01 206.34±3.04

Ours only Syn 0.42±0.01 0.30±0.01 201.20±9.01 0.35±0.02 0.24±0.01 205.34±3.62

Ours-SS-Syn + Real 0.55±0.01 0.36±0.02 211.81±2.47 0.47±0.01 0.33±0.01 170.63±2.19

Ours-Syn + Real 0.53±0.01 0.40±0.01 207.65±1.70 0.49±0.01 0.36±0.01 165.42±3.04

Table 5. Comparison of data augmentations on HeiSurf dataset
(T1:Multi→Multi). Using the generated images leads to improved
performance across the two models.

plication. Our Syn datasets leads to a 10% difference in
scores compared to other models (in suppl). Furthermore
as evidenced from Tab. 5, for the Unet++ architecture, the
combined training Syn+Real shows a 8% improvement in
both dice and IOU compared to the data augmentations on
the real images. For the DV3+ model, dice score improved
by 9% with a drastic improvement in HD scores when us-
ing the Syn dataset. These results further show that our ap-
proach is effective at capturing the texture of different or-
gans, thereby allowing the generation of surgical datasets.
Additonal qualitative results are in suppl. material.

(Task 2: Binary → Multi) The qualitative results are
presented in Fig. 5. Our method precisely generates the
organs according to the semantic mask. In contrast, the
GAN-based method fails to maintain image quality, and the
diffusion approaches fall short in maintaining spatial align-
ment. These results highlight the importance of the image
composition stage, which aids in preserving the organ struc-
tures while the diffusion process effectively generates their
textures. The segmentation scores shown in Tab. 6 indi-
cate that our method outperforms the baselines, achieving
an improvement of more than 8% in scores. Additionally,
in Tab. 7, the results demonstrate that combining the gener-
ated synthetic data leads to a 5% improvement in dice and
IOU for the DV3+ model, with a notable boost in HD scores
observed for the Segformer model. Combining the gen-
erated datasets with the implicit labeling method showed
smaller improvements.

Ablation study The results of the ablation study is
shown in Tab. 8. In Tab. 8 Config A, we removed the pre-
trained CN from Stage-2 and the image enhancement stage
(Stage-4) on the DSAD datasets. A decrease in segmenta-
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Vössing, and Niklas Kühl. Navigating the synthetic realm:
Harnessing diffusion-based models for laparoscopic text-to-
image generation. arXiv preprint arXiv:2312.03043, 2023.
3

[2] Twinanda Andru, Shehata Sherif, Mutter Didier, Marescaux
Jacques, Michel De Mathelin, and Nicolas Padoy. Endonet:
A deep architecture for recognition tasks on laparoscopic
videos. IEEE Transactions on Medical Imaging, 36, 02 2016.
4

[3] Omri Avrahami, Dani Lischinski, and Ohad Fried. Blended
diffusion for text-driven editing of natural images. In Pro-
ceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pages 18208–18218, 2022. 3
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