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Abstract

Human pose estimation has been greatly advanced in
recent years. However, even the best-performing models
are not shift equivariant. In particular, a small change in
input images often results in drastic alterations in output,
which are problematic especially in video applications. The
prevalence of top-down approaches, which typically rely on
a (non-equivariant) object detector in the first stage, exac-
erbates this issue. In this paper, we first demonstrate that
the biased keypoint representation and the non-equivariant
network components are the two main obstacles to shift
equivariant pose estimation. To address the limitation,
we propose an unbiased decoding method, and redesign
the necessary network components (e.g., APS-ResBlock,
SSP).Extensive experiments show that our method not only
produces much more stable results with shifting input, but
also achieves better metrics with the ability of tolerating in-
accurate detector output from the first stage. To our knowl-
edge, this is the first work to address the problem of shift
equivariance in the field of pose estimation. Our method
could be easily applied to existing CNN-based pose estima-
tion networks.

1. Introduction
Human pose estimation has attracted a lot of attention

from the computer vision communities, as it is the foun-
dation of many downstream tasks such as action recogni-
tion. In recent years, both estimation accuracy and effi-
ciency have been significantly advanced [3,6,18,19,23,37]
by deep learning. We argue that obtaining stable pose es-
timation results when input images are slightly perturbed,
is equally important as accuracy and speed, as it impacts
the user experience to a large extent. Unfortunately, this is
largely overlooked in the field. Recently, Chaman et al. [4]
pointed out that the existing deep neural networks do not
have shift equivariance. In other words, a small disturbance
to the input of the network may lead to huge fluctuations
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B-0 B-1 B-2 B-3

Figure 1. Visualization of the output keypoints of a human pose
estimation network [33] when the input is shifted by 0-3 pixels. It
is obvious that even a very small input bias can lead to drastically
different predictions, e.g., the left wrist in A, and the legs in A and
B. Please refer to the videos in the supplementary materials for
more visualization.

Table 1. Equivariance Error (EE) Comparison on COCO val.

ViTPose-B ViTPose-B (w/ hflip TTA) Ours
EE(1,1) 1.267 0.927 0.033

in the results. The same problem is also observed in hu-
man pose estimation networks. In particular, the popular
top-down pose estimators usually rely on an object detec-
tor, which is usually not shift equivariant, to detect and crop
every person in the first stage. The small localization er-
rors may significantly reduce the accuracy of key point de-
tection. Equivariance is a network characteristic that is or-
thogonal to accuracy. Better equivariance does not guaran-
tee better accuracy (e.g., [4]). While jittering results usually
do not harm PCKh@0.5 or AP, it is crucial for applications
like action or medical analysis for athletes or patients,
which requires highly consistent results. Even SOTA model
and commonly used Test Time Augmentation (TTA) can
not solve the problem of shift equivariance. We provide the
Equivariance Error (EE) result of ViTPose-B [34], which is
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a strong SOTA model. From Table 1, we can see that even
one of the best existing models is not shift equivariant at
all. Also, TTA (e.g., hflip) cannot solve the problem of shift
equivariance.

Fang et al. [10] addressed the issue of pose estimation
with inaccurate bounding boxes by introducing a bounding
box correction network. However, existing methods fail to
perfectly align predicted bounding boxes with the ground
truth.An alternative approach is to improve network robust-
ness by achieving shift equivariance, enabling tolerance to
input disturbances. Recent studies [4, 38] identify down-
sampling as the primary cause of broken shift equivariance.
Adaptive Polyphase Sampling (APS) [4] was proposed to
address this, allowing symmetric convolution networks to
maintain shift equivariance by transferring shift informa-
tion between paired downsampling and upsampling opera-
tions.Despite its effectiveness in symmetric networks, APS
faces significant limitations. Most pose network architec-
tures are asymmetric for computational efficiency, with in-
put resolutions often exceeding output resolutions, making
APS inapplicable. Furthermore, APS fails in scenarios with
multiple sampling operations at the same level. Commonly-
used blocks, such as ResBlock [12] and DenseBlock [13],
lose shift equivariance even with APS. These limitations
significantly restrict the practical use of APS in real-world
pose estimation tasks.

To address the limitations of shift equivariance in human
pose estimation networks, we analyze key impairing fac-
tors. Firstly, to mitigate systematic errors from non-model
factors, we employ an unbiased Gaussian heatmap coordi-
nate encoding method, necessitating an unbiased decoding
approach. We propose Gaussian Distribution prior-based
keypoint Parameter Estimation (GDPE), which leverages
Gaussian priors to accurately estimate heatmap center co-
ordinates. This method also mitigates quantization errors,
ensuring unbiased supervisory signals, consistent with prior
work [14]. Secondly, to address errors introduced by model
architectures, we propose APS-ResBlock, a residual adap-
tive polynomial sampling block that preserves the consis-
tency of downsampling grids in networks with residual con-
nections. Combined with adaptive polynomial upsampling
[4], this ensures shift equivariance during upsampling.

We further resolve boundary errors using circular
padding and introduce Subpixel Shifting Processing (SSP)
to achieve shift equivariance in asymmetric networks. By
applying bilinear interpolation on the heatmap in sub-pixel
space, SSP enables differentiable shift operations without
adding extra parameters.

To summarize, the main contributions of this work are as
follows.

• This work introduces shift equivariance into human pose
estimation networks for the first time. The proposed
method adds no extra learnable parameters and can be

generalized to various mainstream network structures.

• We identify biased keypoint representation, including Co-
ordinate Encoding, Coordinate Decoding, and Quantiza-
tion, as a major factor impairing shift equivariance. To
address this, we propose an unbiased coordinate encod-
ing approach and GDPE, which accurately estimates key-
point coordinates using Gaussian priors.

• We resolve the shift equivariance issue in asymmetric
networks. The proposed APS-ResBlock addresses shift
non-equivariance caused by multiple sampling opera-
tions, while SSP enables asymmetric sampling structures
to achieve shift equivariance.

• Experiments on MPII [1] and COCO [21] demonstrate
that our method enhances robustness and mitigates accu-
racy loss caused by bounding box errors, validating its
effectiveness.

2. Related Work
Human pose estimation. Human pose estimation task is
to locate the key points of the human body in a single image.
Recent progress [6, 16, 17, 22, 23, 31, 34] in pose estimation
has increasingly improved the accuracy of the system . Fang
et al. [10] introduced an extended network to correct the bi-
ased bounding box, making the entire network more accu-
rate. Yang et al. [35] used powerful transformer backbone to
obtain higher accuracy. Wang et al. [31] fused the local and
global features of the input image. Qu et al. [26] used Earth
Mover’s Distance instead of MSE loss to force the model
optimized in a better direction. Li et al. [20] proposed a
novel keypoint representation method to replace the classi-
cal Gaussian heatmap and achieved better result. UDP [14]
and DARK [37] eliminated the keypoint representation er-
ror to further improve the accuracy of the syatem.

Shift Equivariance. The success of convolutional neural
networks inspired research on embedding equivariances to
more complex transformations: rotations, scale, reflections
and the action of arbitrary groups [7, 8, 27, 29, 32]. How-
ever, the impact of downsampling on the stability of CNNs
has only recently been analyzed [2, 4, 9]. Zhang et al. [38]
showed that anti-aliasing is able to improve shift invariance
in classification. Data augmentation is also proved use-
ful [2]. Chaman et al. [4] proposed APS to enable perfect
shift equivariance in symmetric encoder-decoder CNNs.

3. Method
3.1. Preliminaries

Existing human pose estimation networks do not have
the property of shift equivariance. Given a system F , shift
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equivariance can be modeled as

Fα(Tl(I)) = Tl/α(Fα(I)), (1)

where T represents the translation on the input space and
output space, α is the downsampling factor and l is the shift
step. As Figure 1 shows, a notable fact is that the keypoints
predicted by existing human pose estimation networks [33]
are not shifted in the same direction and stride as the input
image.

There are two main classes of factors that impair shift
equivariance: 1) Non-model factors, which refer to system-
atic errors (e.g., sometimes even the model’s supervisory
signal is itself biased). 2) Model factors, which refer to
errors introduced by the deep neural network itself (e.g.,
some basic components of the model may compromise shift
equivariance). We propose Unbiased keypoint representa-
tion to eliminate the influence of non-model factors. Simul-
taneously, the structure of shift equivariant pose network is
proposed to make the model itself shift equivariant.

3.2. Unbiased keypoint representation

Firstly, we analyze the errors of the existing biased key
point representation methods, and point out that there are
three systematic errors: Coordinate encoding, Coordinate
decoding, and Quantization. Then an unbiased key point
representation method is proposed to eliminate these sys-
tematic errors introduced by the existing methods.

Coordinate Encoding. The classical coordinate encod-
ing method [33] is to generate a Gaussian heatmap at the
label position based on following equations:

m′ =

{
Floor(m) if m− Floor(m) < 0.5
Ceil(m) otherwise , (2)

n′ =

{
Floor(n) if n− Floor(n) < 0.5
Ceil(n) otherwise , (3)

C(x, y,m′, n′) = exp(− (x−m′)2 + (y − n′)2

2σ2
), (4)

where m,n are the horizontal/vertical coordinates of the
label, and x, y are the horizontal/vertical coordinates of
heatmap. The heatmap representation based on equation
4 is biased. Unbiased coordinate encoding representation
shall based on

C(x, y,m, n) = exp(− (x−m)2 + (y − n)2

2σ2
). (5)

We directly generate heatmaps based on Equation 5, with-
out ceil or floor operation. Heatmaps generated by these
methods are shown in Figure 2.

Figure 2. Comparison of heatmaps generated by two coordinate
encoding methods when the center coordinate is (6.25, 6.25).The
heatmap space is 12 × 12. Heatmap on the left is generated by
biased coordinate encoding methods, the right one is generated by
unbiased coordinate encoding methods.

Coordinate Decoding. Based on Equation 4, classical co-
ordinate decoding method [33] is to find the largest corre-
sponding coordinate position of the predicted heatmap. Let
c represent the coordinates and the classical coordinate de-
coding method are as follows:

ĉ = argmax(Ĉ) + 0.25 ∗ sign(Ĉ ′(argmax(Ĉ))), (6)

sign(x) =
{

1 if x > 0
−1 otherwise . (7)

We use Ĉ ′ to represent the first derivatives of Ĉ. This co-
ordinate decoding method is also biased. Assuming that
the model estimation is completely unbiased, the expected
error introduced by this encoding and decoding method:
E(|cGT − ĉ|) = 0.125 [14]. We propose GDPE (Gaussian
Distribution prior based keypoint Parameter Estimation)
to address the problem above. Assuming that the model
can predict perfectly, i.e., Ĉ = C, we expect to decode
the label unbiasedly from the unbiased keypoint encoding.
This process is the inverse of the encoding process. Given
{(C0, x0, y0), (C1, x1, y1), ..., (Cp, xp, yp)} and gaussian
prior, we need to solve m and n in Equation 5. Taking the
logarithm of both sides of Equation 5 at the same time, we
get

−2σ2 ln(Ĉ(x, y,m, n)) = (x−m)2 + (y − n)2. (8)

Let the objective optimization function be

F (m,n) =

p∑
i=0

[−2σ2 ln(Ĉ(xi, yi,m, n))

− (xi −m)2 − (yi − n)2]2,

(9)

and we use Newton-Raphson method [24] to solve this
function. The deductive process is in the appendix. Given
an initial value (m0, n0) = argmax(Ĉ), it is considered
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that we can get the exact solution of the function. After
multiple iterations, until

|m̂−m0|+ |n̂− n0| < ϵ, (10)

we get the most accurate approximate solution (m̂, n̂) to
Equation 9.

Quantization. Except for the above two parts, we also
need to eliminate the quantization error caused by the
classical point-aligned quantization method. Huang et al.
[14] had proposed a shift equivariant quantization method.
When mapping the annotation information from the image
space to the heatmap space, we follow

(x′, y′) = (
x

H−1
h−1

,
y

W−1
w−1

), (11)

where the height and width of the input image space are
(H,W ), and that of the output heatmap space are (h,w).

3.3. Shift equivariant pose network

In this section, we introduce the network architecture de-
sign. We first analyze the basic components in existing con-
volutional neural networks: Convolution, Downsampling,
Upsampling and Padding operations. We aim to find out the
essential factors that destroy the model shift equivariance.
Then we introduce basic components of shift equivariant
pose network, including APS-U, APS-D, APS-ResBlock,
SSP, to address the problem found above. The overall struc-
ture of shift equivariant pose network is shown in Figure 3
(a).

3.3.1 Basic Operations

We analyze the basic components and operations in existing
convolutional neural networks. Some of them are detrimen-
tal to shift equivariance.

Convolution. Convolution can be modeled as:

Conv(Ii,j) =
∑
p,q

Ii−p,j−qKp,q. (12)

We could prove that the above operation is shift equivariant.
Firstly, we formulate shifting operation as:

T∆x,∆y(Ii,j) = Ii+∆x,j+∆y. (13)

Then we have:

Conv(T∆x,∆y(Ii,j)) = Conv(Ii+∆x,j+∆y)

=
∑
p,q

Ii+∆x−p,j+∆y−qKp,q

= T∆x,∆y(
∑
p,q

Ii−p,j−qKp,q)

= T∆x,∆y(Conv(Ii,j)).

(14)

Therefore, it is proved that the convolution operation itself
is shift-equivariant.

Downsampling. Chaman et al. [4] showed that sampling
is one of the main factors that destroy shift equivariance.
For the purpose of simplicity, we will consider sampling
of 1-D signals x(n). Let U2 and D2 denote upsampling
and downsampling with stride 2, respectively. D2 signal is
formulated as :

D2(x) = x(2n). (15)

In the following, we will prove that linear downsampling
does not have shift equivariance. Let T∆ = x(n − ∆)
represent a ∆-pixel translation in x. For an odd shift
∆ = (2m+ 1) with m ∈ Z, D2 satisfies:

D2(T2m+1(x)) = D2(T⌊2m+1⌋(x))

= T⌊ 2m+1
2 ⌋D2(x)

= TmD2(x)

= D2(T2mx)

̸= D2(T2m+1(x)).

(16)

Equation 16 shows that bias can be introduced in linear
downsampling when pixels are shifted by an odd number.

Upsampling. Similarly, U2 signal is formulated as:

U2(x) =

{
x(n/2) , when n is even
0 , otherwise . (17)

The upsampling operation’s property of shift equivariance
can be easily proved by follows:

U2(Tm(x)) = T2mU2(x). (18)

Padding. Zhang et al. [38] showed that zero padding will
cause edge artifacts. During the process of shifting, infor-
mation is lost on one side and has to be filled in on the other.
Circular padding has been proved to solve the above prob-
lem [4]. So we use circular padding instead of zero padding
in the shift equivariant pose network.

3.3.2 APS-ResBlock

APS-D and APS-U [4] 1 are proposed to make symmetric
downsampling and upsampling operations shift equivariant.
APS-D chooses the polyphase component of x(n) with the
highest lp norm as its downsampled output DA

2 (x). D
A
2 can

be formulated as:

DA
2 (x) ={
x(2n), ix = 0, ||x(2n)||p > ||x(2n+ 1)||p
x(2n+ 1), ix = 1, ||x(2n)||p < ||x(2n+ 1)||p

.

(19)
1A brief introduction of APS is attached in the supplementary materi-

als.
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ResBlock Deconv Argmax + Quarter offsetExisting
Networks:

Ours: APS-ResBlock APS-U + Conv SSP + GDPE

Downsampling

APS-D w/ shared
downsampling grid

(a) Overall Network Architecture (b) ResBlock / APS-ResBlock

Figure 3. Shift equivariant pose network. APS-Resblock addresses the non-equivariant problem caused by multiple downsampling. Be-
sides, APS-Resblock retains the outstanding feature extraction ability of residual architecture. Existing methods cannot make an asymmet-
ric network shift equivariant. We propose SSP and introduce APS-U to make the pose network shift equivariant for the first time.

We denote ix to be the index of polyphase component with
the highest norm. APS-D is not shift equivariant in the usual
sense. However, APS-D can guarantee a consistent output
when its input is shifted by odd pixels with ix to indicate
the sampling grid. Then UA

2 takes the sampling grid of the
chosen polyphase component ix as one of the input. UA

2

can be formulated as:

UA
2 (x, ix) = Tix(U2(x)). (20)

Chaman et al. [4] have proved that

UA
2 ◦DA

2 (Tm(x)) = Tm(UA
2 ◦DA

2 (x)), (21)

which means a pair of UA
2 ◦DA

2 is shift equivariant.
However, APS method can not be directly applied to

human pose estimation networks. Because most of the
effective feature extraction blocks, e.g., ResBlock [12],
have multiple sampling operations at the same sampling
level. Sampling grid can be corrupted when features are
merged later. Inside classical residual blocks, each down-
sampling step actually performs two downsampling opera-
tions, which can be described as

xi+1 = D2(xi) +D2(Conv(xi)). (22)

Apply APS-D directly to ResBlock, we have

xi+1 = DA
2 (xi) +DA

2 (Conv(xi)), (23)

which means that the sampling grid of DA
2 (x) may not

equal DA
2 (Conv(x)). Not surprisingly, these two sampling

grid can be corrupted, thus compromising the shift equiv-
ariance of the entire system. Inspired by APS, we propose
APS-ResBlock to force the entire block to keep the same
downsampling grid (i.e., the downsampling grid of DA

2 (x)
and DA

2 (Conv(x)) are the same). The structure of APS-
ResBlock is shown in Figure 3 (b).

3.3.3 SSP

Another reason APS method can not be directly used in hu-
man pose estimation networks is that most pose network
structures are not symmetric for the purpose of computa-
tional efficiency. As shown in Figure 3, the size of the
network’s input resolution and output resolution are often
different. For the purpose of simplicity, we study a sim-
ple asymmetric network. The input image space is (H,W ),
and the output heatmap space is (H/4,W/4). APS method
only works in the case where the output heatmap space
is also (H,W ). In order to make the asymmetric net-
work shift equivariant, we propose SSP (Subpixel Shifting
Processing). The structure of SSP is shown in Figure 4.
If the input is shifted by 1 pixel, network’s output can be
shifted by 1/4 pixel in the same direction and stride by using
SSP. Then this network can be considered shift-equivalent.

SSP operation can be formulated as

SSP(x, ix) = D2(Tix(I(x))), (24)

where I denotes bilinear interpolation. Given a downsam-
pling gird with shifting direction and distance information,
SSP selects the sub-pixel value obtained by bilinear interpo-
lation and translation as the final heat map output. The SSP
operation does not introduce additional errors in other di-
rections or other distances, and it is differentiable. Another
advantage of SSP is that SSP does not introduce extra learn-
able parameters. Using SSP, we can train the shift equiv-
ariant network end-to-end without any additional computa-
tional cost.
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Figure 4. Pipeline of SSP. Through SSP, we achieve shifting heatmap at subpixel level with more precise stride and orientation. For
simplicity, we use decimals on the grid to represent pixel values that obey Gaussian distribution. Red triangle denotes the theoretical center
of the predicted heatmap. We first perform bilinear interpolation on the heatmap. Then we select and sample the subpixel group based on
the downsampling grid from the unpaired DA

2 . Via SSP with α× interpolation, we can shift the theoretical center of the predicted heatmap
at 1

α
pixel resolution, α ∈ Z.

4. Experiments

4.1. Experiment Setup

Dataset. We use the MPII dataset [1] and COCO dataset
[21] as the experimental dataset. The MPII dataset is col-
lected from YouTube videos with a wide range of human
activities and events. It has 25K scene images and 40K an-
notated persons (29K for training and 11K for test). Each
person has 16 labelled body joints. We adopt the stan-
dard train/valid/test data split [30]. The COCO keypoint
dataset [21] presents naturally challenging imagery data
with various human poses. It contains 200k images and
250k person samples. Each person instance is labelled with
17 joints. In evaluation, we follow the commonly used
train2017/val2017 split.

Metrics. We use Equivariance Error (EE) to measure the
shift-equivalent performance of the pose model.

EE(∆x,∆y) =
1

N

N∑
i

∥T∆x,∆y(F (Ii))−F (T∆x,∆y(Ii))∥. (25)

EE aims to calculate the mean squared error between the
model output when the input is shifted by (∆x,∆y) pixels
and the shifted model output when the input is not shifted
on the entire dataset (with N samples). The smaller the EE
index is, the better the shift equivariance of the system is.
As the shift becomes larger, a curve with the horizontal axis
as the shifting stride and the vertical axis as the EE value
can be drawn, which we call the EE curve. The smaller the
slope of the curve, the more stable the model is against shift
perturbations, which means more shift-equivalent proper-
ties can be maintained.

Following previous works, for MPII, we use the standard
Percentage of Correct Keypoints PCKh@τ measurement
[36] that quantifies the fraction of correct predictions within
an error threshold τ . Specifically, the quantity τ is nor-
malised against the size of head (τ = 0.5, i.e., PCKh@0.5).
We measure each individual joint respectively and took their

average as an overall metric. For COCO, the standard aver-
age precision (AP) is used as our evaluation metric, which
is calculated based on Object Keypoint Similarity (OKS).

Implementation Details. We implement all experiments
in PyTorch [25]. We crop all the training and test im-
ages according to the provided positions and scales, and
resized them to 256×256 in pixels. As typical, random scal-
ing (0.75-1.25), rotating (±30 degrees) and horizontal flip-
ping were perform to augment the training data.We adopt
Adam [15] optimisation algorithm with the following pa-
rameter: β1 = 0.09, β2 = 0.0999, lr = 1e-3. The model
is trained for a total of 200 epochs, and the learning rate is
reduced by 10 times at the 140th, 180th, and 190th epoch,
respectively. We use an NVIDIA Titan RTX GPU for train-
ing, the overall training time is 22 hours, and the random
seed is set to 42.

4.2. Shift Equivariant Experiment

Quantitative results. We show the EE(1,1) metrics of our
method and other baseline methods in Table 2a and Table
2b. It can be seen that by eliminating aliasing, LPF [38] has
obtained some improvements in shift equivariance perfor-
mance. DARK [37] eliminates the systematic errors outside
the model and it also strengthens the shift equivariance of
the model to a certain extent. In the model where APS [4] is
directly applied, the asymmetric structure inside the model
is shift equivariant, which also improves the shift equivari-
ance property of the entire model. Finally, our proposed
method consistently outperforms the baselines with near-
perfect shift equivariance.

Further, in order to measure the preservation range of
the model shift equivariance, we draw the EE curve in Fig-
ure 5 when the translation is 0-8 pixels. The EE curve of
SimpleBaseline [33] shows an increasing trend, indicating
that the more the input is shifted, the less equivariant the
model output is. It is obvious that SimpleBaseline [33]
is not shift equivariant. When even-numbered pixels are
shifted, the slope of EE curve will be negative, making the
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curve shape jagged. This is caused by systematic errors out-
side the model, including Coordinate Encoding Error, Co-
ordinate Decoding Error, and Quantization Error. The com-
parison between DARK [37] and SimpleBaseline [33] can
further support the insight that eliminating the effect of sys-
tematic errors is beneficial to shift equivariance property.
When the systematic errors outside the model are elimi-
nated, EE curve becomes smooth and the slope remains the
same. LPF [38] obtains improvements in shift equivariance
by eliminating aliasing. The slope of the curve is also re-
duced. As for APS [4], we directly implement an asymmet-
ric UNet [28] network structure following the method in [4].
As shown in the Figure 5, the model is not shift equivariant
when input is shifted by 1-3 pixels. Because APS-D makes
the model more inclined to maintain shift invariance when
the input is shifted by 1-3 pixels. Our method first removes
the quantization error outside the model by GDPE and the
slope of the entire EE curve remains consistent. The in-
troduction of APS-ResBlock solves the multiple downsam-
pling problem of the residual network, and the introduction
of SSP solves the asymmetry problem of the entire human
pose estimation network, so that the entire system is near-
perfect shift equivariant.

Qualitative results. Figure 6 visualizes the output of each
baseline when the input is shifted by 0-4 pixels. It can be
seen that the method in this paper yields a significant im-
provement in shift equivariance in comparison with other
baselines. While other baselines exhibit large deviations in
the prediction of the human body structure in case of only a
few shifts of input, our method shows excellent consistency.
Please refer to the attached videos in the supplementary ma-
terials for further comparison.

(0, 0) (1, 1) (2, 2) (3, 3) (4, 4) (5, 5) (6, 6) (7, 7) (8, 8)
Shifted pixels on the input image, (Δx, ΔyΔ
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Figure 5. EE curve when input is shifted by 0-8 pixels. The more
the input is shifted, the less equivariant the model output is. But
our approach has achieved significantly better performance.
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Figure 6. Visualization of the output when the input is shifted by 0-
4 pixels for SimpleBaseline [33], LPF [38], DARK [37], APS [4],
and Ours. Our method exhibits good equivariance visually. More
comparisons are attached in the supplementary materials.

4.3. Model Accuracy Experiment

Table 2a and Table 2b also show the accuracy of the pro-
posed method and the baseline methods on the MPII dataset
and COCO dataset. It can be seen that DARK [37] can lead
to a small improvement in the accuracy of the model by
eliminating the quantization error outside the model. Di-
rectly applying APS [4] is incompatible with the pose net-
work’s asymmetric architecture, and even result in a rela-
tively large drop. Using LPF [38] to eliminate aliasing can
bring about a small increase in model accuracy. Lastly, our
method can make the model shift equivariant and obtain
similar or higher accuracy than other methods.

4.4. Ablation study

In Table 3, we explore the impact of the key components
used in the shift equivariant pose network on the shift equiv-
ariance property and prediction accuracy. The introduction
of APS-ResBlock leads to a small drop in accuracy, yet the
performance of shift equivariance is improved. After sepa-
rately adding SSP or GDPE, the network can be more shift
equivariant and achieve higher accuracy. Finally, our net-
work with all key components above can obtain near-perfect
shift equivariance without compromising the accuracy.

We further make a comparison of different decoding
methods. The results are shown in Table 4. Our proposed
GDPE is the best performing unbiased decoding method
with consistent improvements over DARK and UDP. The
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Table 2. Quantitative results on MPII and COCO validation dataset. It can be seen that our method achieves a significant improvement in
the shift equivariance of the model. Surprisingly, the accuracy of the model does not decrease but increases.

Methods EE(1,1) PCKh@0.5
Simple. [12] 1.686 87.741

LPF [38] 1.642 88.049
DARK [37] 1.082 88.030

APS [4] 1.336 86.256
Ours 0.113 88.171

(a) MPII

Methods EE(1,1) AP AP50 AP75 APM APL AR
Simple. [12] 1.073 68.0 90.6 77.2 65.6 71.9 71.4

LPF [38] 1.014 68.2 90.6 77.2 66.0 71.9 71.7
DARK [37] 0.639 68.7 90.6 77.3 66.2 72.7 72.0

APS [4] 0.894 66.7 88.7 76.0 64.6 72.3 71.7
Ours 0.033 69.2 90.6 78.3 67.3 72.0 72.5

(b) COCO validation.

Table 3. Ablation study on 3 key components used in the shift
equivariant pose network on MPII.

APS-ResB SSP GDPE EE(1,1) PCKh@0.5
1.686 87.741

✓ 1.244 87.164
✓ ✓ 1.140 87.653
✓ ✓ 1.243 87.689
✓ ✓ ✓ 0.113 88.171

Table 4. Comparison of different decoding methods. Other com-
ponents are consistent with our final network design (i.e., all of the
following lines are equipped with APS-ResBlock, SSP). Argmax*
stands for Argmax + QuarterOffset.

Decoding PCKh@0.5 EE(1,1) EE(3,3) EE(5,5)

Argmax* 87.653 1.140 1.227 1.452
DARK 88.087 0.170 0.261 0.513
UDP 88.163 0.148 0.239 0.514
GDPE 88.171 0.113 0.176 0.359

Table 5. Inference time per 1k images.

Network Simple. LPF DARK APS Ours
second 9.95 9.38 9.80 11.45 19.46

Postprocess Argmax DARK GDPE (5iter)
second 14.95 45.39 82.26

greater the input deviation is, the more obvious the shift
equivariance advantage of GDPE is.

Inference speed is also an important consideration in ap-
plications. We report the time cost for both network part
and postprocessing part in Table 5. For network latency,
our model has reached a speed that can be used for real-
time inference. For postprocessing, we could choose GDPE
if higher consistency are required, and slower speed can be
tolerated. We leave accelerating the inference speed as an
important future work.

4.5. End-to-end Robustness Experiment

It is hoped that the shift equivariant pose network can
eliminate the performance impact of the shifting jitter of
the front-connected human detector. Following the real us-

Table 6. Accuracy (PCKh@0.5) with Yolo-X prepended on MPII.

Method GT bbox Yolo-X bbox gap
DARK [37] 88.030 84.457 3.573

Ours 88.171 85.496 2.675

age scenario, we use Yolo-X [11] as the front-connected hu-
man detector, and input the detected human bounding box
into the subsequent human pose estimation network. The
numerical results of the experiments are shown in Table 6.
We can see that the method proposed in this paper outper-
forms the baseline model. This shows that the shift equiv-
ariant pose network can effectively alleviate the detection
deviation problem. This is of great significance in practical
application.

5. Conclusion
Existing pose estimation models lack shift equivariance,

leading to significant output jitter with small input shifts.
This issue is further aggravated by non-equivariant detec-
tor outputs. In this paper, we introduce shift equivariance
into human pose estimation networks for the first time. Ex-
tensive experiments demonstrate that our method produces
more stable and accurate results under shifting inputs and
improves tolerance to inaccurate detector outputs, achiev-
ing better overall metrics. However, our method cannot
yet be applied to transformer-based models due to the non-
equivariant nature of MLPs [5]. Additionally, current ap-
proaches do not address rotation and scaling equivariance,
which are crucial for practical applications. Future work
will focus on integrating rotation and scaling equivariance
into pose estimation networks to enhance accuracy and ro-
bustness.
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