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Abstract

3D anomaly detection and localization is of great signifi-

cance for industrial inspection. Prior 3D anomaly detection and

localization methods focus on the setting that the testing data

share the same category as the training data which is normal.

However, in real-world applications, the normal training data

for the target 3D objects can be unavailable due to issues like

data privacy or export control regulation. To tackle these chal-

lenges, we identify a new task – zero-shot 3D anomaly detection

and localization, where the training and testing classes do not

overlap. To this end, we design 3DzAL , a novel patch-level

contrastive learning framework based on pseudo anomalies

generated using the inductive bias from task-irrelevant 3D xyz

data to learn more representative feature representations. Fur-

thermore, we train a normalcy classifier network to classify the

normal patches and pseudo anomalies and utilize the classifica-

tion result jointly with feature distance to design anomaly scores.

Instead of directly using the patch point clouds, we introduce

adversarial perturbations to the input patch xyz data before

feeding into the 3D normalcy classifier for the classification-

based anomaly score. We show that 3DzAL outperforms the

state-of-the-art anomaly detection and localization performance.

1. Introduction

3D anomaly detection and localization methods have been

highly demanded in real-world circumstances, including indus-

trial inspection and autonomous driving [3,6,16,17,30,43,45–47,

49,50]. The main difference between 3D and 2D image anomaly

detection and localization lies in that 3D data contain not only

RGB information but also point location information [3,8,9,30].

Lots of shape anomalies of objects are readily identified as

distinct sharp deformations from the point locations, in which

cases, color information is less effective and the anomalies re-

main undetectable in top-down 2D views, as recognized in [23].

For instance, it is extraordinarily hard to identify a bent or cut

location in a 2D image of a dowel, but such anomaly type can

*This work was done when Yizhou Wang was an intern at Mitsubishi

Electric Research Laboratories.

Figure 1. Problem overview. Current 3D anomaly detection and

localization works entail training on the normal data of one class and

testing on the normal and abnormal data of the same class. We extend

such setting by testing on other classes without the corresponding

normal training data. This zero-shot setting is practical when such data

are unavailable (e.g., due to data privacy, export control laws, etc.). GT

denotes ground truth.

be very obvious in the 3D point cloud data. Recently, various

3D anomaly detection and localization methods have been intro-

duced [5,23,35,42,54]. All these existing works concentrate on

the setting that the testing data (including both normal and abnor-

mal data) are from the same class as the training data. However,

in real-world industrial 3D anomaly detection and localization

applications, the normal training data of the target objects can

be unavailable due to many possible reasons, e.g., data privacy,

export control regulations, etc. Sometimes the normal data of the

target objects on the client side are sensitive, and the client may

not want to share the data but only want an anomaly detection

and localization method that can perform well “off-the-shelf.”

Therefore, a 3D anomaly detection and localization method able

to generalize to unseen classes in the testing phase is needed.

Problem Statement. To address the aforesaid issues, we

define a new problem in zero-shot 3D anomaly detection and

localization, which involves identifying anomalies within a

particular target class without any access to training data for

This WACV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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that class or prior knowledge of its specific type of anomaly

pattern. To be more specific, our goal is to localize abnormal

locations in the 3D data in the target class’s testing set, with no

need of target class training data. Fig. 1 illustrates this problem.

Proposed framework. To solve the aforesaid new problem, we

propose a novel framework, namely “3D zero-shot anomaly lo-

calization” (3DzAL ). To achieve satisfactory zero-shot perfor-

mance in 3D anomaly detection and localization, we add a learn-

able 3D feature extraction network on top of the 3D FPFH [36]

features and encourage the learned features to be complementary

to the features captured in FPFH. To regularize the 3D feature

extraction network, we use a patch-level pseudo anomaly-based

contrastive learning scheme. We propose a pseudo anomaly gen-

eration module to synthesize anomalies since the training data

only include the normal data without any abnormal data. When

designing the pseudo anomaly generation module, we find that

a randomly initialized and untrained CNN is able to locate the

places of interest in three-dimensional point cloud data in its fea-

ture activation maps, i.e., if we feed the three-dimensional point

cloud data as the input of a random CNN, the highly activated

areas in this CNN’s feature activation maps usually cover the lo-

cations of interest, e.g., crack, hole, etc. Based on this finding, we

use the places of interest identified by the random CNN to syn-

thesize pseudo abnormal patches in the pseudo anomaly genera-

tion module, which is the first attempt to use such inductive bias

of random networks in 3D anomaly localization and detection.

In our proposed zero-shot 3D anomaly localization and

detection setting, since the training data of the target objects

are unavailable, we incorporate the 3D data from other objects

(which we refer to as task-irrelevant data, i.e., the objects

belonging to the categories different from the testing category)

to synthesize the pseudo anomaly patches. We extract the

3D features of both the normal patches and pseudo abnormal

patches and use a contrastive learning objective to further reg-

ularize the learned 3D feature extraction network. To enhance

the anomaly localization and detection ability, we also introduce

a normalcy classifier to distinguish the normal patches from

the pseudo-abnormal patches to gain the discriminative ability

between general normal and abnormal 3D objects. We add ad-

versarial perturbations to the input point cloud patch utilizing the

gradient of the negative log-likelihood loss applied to the testing

data. Eventually, we combine the normalcy classification output

score of the perturbed data and the distance-based score of the

original using the RGB and FPFH features plus our learned 3D

features to formulate the final anomaly score. We demonstrate

that our proposed method 3DzAL outclasses the SOTA 3D

anomaly localization and detection method within the zero-shot

framework. In summary, our key contributions are as follows:

1. We formally introduce a new problem in 3D anomaly

detection and localization where the model undergoes training

using the normal data to detect anomalies (during testing) in

a varied class without undergoing any adaptation through the

target-class training data.

2. We propose a novel zero-shot 3D anomaly detection

and localization method, 3DzAL , where our designed

network learns the relative and general difference between the

normal and abnormal 3D object data in the training class and

generalizes to the target class without needing the target class

training data or any models pre-trained by 3D data.

3. Intriguingly and notably, for the very first time (as far as we

are aware), we show that a randomly initialized and untrained

CNN has the inductive bias to localize places of interest on

three-dimensional point cloud data, and its localization ability

is better than an ImageNet-pretrained CNN.

4. As far as we are aware, this is the first attempt to incorporate

the input perturbation technique into 3D anomaly detection and

localization problems and show its efficacy.

2. Related works

3D anomaly localization and detection is crucial in indus-

trial scenarios [3, 23]. With the emergence of the first 3D

anomaly localization and detection dataset MVTec 3D-AD [3],

a great number of anomaly detection and localization methods

for three-dimensional point cloud data have been introduced. [3]

proposed to use generative adversarial networks, autoencoders,

and variational models in both voxel-level and depth-level mod-

eling. [4,35] adopted student-teacher frameworks for anomaly

detection and take advantage of the distance between the stu-

dent and teacher model output as anomaly score. [23] proposed

the 3D version of Patchcore [34], which utilizes a core-set as-

sisted memory bank for normal feature storage and employs

the distance between the testing sample feature and the normal

memory bank as an anomaly score. More recently, [5] proposed

a collaborative discrepancy optimization method with the help of

synthetic anomalies, [42] came up with a new position-encoding-

augmented feature mapping for anomaly detection, and [44]

suggested a hybrid feature fusion technique for multimodal in-

dustrial anomaly detection. [10] developed a method using a

dual-expert framework that combines 3D geometric information

and 2D color features, but it required training the expert models

using the training data of all categories, which is not feasible

under our proposed zero-shot setting. [53] proposed a novel

method called 3DSR, which utilizes a Depth-Aware Discrete

Autoencoder architecture and a simulated depth data generation

process to jointly model RGB and 3D data, achieving the best

anomaly localization and detection performance so far. Despite

the efficacy of the above solutions, they require the testing sam-

ples to share the same class as the training samples. Once the

training and testing data distributions differ, the performance

will be largely compromised. In contrast, 3DzAL learns more

generally discriminative features and aims to find the essential

difference between normal and abnormal 3D data. Specifically,

we propose to employ the inductive bias to generate pseudo-

abnormal examples and use contrastive learning on top of them.

Low-shot anomaly detection which is composed of few-shot

anomaly detection and zero-shot anomaly detection, has been
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Figure 2. Framework overview. Our proposed 3DzAL framework mainly adopts three branches to extract features given both 2D and 3D data of

an object. The RGB branch extracts feature from 2D image data of the object using ResNet pre-trained on ImageNet. The FPFH branch extracts

handcrafted FPFH features from 3D point cloud data. The point cloud branch employs a learnable network (PointNet++) to extract features. The

network is trained by a patch-level contrastive learning loss, which takes inductive bias-based pseudo anomaly patches as negative samples and

normal patches as positive samples and a representation disentanglement loss which pushes the FPFH features and the learned 3D features away.

The features of the three branches are concatenated to store in the memory bank where a coreset selection is performed. In addition, a normalcy

classifier is trained to classify the pseudo anomaly patch and the normal patch using the binary cross-entropy loss.

attracting attention in anomaly detection research recently. For

few-shot anomaly detection, some works [11,12,24,34,39,48]

reflected the notion of “few-shot” in only using a much

smaller number of normal training samples, and oth-

ers [14,21,27,29,31,41] explored the setting that a few abnormal

samples can be accessed during testing. In the context of zero-

shot anomaly detection, the current dedication to such research

direction is still limited. [15,28] exploited the transfer learning

power of the pretrained CLIP models [33] for image-level

out-of-distribution detection or anomaly detection without the

normal training data. [37] investigated the capacity of ImageNet-

pretrained masked autoencoder [19] for zero-shot image

anomaly detection via adopting the reconstruction discrepancy

as anomaly score, and [1] tackled the zero-shot setting in video

anomaly detection. More recently, [56] leverages text prompts

that are not tied to specific objects, allowing it to identify general

patterns of normality and abnormality, making it effective for

zero-shot anomaly detection across different domains. [25]

relies on custom-designed text prompts to map image features

to abnormal areas, utilizing CLIP’s capabilities for zero-

shot anomaly recognition. Better than all the existing works,

3DzAL needs no pre-trained model and makes the first attempt

to execute zero-shot 3D anomaly detection and localization.

3. Proposed 3DzAL framework

Method overview. Given the normal training data from one

particular class, our aim is to learn the representation that

can ideally transfer across different classes without the need

for the normal data of the testing class. To achieve this goal,

we introduce an innovative 3DzAL framework which is

depicted in Fig. 2. 3DzAL is built on the basis of a memory

bank restoration and feature distance calculation paradigm.

Specifically, 3DzAL is composed of a random CNN-based

pseudo 3D anomaly sample generation module with the

assistance of task-irrelevant data, 3D feature contrastive learning

using pseudo anomaly, and a 3D point cloud sample normalcy

classifier trained using the normal training sample and the

synthesized pseudo anomaly sample. Finally, the distance-based

score using the contrastive-learned features and the normalcy

classifier output score using perturbed patch inputs are weighted

and integrated to form the final anomaly score.

Our paper focuses on the 3D anomaly location detection, so

the directions of existing zero-shot AD works in RGB images

are complementary to what we propose. We intentionally do

not make use of any existing zero-shot AD work and show

that our proposed method still outperforms the SOTA. If we

use existing zero-shot AD works, then we won’t be able to

claim such novelty in our method. We leave the integration of

zero-shot RGB anomaly detection techniques [15,25,28,37,56]

for performance gain for future work.

Notation. We denote a 3D point cloud sample as X ∈R
N×3

and its ordered version as X ∈ R
H×W×3, where N is the

number of points and H,W is the height and width of the cor-

responding 2D ordered map, either 3D data or 2D RGB values
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and H×W =N . Here “ordered” means the 3D point cloud

data are in the ordered 2D image form but the three-channel

values of each pixel are xyz instead of RGB values. The object

X is partitioned into patches along the width and height. We

denote each patch as x and X = □x, where □ refers to the

practice of “realigning” x “based on their respective spatial

location” as defined in [34]. The 3D representation extraction

network is denoted as Eθ with parameter θ, and the normalcy

classifier network is represented as Cw with parameter w.

3.1. Normal feature extraction

The Patchcore [34] is one of the SOTA methods for 2D

industrial anomaly localization and detection on the MVTec-2D

dataset [2]. BTF [23] is the 3D data version of the PatchCore

and achieves the SOTA anomaly detection and localization

result on the dataset MVTec-3D [3]. Following these works,

we also first extract features from the normal data samples

and store them in the memory bank. In particular, we extract

RGB features from the 2D RGB image of the 3D object and

handcrafted 3D FPFH [36] features from the corresponding 3D

point cloud sample. As illustrated in the point cloud branch of

Fig. 2, we add an additional 3D network to extract learnable

features. The network is learned using contrastive learning and

a feature disentanglement objective.

3.2. Learning discriminative 3D representations

Pseudo anomaly generation with inductive bias. To generate

satisfactory anomaly detection and localization performance,

we require our point cloud branch to reflect a clear distinction

between the testing anomalies and the testing normal samples.

However, considering that the training samples belong to differ-

ent categories compared to the testing class within the zero-shot

setting, if we want to regularize the training of Eθ, we need to

mimic the disparities between the normal and the abnormal 3D

samples regardless of the class prior. This motivates us to synthe-

size pseudo anomalies and perform contrastive learning between

the pseudo anomalies and the normal samples. [7] showed that a

randomly initialized and untrained convolutional neural network

(CNN) inherently possesses an inductive bias to focus on ob-

jects, i.e., even a randomly initialized CNN can generate biased

activation maps towards objects of interest on a 2D image. Aich

et al. [1] are the first to utilize such inductive bias of an untrained

CNN to extract objects from task-irrelevant data and attach to the

normal data to synthesize 2D pseudo anomaly image samples.

In this work, we discover that such inductive bias also

exists for 3D point cloud data. More specifically, given

an ordered point cloud data X ∈ R
H×W×3, we employ

an untrained ResNet-50 randomly initialized using the He

initialization [20], which is denoted as R(·). Here the channel

values of the input are xyz location values instead of RGB

values when feeding the inputs. We choose to use the reciprocal

second, third, and fourth layer output of R(X )∈ R
d×h×w to

generate and fuse the resulting activation maps. Specifically,

Figure 3. Inductive bias of random networks. We feed the xyz data of

abnormal examples as the input of a randomly initialized and untrained

ResNet-50, and visualize the attention maps. These maps show that

the random network has the inductive bias of covering the locations of

interest, including the locations shown in the ground truth.

the output sizes of the reciprocal second, third, and fourth layers

are 14×14, 28×28, and 56×56, respectively. We first sum the

values of all the channels in the feature map and then normalize

them to the range [0,1]. Then we resize the output activation

map of the reciprocal second and third layer output to the same

spatial size as the reciprocal fourth layer, i.e., 56×56. Then the

three activation map values are added, averaged, and resized to

the original input size to generate the soft mask, which we dub

as A∈R
H×W . For the top τ (percentage) A(i,j) value points,

we set mask M(i,j)=1, and for the rest, we set M(i,j)=0. Here

(i,j) represents the position information in H×W locations.

Finally, the ordered points localized out are MX = M ⊙X ,

where ⊙ is element-wise multiplication. As mentioned in [1,7],

randomly initialized CNN is able to localize objects in that

the background is comparitively less textured compared to

the foreground object and the regions of foreground tend to

exhibit higher activation values under activation functions like

ReLU [18]. However, our method is different in that we use

multi-scale attention values for information fusing, and also

surprising because our fed input is ordered xyz tensor (the point

location information), not RGB values. In our experiments, we

find that the highly activated areas correspond to the locations

with shapes that are locations of interest (as illustrated in

Fig. 3) and should be detected. This is intriguing because it

means that there also exists inductive bias for 3D xyz input

data, which shows that at the spatial level, the point clusters

that exhibit abrupt deviations or alternations can be highly

activated under a series of activation functions like ReLU.

After selecting the points that show the places of interest from

the task-irrelevant data, we attach the points of interest to the

normal training sample. Then we move our anchor point (the

center point around which the points are selected or sampled)

to the geometry center of the anomaly points part plus some

surrounding points, and use KD-tree [55] search algorithm to

pick out the nearest point cloud part as the generated pseudo

abnormal patch. The anomaly points part is attached to the

surface by taking the anchor point as the geometric center. The
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anchor point serves as the query point in the KD tree search.

The KD tree search is conducted within the normal point cloud

plus the anomaly points part with the anchor point as the query

point. This can guarantee that the synthesized abnormal patch

can contain both normal points and pseudo-generated points.

Besides such “adding-point” type pseudo abnormal patches

which mimic anomaly types like bulging, contamination, or

bent, we also involve another type of pseudo abnormal patch by

setting the anchor at a random point of the surface of the normal

sample, randomly sampling point cloud part and then randomly

removing some ratio of points. Such kind of “removing-point”

anomaly aims to resemble abnormal part types including cuts or

holes. Our generated pseudo abnormal patches consist of both

“adding-point” and “removing-point” types with the quantity

ratio 1:1. Fig. 4 illustrates the above process.

Contrastive learning with pseudo anomalies. To learn

the representations that can robustly distinguish between the

intrinsically abnormal and normal 3D samples, we use a

contrastive learning objective that takes normal 3D patches as

positive samples and the pseudo-abnormal patches as negative

samples. As shown in Fig. 2, we add an additional 3D network

PointNet++ [32] Eθ in the patch level to extract features. We

adopt the contrastive learning loss as:

Lcon=
∑

xj∈Xp

−1

|P(xj)|
∗

∑

xp∈P(xj)

log
exp

(
Eθ(xj)·Eθ(xp)

T ·∥Eθ(xj)∥2·∥Eθ(xp)∥2

)

∑
xn∈N(xj)

exp
(

Eθ(xj)·Eθ(xn)
T ·∥Eθ(xj)∥2·∥Eθ(xn)∥2

) , (1)

where Xp is the positive patch sample set, P(xj) is the positive

patch sample set besides xj, N (xj) is the negative patch sample

set, and T is the temperature parameter. The purpose of Eq. (1)

is to maximize the similarity between the learned feature repre-

sentations of the positive samples while minimizing the similar-

ity between the positive sample set and the negative sample set.

Since the positive sample patches exhibit normal patterns while

the negative samples are pseudo abnormal patches which we use

task-irrelevant data from multiple categories to generate, in the

testing phase, the network learned by Eq. (1) has the capacity to

induce features that are far away from the normal feature mem-

ory bank when encountering abnormal samples during testing.

Representation disentanglement loss. To ensure that the

learned point cloud branch output features are complementary

to the handcrafted FPFH features, we design the representation

disentanglement loss Lrd, which aims at minimizing the cosine

similarity cos(·) between the extracted learnable feature Eθ(x)
and the FPFH feature F(x):

Lrd=cos(F(x),Eθ(x))=
F(x)·Eθ(x)

∥F(x)∥2 ·∥Eθ(x)∥2
. (2)

Therefore the loss function for training the network Eθ is

the combination of the contrastive learning loss and the

disentanglement loss: L=wcon ·Lcon+wrd ·Lrd, where wcon and

wrd are the weights.

3.3. 3D normalcy classifier

For the positive and negative samples, we use an additional

PointNet++ [32] network Cw for classification training. The

normalcy classifier aims to distinguish between the normal

sample and the synthetic abnormal ones and is formulated as a

conventional binary classification problem. We adopt the binary

cross-entropy loss Lbce:

Lbce=−
1

N

N∑

i=1

log(p(xi|w))·yi+log(1−p(xi|w))·(1−yi), (3)

where xis are the training data composed of positive (normal

training sample patch) and negative (pseudo abnormal patch)

samples of the contrastive learning paradigm, and p(xi|w) is the

softmax output probability of class 1 ofCw. yis are binary labels

and have value 0 for positive samples and value 1 for negative

samples. In the testing phase, for each test sample patch, we use

p(xi|w) as the patch-level anomaly score. The motivation is

that we assign higher anomaly score values to the testing patch

that is classified as abnormal (class 1) and lower score values

to the testing patch that is classified as normal (class 0). This is

because our classifier has been trained to discriminate between

normal and pseudo-abnormal patches which are synthesized

using task-irrelevant data belonging to multiple categories,

which has been able to distinguish between the normal and

abnormal 3D patches regardless of the class information.

Training and memory bank. After the training of Eθ, we

extract the features of the training patches with it. The learned

feature from the point cloud branch, concatenated with the

RGB feature from RGB branch and the FPFH feature from

FPFH branch, becomes the final feature representation of the

patch x, and we denoted the concatenated feature of x as f(x).
Inspired by PatchCore [34], we store the extracted features of

the training samples into a memory bank and run a minimax

facility location-based coreset selection [38, 40] algorithm to

reduce the computation burden. We use notion M for the

reduced patch-level feature memory bank.

3.4. Anomaly score design

Distance-based score. Given a testing object sample Xtest,

we extract the three branch patch-level features in the same

way as the training process using trained Eθ, and we denote

the collected patch-level feature set as f(X test) and the features

as f(xtest). Following [34], we utilize the maximum distance

score S∗ from f(X test) to the corresponding nearest neighbour

f∗ of the memory bank:

f(xtest,∗),f∗= argmax
f(xtest)∈f(X test)

argmin
f∈M

∥∥f(xtest)−f
∥∥
2
, (4)

S∗=
∥∥f(xtest,∗)−f∗

∥∥
2
. (5)
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Figure 4. Pseudo anomaly generation. Overview of our proposed patch-level 3D pseudo anomaly sample generation process for both “adding” and

“removing” type anomalies.

To obtain the object-level anomaly score Sdist, we impose an

additional weight in the following form:

Sdist(X
test)=


1−

exp∥f(xtest,∗)−f∗∥2∑
f∈Nb(f∗)

exp∥f(xtest,∗)−f∥2


·S∗, (6)

where Nb(f
∗) is the b nearest patch-level features in the mem-

ory bank for the test patch-feature f∗. The rationale of adopting

the reweighting strategy is that we ought to elevate the anomaly

score when the nearest memory bank features to f(xtest,∗) and

f∗ are themselves far away from the surrounding samples. To

design the anomaly map score for pixel-level anomaly localiza-

tion, we simply compute the L2 distances between the test patch

features and the nearest patch features in M, and realign them

according to their respective spatial positions over the whole

object. Then we resize the score map to the original ordered 3D

data resolution H×W via Bilinear Interpolation R and apply

KNN Gaussian Blurring B to the anomaly score map:

Sdist,map(X
test)=B

(
R

(
□xtest∈X test min

f∈M

∥∥f(xtest)−f
∥∥
2

))
, (7)

Classification-based score with 3D input perturbation. We

apply adversarial perturbation to the input patch xyz point cloud

data based on the gradient of the negative log of the softmax

score from the anticipated class, as determined by our trained

classifier Cw in relation to the input patch. Mathematically, for

any 3D point cloud patch xtest,

x̃test=xtest+η(−∇xtestlog(p̂(xtest|w))), (8)

where p̂(xtest|w)=max{p(xtest|w),1−p(xtest|w)}, and η is the

perturbation magnitude. Given that Cw has been effectively

trained to classify between the normal and pseudo anomalous

patch, this approach seeks to lower the softmax score of

the class predicted with the highest likelihood. This means

it aims to make the abnormality harder to categorize with

respect to the testing sample. We denote the 3D object and its

ordered version after perturbation as X̃test and X̃ test respectively,

i.e., X̃ test = □xtest∈X testx̃test. We design the object-level

classification-based score as

Scls(X̃
test)= max

xtest∈X̃ test

p(x̃test|w), (9)

meaning that the abnormality extent of the whole object

is decided by the most abnormal patch considered by Cw.

The classification-based anomaly score map is designed by

realigning the patch-level softmax probabilities based on their

overall spatial locations and applying the same interpolation

and blurring techniques as in our distance-based score map:

Scls,map(X̃
test)=B

(
R
(
□

xtest∈X̃ testp(x̃
test|w)

))
. (10)

Final anomaly score. To design the final anomaly score, we

combine both the distance-based score and the classification-

based score after the adversarial perturbabtion. We denote the

weight of the distance-based score as wd and the weight of the

classification-based score as wc. The final pixel-level anomaly

score map is computed as:

Smap(X
test)=wd ·Sdist,map(X

test)+wc ·Scls,map(X̃
test), (11)

and the object-level final anomaly score is designed as

S(Xtest)=wd ·Sdist(X
test)+wc ·Scls(X̃

test). (12)
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train\test bagel cable carrot cookie dowel foam peach potato rope tire mean (3DzAL ) BTF 3DSR

bagel - 78.6 91.9 89.3 81.6 48.3 91.2 96.5 82.0 86.7 82.9 (↑ 2.4) 80.5 7.9

cable 31.5 - 87.1 48.6 81.0 56.6 65.4 89.4 81.8 80.7 69.1 (↑ 0.9) 68.2 6.6

carrot 45.4 77.2 - 52.9 82.3 46.3 67.3 91.3 84.4 89.3 70.7 (↑ 2.1) 68.6 21.7

cookie 70.6 76.8 91.5 - 81.0 46.5 82.9 91.7 84.4 89.2 79.4 (↑ 5.5) 73.9 8.3

dowel 15.1 76.7 89.8 20.8 - 46.4 49.0 84.5 82.3 89.3 61.5 (↑ 4.1) 57.4 35.4

foam 25.6 77.6 86.0 9.4 80.1 - 57.0 79.4 79.8 83.9 64.3 (↑ 3.3) 61.0 0.5

peach 81.3 78.8 92.4 84.8 82.7 51.8 - 97.9 82.9 89.2 82.4 (↑ 3.5) 78.9 14.2

potato 78.0 78.1 96.7 80.0 81.5 46.4 88.8 - 82.7 88.1 80.0 (↑ 1.7) 78.3 13.2

rope 13.4 76.3 87.7 9.0 80.5 45.8 47.7 82.7 - 89.4 59.2 (↑ 7.2) 52.0 19.3

tire 14.9 76.7 87.8 6.5 80.8 47.0 48.4 83.7 80.8 - 58.5 (↑ 4.7) 53.8 23.8

Table 1. The detailed pixel-level AUPRO (%) of 3DzAL under the zero-shot setting. The best and second-best performances are highlighted in

bold and underline (the gain of 3DzAL over the best baseline is also reported). 3DzAL outperforms BTF and 3DSR in all of the categories.

train\test bagel cable carrot cookie dowel foam peach potato rope tire mean (3DzAL ) BTF 3DSR

bagel - 57.9 71.8 68.9 57.5 58.1 56.1 69.0 47.3 55.9 60.3 (↑ 6.9) 53.4 46.1

cable 52.5 - 52.3 49.6 51.6 72.4 46.4 48.2 44.2 59.9 53.0 (↑ 2.9) 50.1 47.7

carrot 51.6 54.1 - 53.5 57.9 54.9 52.5 48.8 48.1 47.1 52.1 (↑ 1.3) 50.8 46.0

cookie 40.2 50.0 55.5 - 55.3 60.1 46.0 47.3 35.9 59.6 50.0 (↓ 0.6) 49.5 50.6

dowel 54.9 57.0 42.4 51.8 - 57.6 50.4 55.9 58.9 50.4 53.3 (↑ 2.0) 51.3 47.3

foam 60.9 48.8 46.7 47.0 52.7 - 49.0 48.5 50.0 62.4 51.8 (↓ 3.8) 49.9 55.6

peach 46.5 49.2 67.5 49.3 55.0 54.8 - 79.7 58.1 52.6 57.0 (↑ 1.4) 55.6 45.0

potato 43.8 50.5 73.8 43.2 52.4 55.6 49.7 - 46.2 48.3 51.5 (↓ 0.6) 52.1 49.7

rope 48.8 47.6 54.6 42.0 41.9 52.8 46.7 45.7 - 61.8 49.1 (↓ 1.0) 49.1 50.1

tire 48.0 52.1 48.8 45.5 51.6 63.5 53.6 50.0 56.3 - 52.2 (↑ 0.8) 50.5 51.4

Table 2. The detailed image-level AUROC of 3DzAL under the zero-shot setting. The best and second-best performances are highlighted in bold

and underline (the gain of 3DzAL over the best baseline is also reported). 3DzAL outperforms BTF and 3DSR in most of the categories.

4. Experiments

Dataset. We conduct our zero-shot setting experiments on the

MVTec 3D-AD dataset [3], which is the most commonly used

3D anomaly detection and localization dataset for industrial

inspection. The dataset MVTec 3D-AD is a collection of

high-resolution 3D models and corresponding 2D images. The

dataset contains more than 800 3D models of everyday objects

from 10 different classes.

Experimental setting. For our proposed zero-shot setting,

we iteratively use the normal training data of one class for the

training of 3DzAL , and then test on a different class. To

ensure that the auxiliary data for pseudo anomaly generation is

task-irrelevant, we adopt the leave-one-out strategy. Specifically,

we use one class chosen from the remaining 9 classes for testing

and the rest 8 classes as the task-irrelevant data in turn. There

are 10×9=90 individual experiments in total.

Implementation details. For the RGB branch feature extrac-

tion, we use the Wide ResNet-50 [51] pre-trained on the Ima-

geNet [13]. For all the ordered 3D data, we resize the original

data resolution to H=W=224 and use the 8×8 patch size, so

for each sample, we have 28×28=784 patches. For both Eθ and

Cw we adapt the input resolution of PointNet++ [32] network

architecture to 64. We use the percentage τ=0.1% when choos-

ing pseudo abnormal points, and we choose the ratio of negative

patch samples and positive patch samples as 16:1 for contrastive

learning. We set the temperature T=0.07 in our contrastive learn-

ing paradigm. We set the weights of the loss functions aswcon=1,

wrd=100 to make the range of each loss comparable. The Adam

optimizer [26] is employed for training. We train the two net-

works Eθ and Cw for 5 epochs and use the last-epoch model in

the testing phase. At testing time, we set the nearest neighbor

parameter b=3 and the perturbation magnitude η=0.1.

Baselines and evaluation metric. Since the problem of

“zero-shot 3D anomaly localization” is defined by us, we are

unable to identify alternative methods specifically designed

for this setup. The most recent and closely related baselines

we find are BTF [23] and 3DSR [53], which work under

the classical setting, i.e., the training and the testing class are

the same. We adopt the commonly used evaluation metrics:

pixel-level AUPRO and image-level AUROC [3,23,53]. 3DSR

is the current best SOTA work under the classical setting, which

achieves the highest image-level AUROC up to 0.978 and the

highest pixel-level AUPRO up to 0.972 (mean taken over all the

classes in the classical setting). We adapt the publicly released

code of 3DSR [52] and BTF [22] to our zero-shot setting to

report their results respectively for a fair comparison.

Result and analysis. We summarize the pixel-level AUPRO

of 3DzAL and compare them with the mean results of BTF
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baseline Lcon Lrd Cw IP P-AUPRO (%) I-AUROC (%)

✓ ✗ ✗ ✗ ✗ 80.5 / 57.4 / 61.0 53.4 / 51.3 / 49.9

✓ ✓ ✗ ✗ ✗ 80.6 / 57.7 / 62.0 53.7 / 51.5 / 50.2

✓ ✓ ✓ ✗ ✗ 80.8 / 57.8 / 62.5 54.0 / 51.8 / 50.5

✓ ✓ ✓ ✓ ✗ 82.7 / 61.3 / 63.8 57.5 / 52.4 / 50.9

✓ ✓ ✓ ✓ ✓ 82.9 / 61.5 / 64.3 60.3 / 53.3 / 51.8

Table 3. Ablation study of the 3DzAL components. IP denotes input

perturbation, P-AUPRO denotes pixel-level AUPRO, and I-AUROC

denotes image-level AUROC. For each cell, the numbers correspond

to the cases when the training class is bagel/dowel/foam.

pseudo anomaly generation type pixel-level image-level

adding points removing points AUPRO (%) AUROC (%)

✓ ✗ 80.3 / 79.3 / 58.8 53.8 / 52.6 / 49.1

✗ ✓ 81.0 / 79.6 / 58.9 54.0 / 52.8 / 49.1

✓ ✓ 82.9 / 80.0 / 59.2 60.3 / 51.5 / 49.1

Table 4. Ablation study of the pseudo anomaly generation type. For

each cell, the numbers correspond to the cases when the training class

is bagel/potato/rope.

and 3DSR in Tab. 1. Tab. 1 shows that 3DzAL outperforms

BTF/3DSR in all the categories by a considerable margin, which

shows the efficacy of 3DzAL . It also outperforms BTF/3DSR

in 9/7 out of 10 categories in image-level AUROC, as shown

in Tab. 2. Despite performing well in the classic setting, 3DSR

performs particularly badly in anomaly localization in our

zero-shot setting, which shows its poor generalization ability.

Comparison of the memory bank size and the model

parameters size. As to the memory bank size after coreset

selection, when trained on the class bagel and testing on the

class cable gland, the size of the memory bank of baseline BTF

is 229M (19129 patch features with dimension size 1569) and

that of 3DzAL is 234M (19129 patch features with dimension

size 1601). Therefore, 3DzAL has a slightly larger memory

bank than BTF (because we have additionally concatenated

learned 3D features for each memory bank patch-level feature),

and the size ratio is the same for other training and testing

cases. Although the memory bank size of 3DzAL increases

2.2% compared with BTF, the pixel-level AUPRO of 3DzAL

improves over BTF by about 5.7% on average. For the model

parameters, the model parameter size of 3DSR is 38M, and

the model size of 3DzAL is 13.6M (6.8M for the learned

3D feature network and 6.8M for the normalcy classifier).

Therefore, 3DzAL has nearly 1
3 of the model parameters of

3DSR. BTF method does not involve model training.

Ablation study. We carry out ablation studies on the com-

ponents of 3DzAL including the loss functions, normalcy

classifier, and input perturbation. We conduct experiments on

the 3 diverse training categories: bagel (round and relatively big),

dowel (strip-shaped), and foam (irregular shape). Tab. 3 shows

that Lcon,Lrd, Cw, and input perturbation all enhance the per-

formance. Next, we study the impact of the patch-level pseudo

anomaly type on the performance by getting rid of the “adding-

point” and “removing-point” type anomalies, and summarize the

method
pixel-level image-level

AUPRO (%) AUROC (%)

BTF (baseline) 80.5 / 78.9 / 52.0 53.4 / 55.6 / 49.1

3DzAL (pretrained CNN WI) 81.4 / 79.6 / 57.8 56.7 / 56.0 / 49.1

3DzAL (random CNN WI) 82.9 / 82.4 / 59.2 60.3 / 57.0 / 49.1

Table 5. Ablation study on the CNN weight initialization (WI) type.

For each cell, the numbers correspond to the cases when the training

class is bagel/peach/rope.

training classes \ method BTF 3DzAL

bagel + cable 80.3 / 53.4 80.9 (↑ 0.6) / 53.7 (↑ 0.3)

carrot + cookie 79.4 / 50.8 83.7 (↑ 4.3) / 55.4 (↑ 4.6)

dowel + foam 78.5 / 51.3 80.3 (↑ 1.8) / 54.0 (↑ 2.7)

Table 6. The performance of training on the normal data of the specified

2 classes, and testing on the rope class. For each cell, the first / second

number is pixel-level AUPRO (%) / image-level AUROC(%). We also

report the performance gain of 3DzAL over BTF.

results in Tab. 4, where both pseudo anomaly types contribute

to 3D anomaly localization performance. Moreover, we use the

ResNet-50 model pre-trained on the ImageNet dataset instead of

random initialization in Tab. 5, where we conduct experiments

to train on the class bagel/peach/rope, and all the other exper-

imental settings and hyperparameters are kept the same. Tab. 5

shows that random initialization outperforms the pre-trained

one for pseudo anomaly generation in our task. We hypothesize

that it is because the ImageNet pretrained weights focus on

discriminative areas for classification purposes, not necessarily

the abnormal areas we want. Finally, we show the experiments

when training on 2 classes and testing on another unseen

class for both BTF and 3DzAL in Tab. 6, where 3DzAL

consistently outperforms BTF in anomaly localization, which

supports that 3DzAL can generalize to the multi-class setting.

5. Conclusion and Limitation

We have defined a new task for 3D anomaly localization

and detection, which involves localizing anomalies in 3D point

clouds for the target class that lacks training data. To address

this challenge, we have proposed a novel framework named

“3D zero-shot anomaly localization” (3DzAL ) that aims to

learn patch-level relative normalcy using contrastive learning

and normalcy classification based on pseudo abnormal 3D

patch generation. We are the first to show the efficacy of input

perturbation in 3D anomaly detection and localization. 3DzAL

surpasses the current state-of-the-art methods in 3D anomaly

detection and localization. These promising results highlight

the potential of using task-irrelevant data to generate pseudo

anomalies as a viable approach for tackling the zero-shot 3D

anomaly detection and localization problem. In addition, our

new finding that a randomly initialized untrained neural network

has the inductive bias to localize places of interest on 3D data

can be potentially utilized as a prior for other tasks involving 3D

data. The anomaly localization performance in some cases (e.g.,

train on the class foam and test on the class cookie) is not high.
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