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Abstract

Video understanding typically requires fine-tuning the
large backbone when adapting to new domains. In this paper,
we leverage the egocentric video foundation models (Ego-
VFMs) based on video-language pre-training and propose
a parameter-efficient adaptation for egocentric video tasks,
namely Ego-VPA. It employs a local sparse approximation
for each video frame/text feature using the basis prompts, and
the selected basis prompts are used to synthesize video/text
prompts. Since the basis prompts are shared across frames
and modalities, it models context fusion and cross-modal
transfer in an efficient fashion. Experiments show that Ego-
VPA excels in lightweight adaptation (with only 0.84% learn-
able parameters), largely improving over baselines and reach-
ing the performance of full fine-tuning.

1. Introduction
Video understanding models have achieved satisfactory

performance on various downstream tasks, such as video
captioning [33, 38, 47], retrieval [2, 24] and action classifi-
cation [25, 51]. These models are typically trained on the
supervised video datasets of interest [4, 6, 10]. Inspired
by visual-language contrastive learning [24, 27], recent
research has been shifted to training video foundation models
(VFMs) [1, 2, 21, 30, 47, 51] on large datasets, to produce
representations that generalize to multiple tasks. Prior work
has focused on aligning the video and text representations of
the VFM, by developing novel training objectives [1, 21, 45],
or leveraging data from other modalities, such as speech
recognition [38] or language models [51]. While this research
has improved zero-shot performance on unseen domains,
there exists a gap between the latter and that of full VFM
fine-tuning [21, 41, 51]. This gap ensues from a statistics
mismatch between the pretraining data and the application
of interest, due to factors such as background variability,
video context, etc. It reduces the practical value of VFMs,
since fine-tuning usually requires extensive computation,
and model parameters can grow exponentially when adapting
to multiple tasks. This work focuses on the lightweight
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Figure 1. Ego-VPA leverages context-aware prompts to achieve
parameter-efficient adaptation for egocentric videos. (Left)
Performance vs tunable parameters; (Right) Cross modality
prompt-tuning in Ego-VPA where the VFM is frozen.

Method zero-shot fine-tuned

CLIP-based VFM
X-CLIP [26] 24.0 30.0⋆

Vita-CLIP [43] 25.8 31.3⋆

Egocentric VFM
LaViLa [51] 26.8 33.7

Table 1. The zero-shot - fine-
tuned performance gap (mAP
on Charades-Ego) exists in both
CLIP-based VFMs [26, 43] and
Ego-VFMs [51] . ⋆ denotes that
only the prompts/adapters are
fine-tuned on Charades-Ego.

adaptation of VFMs for egocentric (first-person view) videos.

The gap between zero-shot and fine-tuning performance
also holds when image-based foundation models (IFMs)
(i.e. CLIP [31]) are used for image recognition [44].
Several parameter-efficient adaptation techniques have
been developed, including the use of adapters [8] and
prompt-tuning [14, 52, 53]. This inspired a few recent
applications to video understanding [13, 28, 39, 43], based
on the use of IFMs to encode individual video frames. We
hypothesize that this is insufficient for egocentric video, since
IFMs are pretrained on third-person views, not first-person,
and lack temporal reasoning capabilities. The use of existing
lightweight adaptation techniques is insufficient to overcome
these barriers. We validate this hypothesis by demonstrating
the inefficiency of two IFM-based video models [26, 43] for
egocentric video understanding, as shown in Table 1.

In this work, we investigate efficient prompt tuning based
frameworks to address light-weight adaptation of VFMs,
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in particular Ego-VFMs [21, 30, 51] which are pretrained
on egocentric videos. Since no prior work investigated
this problem, we begin with introducing several baselines,
including adding learnable prompts only to the text or the
video encoder. Single-modality prompts unsurprisingly lead
to marginal improvements over zero-shot VFM performance
as they fail to capture connections between the text and
spatial-temporal context. We then show that improved
results can be obtained by prompt-tuning both the video
and text encoders, using the recent VoP approach [13],
which uses an additional module, a bi-directional LSTM, to
connect visual prompts across frames, according to context.
While achieving good performance, this introduces a large
parameter overhead, compromising the lightweight nature
of the adaptation (See trainable parameters in Table 2).

To address this, we propose a parameter-efficient prompt-
tuning approach, Ego-VPA, for Ego-VFMs. Ego-VPA uses
an encoder to project frame feature vectors into a latent
prompt space. It then learns an orthogonal basis for this space,
the prompt basis, which can be seen as a principal component
analysis of prompt space. Given the latent space projection
of a frame feature vector, Ego-VPA then determines the sub-
space of k basis-prompts that best approximates it, in the least
squares sense. The selected basis prompts are then used to
synthesize k video prompts for the video frame, using a linear
latent decoder. Since it is trained over the entire dataset, the
prompt basis is representative of all frames, allowing efficient
cross-frame context modeling. In addition, since the basis
prompts capture the semantic content of the video, the method
can be naturally extended to cross-modal prompt synthesis,
where the basis prompts that best reconstruct the projected
video/text feature are used to synthesize video/text prompts.
Figure 1 summarizes the overall cross-modal prompt-tuning.

To highlight the effectiveness and efficiency of Ego-VPA,
three popular egocentric video datasets (i.e. Charades-
Ego [35], EGTEA [20], and EPIC-Kitchens-100 [7])
are evaluated. We show that Ego-VPA outperforms the
prompt-tuning baselines and is even superior to the fully
fine-tuned Ego-VFM on Charades-Ego and EGTEA. More
importantly, Ego-VPA only requires 0.84% additional model
parameters, which is much more efficient than other baselines
(See Figure 1). Ablations show that Ego-VPA consistently
outperforms the baselines when different numbers of frames
per video or amounts of training data are used.

Overall, we make three contributions to the efficient
adaptation for egocentric video understanding. First, we
show that prompt-tuning video encoders based on IFMs are
suboptimal for egocentric video tasks due to the inherent
domain gap. Second, we propose several baselines that
prompt-tune the existing Ego-VFMs and show that these
baselines are not effective and efficient. Finally, we propose
a novel and efficient prompt-tuning approach, Ego-VPA, that
utilizes a local subspace approximation with shared basis

prompts for cross-modal prompt synthesis, enabling context
reasoning across frames and modalities.

2. Related Works
Video foundation models (VFMs). VFM learns a general-
izable representation for videos, which is applicable to many
downstream tasks, such as video captioning [33, 38, 47], re-
trieval [2,24], action classification [1,25,51]. One approach to
achieve this is to expand existing image-language foundation
models (IFMs) [31] to the video domain [13,17,22,26,32,42,
43, 46]. These works show promising results on some short-
term or third-person-view video understanding tasks [15, 16,
36]. However, since most of the existing IFMs [31] are pre-
trained on static internet images, IFMs require additional tem-
poral reasoning modules to capture scene dynamics and may
fail to extract meaningful representations for frames in ego-
centric videos. Another line of works adopts video-language
pre-training (VLP) [1,2,18,21,23,30,33,41,45,47,50,51] to
learn transferable spatial-temporal representation from large-
scale video datasets [2, 9, 25]. For example, UniVL [23],
All-in-one [41] and Lavender [18] propose a general pre-
training method that can support many tasks and achieve solid
zero-shot performance. Recently, LaViLa [51] shows that
VLP can benefit from the dense narrations generated by Large
Language Models (LLMs). In this work, we focus on LaViLa,
which is the SOTA Ego-VFM on egocentric videos [7,20,35].
Parameter-efficient adaptation. Adaptation techniques
have been widely used in natural language processing
(NLP) for efficiently adapt pretrained LLMs for domain-
specific tasks. For example, task-specific modules (i.e.
adapters) [11, 12, 29, 37] are integrated into transformers for
efficient adaptation. An alternative is to prompt-tune [19, 34]
the large models, where extra tokens are prepended to the
model input and are optimized with domain-specific losses.
In both cases, the large model remains fixed. These adaptation
techniques in NLP are then adopted in the computer vision
field. For example, VL-adapter [39] and ST-adapter [28] pro-
pose effective adapter-based methods for the tasks of image-
language and video understanding, respectively. VPT [14],
CoOp [53] and CoCoOp [52] prompt-tune image transformers
and CLIP [31] for image recognition tasks. Recently, VoP [13]
extended prompt-tuning techniques to the video-language
domain by applying video and text prompts. We adapt VoP
and its variants to Ego-VFM as strong baselines and propose
an efficient way to model context fusion atop the baselines
that allows knowledge sharing across frames and modalities.

3. Egocentric Video Understanding with VFMs
3.1. VFM Preliminaries

Inspired by the success of IFMs on image applications, two
types of VFMs have been proposed for video. One extends
existing IFMs (e.g. CLIP) to the video domain [13, 26, 43],
by first encoding individual frames with an IFM and then
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fusing them with a temporal reasoning component. The other
directly employs a video encoder to learn spatial-temporal
representations [41, 51]. These models use video-language
pretraining to learn representations that align two modalities.
Similar to IFMs, most VFMs [1, 2, 51] adopt dual-encoder
design, where a video encoder ϕvid and a text encoder ϕtxt

extract features from each video V and its corresponding
text description X (e.g., “turning on the light"), respectively.
ϕvid and ϕtxt are usually transformers [1, 2, 51]. Given an
input sequence Z(0) ∈ RNt×d with Nt tokens, the L-layer
transformer performs the mapping

Z(l+1)=Att(Z(l)) l=0...L−1, (1)

where Att(·) is a transformer block [40]. For l = 0, a
learnable positional encoding that specifies the relative
position between the tokens is added. In the following, we
omit all learnable positional encoding for brevity and use the
subscript vid and txt to represent variables from the video
and text domains, respectively.
Text encoder ϕtxt. Given a textual description X ,
each tokenized word is mapped into a text embed-
ding z

(0)
i ∈ Rdtxt . The transformer of Eq. (1) takes

Z
(0)
txt = (z

(0)
[SOS],z

(0)
1 , ...,z

(0)
Nw

,z
(0)
[EOS])

T as the input, where

z
(l)
[SOS],z

(l)
[EOS] ∈ Rdtxt are special tokens representing the

start and the end of the sequence, which is mapped into a
token sequence Z(l)

txt at each transformer layer l, and defines
the text feature as ϕtxt(X) = z

(L)
[EOS], where L is the last

transformer layer.
Video encoder ϕvid. Given a video V with T frames, each
frame Vf is mapped into patch embeddings {z(0)(f,p)}

Np

p=1,

where Np is the number of patches. A [CLS] token z
(0)
[CLS]∈

Rdvid is prepended to the input sequence, i.e. Z
(0)
vid =

(z
(0)
[CLS],z

(0)
(1,1), ...,z

(0)
(T,Np)

)T ∈ R(NpT+1)×dvid . The video

feature ϕvid(V ) = z
(L)
[CLS] is then extracted with the video

encoder ϕvid with transformer mapping of Eq. (1). Since the
(NpT+1) attention computations of each patch induce large
memory overhead, there is a need to trade-off between space
and time. VFMs typically use the TimeSformer [3] architec-
ture, which utilizes two types of attention: a spatial attention
block that only attends to features from the same time/frame
(i.e. (z[CLS],z(f,1),...,z(f,Np))); and a time attention block
that only attends to features from the same location (i.e.,
(z[CLS],z(1,p),...,z(T,p))). The two attention blocks are inter-
leaved to construct each transformer block of Eq. (1), reducing
the attention computations per patch to (Np+T +2). This
enables increasing the sampling rate of each video (e.g., from
4 frames in [2] to 16 frames). Note that this is especially im-
portant for egocentric videos as camera tends to move faster.
Optimization. Following standard visual-language con-
trastive learning [31] practice, most VFMs [1, 2, 51] align the

two modalities by optimizing the InfoNCE loss [27]. Given
a video dataset D={Vi,Xi}Ni=1, the loss for each batch B is

Lcl=− 1

|B|

∑
i∈B

log
e(v

T
i ti/τ)∑

j∈B
e(v

T
i tj/τ)

+log
e(t

T
i vi/τ)∑

j∈B
e(t

T
i vj/τ)

,
(2)

where τ is the temperature, v=ϕvid(V ) and t=ϕtxt(X).

3.2. Generalization Ability of VFMs for Egocentric
Video

Standard VFMs are trained from large datasets, typically
collected on the web, which consist mostly of exocentric
(third-person-view) videos. We refer to them as Exo-VFMs.
Egocentric videos are captured from a first-person view by
wearable devices, which have many hand-object interactions
and motion blurs caused by head and body movements. This
renders Exo-VFMs sub-optimal for egocentric video under-
standing [21]. The introduction of the large-scale egocentric
video dataset Ego4D [9] sparked the development of egocen-
tric VFMs (Ego-VFMs) [1,21,30,51]. However, while Ego4D
is a very large dataset by egocentric video standards, it is un-
clear whether models learned from it can generalize to a broad
set of egocentric video domains, namely to egocentric datasets
other than Ego4D. To test this premise, we start by conducting
some preliminary experiments on the generalization ability
of Ego-VFMs to the popular Charades-Ego [35] dataset.

Table 1 compares the performance of Ego-VFM LaV-
iLa [51] to that of two CLIP-based Exo-VFMs, X-CLIP [26]
and Vita-CLIP [43], under the zero-shot setting. While
the Ego-VFM has improved performance, likely because
it mitigates the change of perspective, the results are not
drastically superior. In fact, there is a considerable gap
between the zero-shot performance of the Ego-VFM and that
after it is fine-tuned to Charades-Ego. The advantage of the
Exo-VFMs is that they basically expand CLIP into a VFM
using prompting. Since the IFM is fixed, this is a lightweight
operation. For these models, the adaptation to new egovideo
datsets is not difficult. As shown in the right column of
Table 1, when their prompts and additional modules (beyond
CLIP) are fine-tuned on Charades-Ego, their performance
outperforms the zero-shot application of the Ego-VFM.
Hence, from a practical standpoint, the adaptation of the
Exo-VFMs to a new egocentric setting is superior to the
zero-shot application of the Ego-VFM. However, they still
underperform the fine-tuning performance of the latter.

These observations suggest the following conclusions.
First, Exo-VFMs like X-CLIP [26] and Vita-CLIP [43]
are quite versatile and can cover large domain gaps with
lightweight adaptation. However, they cannot match the
performance of Ego-VFMs fine-tuned on the egovideo
dataset of interest. Second, current Ego-VFMs appear
to overfit to Ego4D dataset, requiring fine-tuning for
effective performance on alternative egovideo datasets, like
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Charades-Ego. However, this requires a large computation
and parameter overhead, and reduces the practical value of
VFMs, especially if fine-tuning is required for multiple tasks.

This raises the question of how to design lightweight
adaptation modules for the Ego-VFM models that, similarly
to the Exo-VFMs of Table 1, can mitigate the performance
gap across egovideo domains with reduced memory and
training. We focus on the LaViLa [51] model, since it
is the current state-of-the-art Ego-VFM, where TimeS-
former [3] is adopted as the video encoder to trade off the
space-time resolutions. In view of the established efficacy of
prompt-tuning for other large foundation models [14, 53], we
explore prompt-tuning as a parameter-efficient way to adapt
Ego-VFMs to downstream egocentric video applications.

4. Ego-VFM Prompt-tuning Baselines
Prompt-tuning introduces a set of learnable prompts,

which are the only parameters optimized during the adap-
tation, leaving the rest of the VFM frozen. Specifically,
the input sequence Z(0) of the transformer of Eq. (1) is
augmented with learnable promptsP=(p1,...,pM )∈Rd×M .
While Exo-VFMs like X-CLIP [26] and Vita-CLIP [43] rely
on prompt-tuning of IFMs, it is non-trivial to prompt-tune
a TimeSformer-based VFM (such as LaViLa) as it utilizes
divided space-time attention. We next introduce several
baseline solutions, based on prompt-tuning methods in the
literature. As shown in Figure 2, these insert prompts in the
text encoder (TPT), video encoder (VPT), or both (VoP).
Text prompt-tuning (TPT). Given text embedding
Z

(0)
txt ∈ R(Nw+2)×dtxt , TPT prepends text prompts

Pt = (pt,1,...,pt,Mt
)∈Rdtxt×Mt to the input text emebed-

dings, i.e. Z̃
(0)
txt = (z

(0)
[SOS],Pt,z

(0)
1 ,...,z

(0)
Nw

,z
(0)
[EOS])

T . The

output feature ϕ′
txt(T ) = z̃

(L)
[EOS] is then extracted with the

transformer in Eq. (1).
Video prompt-tuning (VPT). Given a video V ,
the video embedding of Z

(0)
vid ∈ R(NpT+1)×dvid

is extracted as described in section 3.1. To
prompt-tune the video encoder, the visual prompts
Pv = (pv,1, ...,pv,Mv ) ∈ Rdvid×Mv are prepended to the
input sequence, i.e. Z̃(0)

vid=(z
(0)
[CLS],Pv,z

(0)
(1,1),...,z

(0)
(T,Np)

)T .
Note that we apply prompt tuning only to the spatial
attention blocks of the TimeSformer [3] as we found that
prompt-tuning both blocks has no additional gain (See
Appendix). Inspired by [14], beyond introducing visual
prompts at the input layer, we further prepend layer-specific
prompts P(l)

v to every transformer layer. In the following, we
omit the layer l superscript of these deep prompts, for brevity.
The output of VPT is then written as ϕ′

vid(V )= z̃
(L)
[CLS].

Text-video prompt-tuning (VoP). Recently, VoP [13]
expanded CLIP into a video model by prompt-tuning
of both modalities. Several prompt-tuning variants are
proposed in [13]. Vanilla VoP adopts both TPT and VPT,

and the visual prompts are shared across all frames. To
propagate contextual information across frames, V oPC

uses a context modeling module (CMM) to generate
frame-specific prompts {P1

v, ...,P
T
v } conditioned on the

context information from other frames. To adapt it to LaViLa,
while [13] adopts the [CLS] token from each frame-specific
CLIP, we use zf = AvgPool(z(f,1), ..., z(f,Np)) as the
contextual feature of frame f . In addition, we devise two
types of prompting for the space attention block of the
TimeSformer. For intra-frame attention, each patch token
z(f,p) can only attend to the prompts associated with frame
f (i.e. (z[CLS],P

f
v , z(f,1), ..., z(f,Np))). For inter-frame

attention, each patch token z(f,p) can attend to all the prompts
across frames (i.e. (z[CLS],P

1
v, ...,P

T
v ,z(f,1), ...,z(f,Np))).

Following [13], we adopt intra-frame/inter-frame attention
in the first K/last L−K transformer layers and integrate this
strategy with V oPC as the V oPF+C variant.

5. Ego-VPA
Our experiments (see Section 6.2) show that V oPF+C

prompting significantly improves the performance of the
Ego-VFM on new egocentric datasets. However, this method
still falls short in two aspects. First, the CMM module,
which is itself a bi-directional LSTM network, still requires
a substantial number of model parameters. Second, there
is no connection between text and visual prompts, limiting
knowledge transfer across modalities. We next propose
a novel prompt-tuning technique for Ego-VFMs such as
LaViLa, denoted as Ego-VPA, which achieves context fusion
across frames (like CMM) and modalities in an extremely
lightweight fashion. This is implemented by the proposed
prompt synthesis scheme, using a shared prompt basis. Note
that we keep the inter-frame attention layers (last L −K
layers) identical to V oPF+C for fair comparison.

5.1. Video Prompt Synthesis
The main challenge for video prompting is how to

design prompts that capture contextual connections across
frames. Prompt design is almost trivial for stand-alone
prompts, which are vectors with few parameters learned by
back-propagation. However, once a prompt depends on other
prompts, there is the need to learn the functional dependence
between them. This can be done by learning a prompt
synthesis network, e.g., a transformer that simultaneously
generates prompts for image and text [49], or a recursive
network, such as the LSTM of [13] to synthesize prompts
recursively, which is more sensible for video. While small,
these networks have many more parameters than the prompts
themselves, and can sacrifice the lightweight nature of
the adaptation. For example, in Table 2, both V oPC and
V oPF+C require about 10% of the VFM parameters.
Frame-specific prompt synthesis. In this work, we seek a
more efficient solution, inspired by the compression litera-
ture and illustrated in Figure 3. We assume that the prompt
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Figure 2. Models. We adapt SOTA prompt-tuning methods to Ego-VFMs (See section 4), i.e. TPT, VPT, and VoPF+C, where CMM is a
context modeling module. The proposed Ego-VPA leverages a set of basis prompts F for cross-modal prompt synthesis, enabling context
modeling across frames and modalities in a highly efficient way (See section 5).

information lies on a lower dimensional latent space H, onto
which frame features zf are mapped by an encoder hvid(·) :
Rdvid →H⊂Rdf , where df ≤dvid. Prompts then inhabit a
B-dimensional subspaceP ofH (B<df ) of orthogonal basis
F={f1,...,fB}. These vectors, denoted as basis prompts, can
be thought of as the principal components of prompt space.
Given a frame feature vector zf , we seek a small number (k)
of basis prompts that best approximate hvid(zf ). For this, we
identify the k-dimensional subspace of P that has minimum
least squares reconstruction error, i.e., the solution of

α∗
f =arg min

αf ,||αf ||0=k
∥hvid(zf )−Fαf∥2, (3)

where F ∈ Rdf×B contains the B basis prompts in F as
columns and ||α||0 is the 0-norm (number of non-zero
elements) of α. We refer to this as the local reconstruction
subspace for hvid(zf ) and denote the set of vectors

Sf
v ={fi|α∗

f,i ̸=0} (4)

as the best local reconstruction basis for hvid(zf ).
The vector α∗

f has a closed form solution due to the
orthogonality of the basis F . For any matrix G containing
k columns of F, the minimizer of ∥h−Gα∥2 is

α=(GTG)−1GTh=GThvid(zf ), (5)

since G is orthogonal, leading to the subspace distance

∥h−Gα∥2=(h−Gα)T (h−Gα)

=∥h∥2−2hTGα+∥α∥2=∥h∥2−∥α∥2.(6)

It follows that the solution of Eq. (3) is the subspace that
maximizes the magnitude of the α vector. Since α has the
form of Eq. (5), this occurs when α includes the largest k
dot-products hvid(zf )

T fi, i.e

α∗
f,i=hvid(zf )

T fi×1i∈s(zf ,F ;k,hvid) (7)

query

similarity

basis
prompts

𝑔

ℎ

prompts

ℱ

𝐳

Figure 3. Prompt Synthesis. Token z is projected into the subspace
by h(·), and sparsely approximated by the top-k similar prompts
in the prompt basis F , which are finally mapped into k prompts by
the mapping g(·). (h,g) can be (hvid,gvid) or (htxt,gtxt) for visual
or text prompt generation, respectively. k=4 in this illustration.

where 1(·) is the indicator function,

s(z,F ;k,h)= top-k({h(z)T f1,...,h(z)T fB}) (8)

and top-k returns the indices of the largest k elements of
its argument. Given α∗

f , the k basis-prompts in the best
reconstruction basis Sf

v of Eq. (4) are mapped to feature
space by a latent space decoder gvid(·) :Rdf →Rdvid . This
produces a set of prompts

Pf
v =gvid(FA

f
v ) (9)

where Af
v ∈ {0,1}B×k is a matrix whose ith column is the

one-hot code for the ith index in s(zf ,F ;k,hvid).
Prompt learning. The learning goal is to derive the basis
F of the prompt space over the entire dataset. This is the
set of vectors fi that minimize the reconstruction error of
Eq. (3) under the orthogonality constraint fTi fj = 1i=j .
We ensure that all vectors have unit norm by introducing a
normalization layer after the encoder hvid(·) and learn the
basis by minimizing the Lagrangian

T∑
f=1

∥
∑
fi∈Sf

v

α∗
f,ifi−hvid(zf )∥2+

∑
fi,fj∈F

ξif
T
i fj ̸=i, (10)
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where ξi are Lagrange multipliers set to ξi = 1,∀i in all
experiments. Since the basis is optimized on the entire dataset,
the subspace spanned by F is a global low dimensional
approximation to the space of prompts, akin to a principal
component analysis (PCA) of components fi. Under this view,
the approach can be seen as the computation of a localized
PCA, which selects the k principal components that best
approximate hvid(zf ) to synthesize the prompts of Eq. (9).
Cross-frame context modeling. Since the frame-specific vi-
sual promptsPf

v are conditioned on the frame feature zf , they
encapsulate the context of frame f . Hence, cross-attention
between z[CLS] and the prompts P1

v,...,P
T
v can summarize

knowledge across frames, without requiring additional
modules like the bi-directional LSTM of CMM [13]. The
hyper-parameters df , B, and k trade-off the number of
parameters required to store the prompt basis, with the
reconstruction error of the local least squares approxima-
tion, and the desired number of prompts to be added per
transformer stage. In any case, because the basis F and the
encoder/decoder pair hvid,gvid, are the only learned param-
eters, the approach is very efficient. In all our experiments,
both hvid and gvid are implemented with a single linear layer
of dvid×df parameters. Hence, the proposed approach only
requires df (B+2dvid) parameters, which is usually much
smaller than the (16+2MvT )d

2
vid additional parameters of

CMM. Please refer to the appendix for a detailed comparison.
In Table 2, we show that good adaptation performance can
be obtained with only 0.84% of the VFM parameters.

5.2. Cross-modal Prompt Synthesis
While the text description and image frames originate

from two modalities, the underlying semantic context should
be shared, since both refer to the same video event (e.g. “cut
a tomato"). Intuitively, visual content in the video can benefit
text domain features and vice versa. To enable knowledge
transfer between the two modalities, we propose cross-modal
prompt synthesis, where the prompt basis F of section 5.1
is shared across modalities, as shown in Figure 4.

Similar to video prompt synthesis, a text feature zt =
z[EOS] is mapped into prompt space by a text encoderhtxt(·) :
Rdtxt →Rdf , htxt(zt) is used to query the prompt basisF us-
ing s(zt,F ;k,htxt) in Eq. (8), and a prompt set produced with
Pt=gtxt(FAt), whereAt∈{0,1}B×k is a matrix whose ith

column is the one-hot code for the ith index in s(zt,F ;k,htxt).
gtxt(·) :Rdf →Rdtxt is an additional prompt generator that
maps basis vectors into text prompts. The projection functions
hvid, htxt and joint basis F are jointly optimized with a loss

Lsyn=
1

|B|
∑
i∈B

ls(Vi,Xi) (11)

where

ls(V,X)=
∑T

f=1∥
∑

fi∈Sf
v
α∗
f,ifi−hvid(zf )∥2

+∥
∑

fi∈St
α∗
t,ifi−htxt(zt)∥2+

∑
fi,fj∈F f

T
i fj ̸=i. (12)

𝐏𝑡

𝑋: “Cut 
tomatoes”

Cross-modal Prompt Basis ℱ

𝑓 = 1 𝑓 = 2

𝑉:

ℎ𝑣𝑖𝑑 ℎ𝑣𝑖𝑑ℎ𝑡𝑥𝑡

𝑔𝑣𝑖𝑑 𝑔𝑣𝑖𝑑𝑔𝑡𝑥𝑡

𝐏𝑣
1 𝐏𝑣

2

Figure 4. Cross-modal Prompt Synthesis. The basis prompts
F are shared across frames and modalities, but different mapping
functions h,g are adopted per modality to synthesize the prompts.

with α∗
t,i = htxt(zt)

T fi × 1i∈s(zt,F ;k,htxt), similar to
Eq. (10).

5.3. Training
The prompt basis F and projections hvis, htxt, gvis and

gtxt, are jointly optimized using a combination

L=Lcl+λLsyn, (13)

of the contrastive loss of Eq. (2) and the cross-modal prompt
synthesis loss of Eq. (11), where λ is a hyperparameter.
However, since the prompt basis is randomly initialized, the
basis prompts do not contain semantic information in the
early stages of training. This problem is compounded by
the use of top-k basis prompt selection, where only the basis
prompts will be updated, and these updated basis prompts
will then be selected again in the next iteration. To prevent
this, instead of using the top-k selection rule during training,
we sample k basis prompts from a multinomial distribution
πm, which is a mixture

πm=γπsim+(1−γ)πinvf , (14)

of the distribution πsim of similarities between query and
basis prompts, and the inverse of the basis prompt selection
frequency πinvf . The mixture coefficient γ is set to 0 at the
beginning of training and gradually increased to 1 in later
epochs. This increases the possibility that basis prompts
rarely seen in the dataset are learned. Note that the top-k
basis prompts are always selected during inference.

6. Experiments
In this section, we validate the efficiency and effectiveness

of Ego-VPA by comparing it with SOTA methods and ablating
on different components. More results in the appendix.

6.1. Experimental Setup
Datasets. We adopt LaViLa [51] as the Ego-VFM, which is
pretrained on Ego4D [9], containing 4M video-text pairs for
egocentric videos. Both the proposed method and baselines
are evaluated on Charades-Ego [35], EGTEA [20], and
EPIC-Kitchens-100 [7], which are widely used in egocentric
video research. Charades-Ego [35] is a fine-grained action
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Method Tunable Charades-Ego EGTEA
Params (%) mAP Mean Acc Top-1 Acc

Zero-shot 0% 26.8 28.90 35.51
Full fine-tuning 100% 32.9/33.7⋆ 67.77 71.37

Bias [5, 48] 0.12% 30.0 55.29 61.52
TPT [53] 0.002% 29.7 51.93 58.36
VPT [14] 0.66% 31.7 63.11 68.35
VoP [13] 0.67% 32.5 66.36 70.72
VoPC [13] 10.64% 32.4 67.55 71.91
VoPF+C [13] 10.86% 32.7 68.70 73.24

Ego-VPA (Ours) 0.84% 33.8 69.17 73.39

Table 2. Results on Charades-Ego and EGTEA compared to
state-of-the-art prompt-tuning methods introduced in section 4. ⋆

denotes the number in [51], using 4× batch size compared to ours.

classification dataset containing 33, 114 trimmed action
segments for training, spanning across 157 classes. While
both egocentric and exocentric views are provided, we
only train and evaluate egocentric videos using the official
splits, as in [21, 51]. EGTEA [20] is an egocentric cooking
video dataset, containing 10,321 action instances from 106
fine-grained classes. We only use the video data and follow
the same protocol for training and evaluation as in [51].
EPIC-Kitchens-100 [7] is an egocentric cooking video
dataset of 100 hours, containing 67,217/9,668 clips for train-
ing/validation. We evaluate the multi-instance retrieval (MIR)
task to test the generalization of Ego-VPA, which contains a
text-to-video (T->V) and video-to-text (V->T) retrieval task.
Metrics. At inference, video and text features are extracted
with ϕvid and ϕtxt respectively. For action classification,
we compute the cosine similarity per video between the
video feature and the text feature of each action class as the
classification score. We report commonly used metrics for
these datasets. Since each testing video in Charades-Ego
is multi-label, we report the mean average precision (mAP)
over the 157 classes. For EGTEA, we report top-1 accuracy
(Top-1 Acc) and average accuracy over all classes (Mean
Acc). For the EPIC-Kitchens-100 MIR task, mean Average
Precision (mAP) and Normalized Discounted Cumulative
Gain (nDCG) for T->V and V->T retrieval are reported.
Model architecture. The Ego-VFM architecture is inherited
from LaViLa [51], where the text encoder ϕtxt is a 12-layer
(L=12) Transformers with dtxt=512 and the video encoder
ϕvid a 12-layer (L = 12) TimeSformer with dvid = 768.
We prompt the model with Mv = Mt = 8, K = 8, setting
df =512,B=10 for the prompt basis. All models are trained
with 16 frames per video (T = 16) unless explicitly noted.
More details on implementation are reported in the appendix.
Computing. As in section 4, we freeze the Ego-VFM model
parameters and only learn a small portion of prompts on
the downstream datasets. Ego-VPA does not require large
computing resources compared to prior work. We train all the
experiments with a batch size of 4 per GPU using 8 NVIDIA
Titan Xp GPUs. This is 4× smaller than the batch size in [51].
The memory required for Ego-VPA training is around 2/3
of that required to fine-tune the full model.

Prompt Cross Orthogonality Prompt mAPGeneration Modality Constraint Query

(m1) CMM N/A N/A 32.7

(m2) PS ∼πm 32.8
(m3) PS ✓ ∼πm 33.0
(m4) PS ✓ ∼πm 33.3
(m5) PS ✓ ✓ ∼πm 33.8
(m6) PS ✓ top-k 32.8
(m7) PS ✓ ✓ top-k 33.5

Table 3. Ablations on prompt generation, the orthogonality con-
straint imposed by the2nd term of Eq. (10), and the prompt query (PS:
prompt synthesis; ∼πm: sampling Eq. (14)). (m1) is VoPF+C [13];
(m2-7) are Ego-VPA variants, and (m5) is full Ego-VPA.

6.2. Comparisons to SOTA Prompt-tuning Methods
Table 2 presents the result on Charades-Ego and EGTEA,

as a function of the tunable model parameters. The poor zero-
shot performance shows that current Ego-VFMs, like LaViLa,
are somewhat overfitted to the Ego4D dataset. Full fine-tuning
significantly improves performance, but requires optimiza-
tion of the entire VFM, which is inefficient. Prompt-tuning
methods require less parameter optimization. Bias [5,48] only
fine-tunes the bias terms in the model but not the weights, and
thus has limited adaptation capacity. TPT [53] and VPT [14]
extend the input sequence with learnable prompts for the text
and video encoders, respectively. These methods are weaker
than VoP [13], where prompt-tuning is performed for both
encoders. VoPF+C, a variant of VoP using a CMM module and
frame-aware attention layers, is the best-performing baseline.
However, the introduction of the CMM module significantly
increases the parameter counts, requiring around 10% of the
model size for the adaptation. The proposed Ego-VPA consis-
tently outperforms all other methods on both datasets, even
beating full fine-tuning, with only 0.84% trainable parame-
ters. While the adaptation to EGTEA produces much stronger
results, indicating that the domain gap to Ego4D is smaller,
the zero-shot performance of LaViLa is still quite weak,
reinforcing the importance of efficient adaptation methods.

6.3. Ablation Studies
This section ablates different designs of Ego-VPA with

the Charades-Ego dataset, unless explicitly noted.
Context modeling module. We first compare the pro-
posed prompt synthesis (PS) with the CMM module of
V oPF+C [13]. As shown in Table 3, despite using much
fewer trainable parameters, video-only prompt synthesis
(m3) outperforms the CMM in V oPF+C (m1). When
cross-modal knowledge transfer is enabled with cross-modal
prompt synthesis (m5), the performance further improves
largely. This validates the effectiveness of context modeling
across frames and modalities.
Orthogonality constraint. The closed-from solution of
Eq. (5) only holds if the basis-prompts in F are orthogonal.
The orthogonality constraint in the 2nd term of Eq. (10)
is important to guarantee this property. This is validated
by (m2-3), (m4-5), and (m6-7) in Table 3, where a gain is
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(a) (b) (c) (d)
Figure 5. (a) Ablations on the size of prompt basis B (using k=8). (b) Ablations on the size of the reconstruction basis k given a fixed B.
(c) Ablations on intra/inter-frame attention boundary K. (d) Ablations on different amounts of training data.

consistently observed when the orthogonality constraint is
imposed, especially in the cross-modal setting.
Prompt query strategies. Table 3 compares the pure
top-k selection rule with the sampling strategy of Eq. (14)
(m4-7). The latter encourages every basis prompt in F to
be updated in the early training stages. In the later stages, as
γ approaches 1, it reduces to top-k selection. (m4-7) shows
that the strategy of Eq. (14) allows more distributed feature
updates and improves performance.
Size of prompt basis and reconstruction basis. In Figure 5a,
we ablate the size of prompt basis B when k = 8 for video
prompt synthesis. Note that we use 8 visual prompts
per-frame (i.e. Mv = 8), so B = 8 means that all basis
prompts are used to generate prompts. Increasing B allows
a slight improvement since some features may not co-exist
across frames. However, the performance saturates quickly,
suggesting that the prompt space has a very low dimension.
Conversely, we ablate the size of reconstruction basis k given
a fixed B for cross-modal prompt synthesis in Figure 5b.
In general, increasing k enhances the expressiveness of the
projected features, since more basis prompts are used for
feature recovery. However, there is a benefit to the local
subspace approximation, as best results are usually obtained
for k/B<1. In Figure 5b, the optimal ratio is 0.8.
Intra/inter-frame attention boundary. As discussed in
section 5.1, we adopt intra-frame attention in the first K
layers of the video encoder and inter-frame attention in the
remaining, allowing shallow layers to adapt lower-level
features, and deeper layers to fuse high-level semantics. We
ablate such attention boundary by training the model with
different values of K, as shown in Figure 5c. Note that
both visual and text encoders have 12 layers (i.e. L= 12).
Results show that settingK=8 leads to the best performance,
coherent to the observation of [13].
Number of frames. We validate the robustness of Ego-VPA
by training with different numbers of frames on both
Charades-Ego and EGTEA. As shown in Table 4, the perfor-
mance of all methods increases with the number of frames,
indicating that temporal resolution is an important factor for
video understanding. Ego-VPA consistently improves over
V oPF+C and the full fine-tuning performances, showing
that it is robust and effective across time resolutions.
Amount of training data. To evaluate the proposed

Dataset Charades-Ego (mAP) EGTEA (mAcc)

# of frames 4 8 16 4 8 16

Zero-shot 24.4 26.0 26.8 27.0 28.5 28.9
Full fine-tuning 28.3 31.4 32.9 56.1 62.9 67.8

VoPF+C [13] 28.6 30.9 32.7 59.1 63.6 68.7
Ego-VPA (ours) 29.3 31.5 33.8 60.5 64.4 69.2

Table 4. Ablations on using different numbers of frames per video.

Figure 6. Ego-VPA can generalize to EPIC-Kitchens-100
multi-instance retrieval task.

Ego-VPA on the low-data regime, we adapt the models with
10%, 20%, 50%, and 100% data respectively. As shown in
Figure 5d, both Ego-VPA and the SOTA VoPF+C are effective
for various amounts of training data, reaching comparable
or even superior performance than full fine-tuning and
improving largely over the zero-shot results. However, the
SOTA model still underperforms Ego-VPA in general.

6.4. Generalization to Retrieval Tasks
We further evaluate multi-instance retrieval tasks [7] on

Epic-Kitchens-100. Figure 6 shows that Ego-VPA performs
on par with V oPF+C , which has 10% more trainable param-
eters. Compared to vanilla VoP, which has a similar number
of parameters, Ego-VPA has clearly better performance.
This shows that Ego-VPA is more parameter-efficient and
effective across different egocentric video tasks.

7. Conclusions
We propose Ego-VPA, a novel parameter-efficient

adaptation method for Ego-VFMs. Atop a frozen Ego-VFM,
we sparsely approximate projected video frame/text features
with a shared prompt basis and synthesize video/text prompts
accordingly. This is shown to enhance context fusion across
frames and cross-modal transfer, achieving improved visual-
language alignments. Through extensive experiments, we
show that Ego-VPA is both efficient and effective, outperform-
ing SOTA methods with much fewer learnable parameters.
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