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Abstract

Identifying predictive covariates, which forecast individ-
ual treatment effectiveness, is crucial for decision-making
across different disciplines such as personalized medicine.
These covariates, referred to as biomarkers, are extracted
from pre-treatment data, often within randomized con-
trolled trials, and should be distinguished from prognos-
tic biomarkers, which are independent of treatment assign-
ment. Our study focuses on discovering predictive imag-
ing biomarkers, specific image features, by leveraging pre-
treatment images to uncover new causal relationships. Un-
like labor-intensive approaches relying on handcrafted fea-
tures prone to bias, we present a novel task of directly
learning predictive features from images. We propose an
evaluation protocol to assess a model’s ability to identify
predictive imaging biomarkers and differentiate them from
purely prognostic ones by employing statistical testing and
a comprehensive analysis of image feature attribution. We
explore the suitability of deep learning models originally
developed for estimating the conditional average treatment
effect (CATE) for this task, which have been assessed pri-
marily for their precision of CATE estimation while over-
looking the evaluation of imaging biomarker discovery.
Our proof-of-concept analysis demonstrates the feasibility
and potential of our approach in discovering and validat-
ing predictive imaging biomarkers from synthetic outcomes
and real-world image datasets. Our code is available at
https://github.com/MIC-DKFZ/predictive_
image_biomarker_analysis.

*These authors contributed equally to this work.
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Figure 1. Relationship between biomarkers xprog and xpred , out-
comes Y (T ) depending on the treatment T and the treatment ef-
fect τ . Since both potential outcomes Yi(T = 0) and Yi(T = 1)
cannot be observed for the same individual simultaneously it is
impossible to infer the individual treatment effect directly.

1. Introduction

Identifying predictive biomarkers is crucial for deter-
mining which subgroup of individuals will have a posi-
tive treatment effect and ultimately for making informed
treatment decisions across different fields such as medical
treatments, environmental strategies, and economic poli-
cies. Precision medicine, for example, relies on predictive
biomarkers to tailor interventions to individual patients and
ensure optimized patient outcomes. Generally, a biomarker
is a measurable characteristic associated with an individ-
ual’s outcome such as disease progression or physiologic
measures [35]. Although the term originally stems from
the biomedical field, we use it more broadly in this paper
to refer to features or covariates in general contexts. A
biomarker is predictive when it acts as a driver of treat-
ment effect heterogeneity [12]. Predictive biomarkers are
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treatment-specific, while prognostic biomarkers are asso-
ciated with the outcome independent of treatment assign-
ment [6], as illustrated in Fig. 1. The discovery of predictive
biomarkers is key to not only explaining the causal mech-
anisms behind treatment effects and supporting informed
treatment decisions but also to driving the development of
novel treatments. In particular, there has been a growing
interest in leveraging the vast amount of non-invasively ac-
quired information provided by different imaging modal-
ities to discover so-called imaging biomarkers, especially
predictive imaging biomarkers [38].

In previous research, the discovery process of predictive
imaging biomarkers involves handcrafted radiomics fea-
tures (e.g. shape, intensity, and texture of tumors or le-
sions [8,31,33,34]) as candidates to determine their predic-
tive performance. This process typically contains several
steps including segmentation to define regions of interest,
feature extraction, and feature selection.

While machine learning approaches have been employed
to facilitate the discovery of imaging biomarkers [9, 29,
33, 34, 36, 39, 40], the training processes rely on hand-
crafted radiomics-based features and have the risk of intro-
ducing human bias, as shown in [25]. Some approaches
directly aim at discovering predictive biomarkers and dis-
tinguishing them from prognostic ones [5, 7, 43, 55], but
are limited to tabular input data. More flexibility and
adaptability are offered by deep learning (DL)-based con-
ditional average treatment effect (CATE) estimation meth-
ods [3,13,22,45,46,54], which have the potential to identify
predictive biomarker candidates from a set of tabular covari-
ates as well [7,11]. CATE estimation differs from a standard
supervised learning task and requires different modeling ap-
proaches as the ground truth for our quantity of interest –
the individual treatment effect – is not available. This is
due to the fundamental problem of causal inference [24]:
It is impossible to observe both potential outcomes, treated
and untreated, from the same individual simultaneously, yet
they are necessary to compute the individual treatment ef-
fect. For CATE estimation, the presence of strong prognos-
tic biomarkers, which is frequently encountered in practice,
can negatively impact the performance of CATE estimators,
even though they are not relevant for the treatment effect
and, thus, treatment decision-making. For instance, CATE
estimators can mistakenly identify prognostic as predictive
biomarkers, as studies have shown [11, 23, 43], which may
lead to ineffective or even harmful treatment recommenda-
tions. It is therefore essential to ensure that these methods
can distinguish the two types of biomarkers.

CATE estimation methods have been originally designed
for tabular inputs and remain a widely unexplored topic in
the context of image inputs. In response to this gap, re-
cent advancements have adapted DL-based CATE estima-
tion methods to estimate treatment effects not only from

medical images [16, 17, 27, 37] but also other types of im-
ages [26, 28, 50]. Yet, none of these image-based methods
directly describe how predictive biomarkers can be identi-
fied and interpreted or address how well models manage to
do so, which is an important but often overlooked perfor-
mance metric to consider when evaluating CATE estimation
methods, as noted in [12]. To conduct such an evaluation,
a benchmarking environment was proposed in [11], albeit
only applicable to tabular data.

Adapting the evaluation of predictive biomarker discov-
ery from tabular data to images introduces a significant
challenge: Extracting imaging biomarkers is complicated
by the high-dimensional and structured nature of image
data, which lacks distinct, pre-defined features. Conse-
quently, a critical step in interpreting these biomarkers is
determining the specific image features on which a black-
box CATE estimation model depends. This step is also vital
for drug development and clinical decision-making.

In this paper, we define a novel task in response to the
challenges above: discovering predictive imaging biomark-
ers directly from image data in a data-driven way, without
requiring handcrafted features or a separate feature extrac-
tion step. We introduce a new evaluation protocol tailored
to this task and demonstrate as a proof-of-concept how a
DL-based CATE estimation model can be applied in prac-
tice (Fig. 2). Our evaluation protocol includes two com-
ponents: (1) statistical testing to investigate the estimated
predictive biomarker strength, and (2) explainable artificial
intelligence (XAI) methods [18, 44, 47–49] to enable the
verification and interpretation of the discovered predictive
imaging biomarker candidates.

We also propose and conduct experiments to validate our
evaluation protocol on real image data using pre-defined
imaging biomarkers with varying strengths of predictive
and prognostic effects on synthetic outcomes. This setup,
for benchmarking and model development, enables assess-
ing a model’s ability to identify and interpret predictive
imaging biomarkers. Experiments on natural and medical
images highlight the potential of an image-based CATE es-
timator to address our task, showcasing the model’s capa-
bility to identify predictive imaging biomarkers with greater
predictive strength compared to a baseline that does not dis-
tinguish between prognostic and predictive effects.

2. Methods

2.1. Treatment heterogeneity and predictive
biomarkers

We describe how treatment effects, which cannot be ob-
served directly, can be estimated from data by introducing
the concept of potential outcomes. Here, we consider pre-
treatment images and data collected through randomized
controlled trials (RCTs), the typical experimental setting for
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Figure 2. Overview of the identification of predictive biomarkers from pre-treatment images. The (a) training and (b) inference step
employs a two-headed architecture to estimate treatment effects τ̂ from images. In the evaluation step (c) the predictive strength of the
estimated τ̂ , the predictive biomarker candidate, is assessed using regression. In our simulation experiments (d), the outcome data Yi used
in our experiments are simulated with image features from ground truth annotations and randomly assigned treatments T .

discovering biomarkers. The relation between outcomes,
defined by a problem-specific measure of interest, and treat-
ment effect has been described by the Neyman-Rubin causal
model [42], where the individual treatment effect (ITE) for
an individual i is defined as the difference between potential
outcomes Yi(T ), ITE := Yi(T = 1)−Yi(T = 0). Here, we
assume a binary treatment variable T ∈ {0, 1} for whether
a treatment is applied or not. In RCTs, T is randomly as-
signed and indicates whether an individual belongs to the
control group (T = 0) or treatment group (T = 1). Since it
is not possible to observe the counterfactual outcomes and
thus measure the ITE due to the fundamental problem of
causal inference, in practice, the conditional average treat-
ment effect (CATE) τ

τ(x) := E [Y (T = 1)− Y (T = 0)|X = x] (1)

is estimated instead. The CATE depends on observable pre-
treatment covariates x ∈ X , which can for example be ex-
tracted from images I . While such covariates that mea-
sure image features are often called imaging biomarkers
in biomedical applications, we use “imaging biomarkers”
as a more general term. Only heterogeneous treatment ef-
fects, i.e. effects that vary among individuals and covariates
x, are relevant for making treatment decisions or subgroup
selection. Therefore, we are interested in identifying co-
variates that directly contribute towards the heterogeneous
treatment effect and interact with the treatment, also known

as predictive biomarkers. Under the common assumption
that prognostic effects fprog and predictive effects fpred are
additive [12, 23, 32, 43] as in

E [Y (x)] = fprog(x) + fpred(x)T, (2)

the CATE defined in Eq. (1) yields fpred(x), which only
depends on predictive biomarkers xpred . In this case,
treatment effect estimation automatically separates prog-
nostic and predictive effects and thus identifies predictive
biomarkers xpred . Generally, a biomarker can be both prog-
nostic and predictive at the same time if it contributes to
both fprog(x) and fpred(x). Figure 1 depicts the relation-
ship between biomarkers xpred or xprog and outcomes Y .

2.2. Image-based treatment effect estimator

To enable the discovery of predictive imaging biomark-
ers, we leverage neural network-based CATE estimators
adapted for image inputs. For our experiments, we modify a
TARNet model [45], originally designed for tabular inputs,
similar to the adaptation described in [17]. The network
has shared convolutional layers as encoders for learning the
similarities between the control and treatment groups aris-
ing from prognostic effects [14], and two treatment-specific
heads for predicting the outcomes Y (T ). During the train-
ing (Fig. 2a), we apply the loss to the corresponding head,
depending on which RCT group the input data belongs to.
In each training step, the total loss is the sum of the loss
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of the control group head output and the treatment group
head output, so that the weights of both heads are updated.
During inference (see Fig. 2b), the CATE is estimated by
subtracting the model’s control group output from the treat-
ment group output: τ̂ = Ŷi(T = 1)− Ŷi(T = 0).

In contrast to the two-headed model, we expect a single-
head model to learn to predict the average outcome across
groups from both predictive and prognostic biomarkers and
not differentiate between the treatment group or control
group. The predicted outcome of such a network is the com-
position of both predictive and prognostic effects. It is used
as a baseline to validate whether the CATE estimator could
successfully discover a predictive biomarker. Implementa-
tion details are described in the Supplementary section A.4.

2.3. Proposed evaluation protocol

2.3.1 Statistical evaluation of the predictive strength

To verify whether the model has identified a predictive ef-
fect – that is, whether the estimated CATE τ̂ is indeed pre-
dictive and can be considered a predictive biomarker candi-
date – we test the interaction between biomarker candidate
and treatment, as seen in Fig. 2c. Such an evaluation is also
performed in clinical practice [6, 41]. We assume a linear
relationship between biomarkers and outcome (Eq. (2)) and
perform a linear regression of the outcomes Y using

β0 + βT T + βτ̂ τ̂ + βτ̂ ,T τ̂ T ∼ Y, (3)

which includes an interaction term βτ̂ ,T τ̂ and coefficients
βi. We test the null hypothesis that the biomarker-treatment
interaction coefficient is βτ̂ ,T = 0 using the Student’s t-
test with the t-value tβτ̂,T

test statistic, which is propor-
tional to the estimated β̂τ̂ ,T . This test is additionally re-
peated with the other fit coefficients βi. The t-value ratio
tβτ̂,T

/tβτ̂
=: tpred/tprog can be used as an indicator for the

predictive strength of the estimated CATE τ̂ compared to
its prognostic strength. To estimate the experimental lower
(indicating a prognostic biomarker) and upper (indicating
a predictive biomarker) bound for the relative predictive
strength, we conduct the same evaluation, replacing τ̂ in
Eq. (3) with either the purely prognostic or a purely predic-
tive ground truth biomarker xprog,pred .

2.3.2 Interpretation using feature attribution methods

We also investigate which input image features the trained
model is sensitive to when predicting the CATE τ̂ and
whether they correspond to predictive imaging biomark-
ers. Since a direct quantitative assessment is not straight-
forward for general image features, unlike for tabular data,
we rely on visual explanations through attribution maps [47]
instead. To this end, we employ the XAI methods expected
gradients (EG) [18] and guided gradient-weighted class ac-
tivation mapping (GGCAM) [44,48] to generate attribution

maps from the trained model and input images. The attri-
bution maps enable us to visually analyze how much indi-
vidual pixels contribute to either the prognostic effect via
the attribution map of the control group head prediction
Ŷ (T = 0) or the predictive effect via the attribution map
of the estimated CATE Ŷ (T = 1)− Ŷ (T = 0).

2.4. Simulation of imaging biomarkers and out-
comes for validation

To study the CATE estimator’s ability to identify predic-
tive imaging biomarkers in the presence of prognostic ones,
we conduct experiments on data with varying predictive and
prognostic biomarker strengths. Since ground truth counter-
factual treatment outcomes are unavailable in real data, we
generate synthetic data to experimentally verify the model
and simulate the ground truth treatment outcomes (Fig. 2d).
Our proposed approach simulates outcomes based on imag-
ing biomarkers by assigning image features to biomarker
values xprog,pred instead of simulating outcomes directly
from tabular biomarkers. This entails selecting features
from available image information such as attributes, class
labels, or radiomics features, as shown in Fig. 3. In our ex-
amples, the biomarkers are either purely prognostic or pre-
dictive and may be binary or continuous depending on the
dataset. The outcomes Y are then generated according to a
simple linear function:

Y (T, x) = bprogxprog + bpred xpredT, (4)

assuming no offset b0 and constant treatment effect bT for
simplicity, similar to a case considered in [30]. An im-
portant aspect of using simulated outcomes is that we can
control the size of prognostic or predictive effects by ad-
justing the parameters bprog,pred . The biomarker parameter
strength ratio bpred/bprog can be interpreted as a measure
of the signal-to-noise ratio of the predictive effect in the in-
put data. Here, in an RCT setting, the treatment variable
T ∈ {0, 1} is assigned with probabilities p(T ) = 0.5.

2.5. Experimental Setup

2.5.1 Datasets and imaging biomarker features

We evaluate our CATE estimator on four diverse pub-
licly available datasets also shown in Fig. 3: colored dig-
its (MNIST [4, 15]) with semi-synthetic image features,
images of birds (CUB-200-2011 [53]) as an example of
a natural image dataset, as well as skin lesion images
(ISIC 2018 [10, 51]) and 3D lung computed tomography
(CT) scans of non-small cell lung cancer (NSCLC) tumors
(NSCLC-Radiomics [2]) as real-world medical datasets.

Colored MNIST (CMNIST). We adapt the MNIST
dataset and introduce color as an image feature. The color
of the digits is determined based on the random variable xi

sampled from a binomial distribution (with p = 0.5). We
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Figure 3. Image features from the four datasets, where either fea-
ture 1 or 2 is designated as predictive or prognostic biomarkers.
ISIC 2018 skin lesion features are shown with ground truth masks.
Globules (light green mask) manifest as darker dots, pigment net-
works have dark grid-like patterns of streaks with lighter “holes”
(dark blue mask). The NSCLC-Radiomics images display tumor
segmentation outlines of a 2D slice (left) or corresponding 3D vol-
umes (right). Examples on the bottom row depict images where
both biomarkers are either absent or have a low value.

define binary features as imaging biomarkers xpred,prog ∈
{0, 1}: (a) the color (green or not green) as prognostic fea-
ture and whether digits lack or contain a circle or loop (i.e.
{1, 2, 3, 4, 5, 7} vs. {0, 6, 8, 9}) as the predictive feature or
(b) vice versa. For intuition, a treatment might involve ap-
plying an image filter to alter the digit’s appearance, while
the outcome might be a digit classifier’s confidence score.

Bird species dataset (CUB-200-2011). The dataset in-
cludes images of 200 bird species, 5,794 for testing and
5,994 for training, which we further split into training
and validation data with an 80%/20% split. From the bi-
nary attributes of the birds, we select two visually distinct
biomarkers xpred,prog ∈ {0, 1} with high annotator cer-
tainty: (a) “has primary color: white” as prognostic and
“has bill length: longer than head” as the predictive feature
or (b) vice versa. To illustrate, the imaging biomarkers here
might relate to the bird’s observed behavior as an outcome,
and habitat modification might serve as the treatment.

Skin lesion dataset (ISIC 2018). The ISIC 2018 dataset
contains skin lesion images with a designated training
dataset of 2,594 images, which is split into a training and
validation set of sizes 2,075 and 519 respectively. Final
evaluations are performed on the designated validation set
with 100 images. We identify dermoscopic attributes, i.e.
visual skin lesion patterns, using ground truth segmentation
masks and assign their presence to biomarkers. In feature
set (a) the presence of globules is prognostic and the pres-
ence of a pigment network is predictive, or in (b) vice versa.
Both features have been evaluated as imaging biomarkers
for diagnosing melanoma [19,20] making them realistic ex-
amples of biomarkers. Unlike the features of the previous
datasets, these features are based on the presence of patterns
rather than localized features or color values.

Lung cancer CT dataset (NSCLC-Radiomics). This
dataset comprises 415 3D CT volumes of pre-treatment
scans from NSCLC patients and ground truth segmenta-

tion masks of the lung tumors. We crop the volumes to
the largest connected tumor volume bounding box, use 332
samples for 5-fold cross-validation, and reserve 83 for test-
ing. We define two continuous, uncorrelated radiomics
features described in [56] as biomarkers, which have both
been evaluated for their prognostic or predictive value be-
fore [1, 8]: (a) the shaped-based feature “flatness” describ-
ing the ratio between the smallest and largest principal tu-
mor components as a prognostic feature and the first-order
statistics feature “energy” characterizing the sum of squares
of tumor intensity values as a predictive feature or (b) vice
versa. The flatness feature is inverse to the actual flatness
of the tumor. Values close to 0 indicate flat shapes, whereas
values close to 1 indicate sphere-like shapes. Energy de-
pends strongly on both volume and minimum pixel intensity
as the minimum intensity value is added as an offset. The
radiomics features were extracted from the ground truth tu-
mor segmentation volumes with PyRadiomics [52].

We split all datasets randomly into two equally sized
subsets, a control (T = 0) and a treatment group dataset
(T = 1), and generate group-specific outcomes Y (T, x)
according to Eq. (4). For each CMNIST feature, we
choose the biomarker strength parameters bpred,prog ∈
{0.0, 0.1, . . . , 1.0}, resulting in training 121 models. For
the remaining datasets, we choose the biomarker strength
parameters bpred,prog ∈ {0.0, 0.2, 0.4, 0.6, 0.8, 1.0}, result-
ing in 36 different trained models.

3. Results

3.1. Predictive strength of the estimated CATE

We present the results of our quantitative experimental
validation protocol in Fig. 4, where the estimated relative
predictive strength |tpred/tprog | reflects its dependency on
the relative size of the true predictive effect bpred/bprog in
the outcome simulation described in Fig. 2. Across the four
datasets, the CATE estimation model shows higher relative
predictive strength tpred/tprog with higher relative predic-
tive biomarker signal strength bpred/bprog , often surpassing
the baseline models, especially for low bpred/bprog . While
the results are similar for models (a) and (b), the differ-
ence is more pronounced for the other datasets, indicating a
greater influence of the type of biomarkers.

Our model performs best on CMNIST among all four
datasets, with a significantly larger gap from the baseline.
For example, it reaches a factor of 102 for bpred/bprog in
the range of 0 to 1, and has results much closer to the upper
bound than the lower bound.

While the relative predictive strength for CUB-200-2011
is lower than on CMNIST, it remains above the lower and
near the upper bound. For bpred/bprog between 0 and 1, the
median tpred/tprog differs from the baseline by factors of
10 and 5 for sets (a) and (b), respectively. The dependency
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Figure 4. Model performance based on the relative predictive strength tpred/tprog of the CATE, shown on a logarithmic scale. We compare
our two-headed CATE estimator with a one-headed baseline model across different simulation parameters bpred/bprog (i.e. relative size of
the predictive effect in the simulated outcomes). Boxplots summarize data averaged over bpred/bprog -bin widths, indicated by the horizontal
error bars over the median line. Rows (a) and (b) correspond to different sets of prognostic and predictive features used for generating the
data (see Sec. 2.5.1 and Fig. 3). The variance of the boxplots is affected by the differing number of samples each bin contains.

on the biomarker choice is evident from the smaller gap be-
tween our model and the baseline in set (b) versus (a).

The ISIC 2018 results show smaller absolute tpred/tprog
values, yet the relative predictive strength mean values re-
main above 1, except for two outliers at high bpred/bprog ,
based on a single sample. In set (a), the absolute tpred/tprog
values are higher and much closer to the upper bound, but
exhibit greater boxplot overlaps with the baseline for low
bpred/bprog compared to set (b), where “has globules” is
predictive. In set (b), the medians differ by a factor of 4 for
relative bpred/bprog in the range of 0 to 1. The large base-
line values suggest the baseline model also strongly relies
on the predictive biomarker “has pigment networks”.

On NSCLC-Radiomics, our model demonstrates larger
tpred/tprog gaps between model and baseline, particularly
for smaller bpred/bprog , with gaps decreasing slightly as
bpred/bprog increases for set (b). The performance differs
between biomarker sets (a) and (b), with medians of our
models and baseline differing by a factor of 13 and 4 re-
spectively for bpred/bprog in the range of 0 to 1.

3.2. Interpreting predictive imaging biomarkers

In Fig. 5, we illustrate our XAI-based evaluation scheme
to assess whether the image features identified by our CATE

estimation model as predictive or prognostic correspond to
the ground truth biomarkers. By applying attribution meth-
ods [18,44,48,49] to our model and an input image, we gen-
erate an attribution map, indicating positive (blue) and neg-
ative (red) contributions to the prediction. We show attribu-
tion maps of the predicted CATE, Ŷ (T = 1) − Ŷ (T = 0),
which is expected to be sensitive only to the predictive
biomarker (Fig. 2b), and the control group head, Ŷ (T = 0),
which should be sensitive to the prognostic biomarker.

For CMNIST, the attribution maps of the predicted
CATE Ŷ (T = 1) − Ŷ (T = 0) show mostly negative attri-
bution in the green channel of the first example, which cor-
responds to the absence of the predictive biomarker “has no
circle” in the input image. Similarly, the treatment effect at-
tribution maps for the second example (red digit four) show
weaker negative attribution from the digit in the red chan-
nel with some noisy positive attribution in the background.
More positive attribution is observed in the green channel,
indicating that the model correctly infers that the predic-
tive biomarker “has no circle” is present. The control group
head output Ŷ (T = 0) correctly identifies the prognostic
biomarker, i.e. “digit is green”, in the respective color chan-
nel, which is evident from the mainly positive attribution in
the green color channel in the first example and negative at-
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3D patches are shown with orange outlines of segmented tumors. Here, results are based on models trained with bpred , bprog = 1.0.

tribution in the red color channel for the second example.
For both outputs’ attribution maps, only noisy attribution is
present for the blue channel, suggesting that the model does
not use this channel for prediction.

In the first CUB-200-2011 example, where the predictive
biomarker “bill longer than head” is absent, the attribution
map for Ŷ (T = 1) − Ŷ (T = 0) is mostly negative and
focusing on the eye and outlines of the throat and breast.
The attribution is not as localized as in the second example,
where the predictive biomarker is present and the overall
attribution is positive. Here, features of the head are pri-
marily used for the predictions, while the main body and
wings are ignored, reinforcing the importance of the bill and
head region for determining the predictive biomarker. The
Ŷ (T = 0) attribution map shows overall positive attribu-
tion, especially in the white head and breast region from the
first, primarily white bird. For the second bird, the attribu-
tion map is overall negative, particularly in the dark wing,
main body, and pouch region. These patterns indicate that
the model correctly identifies the presence or absence of the
prognostic biomarker in the corresponding example.

The ISIC 2018 image shows a pigment network sur-
rounding a darker center. Several patterns become appar-
ent in the attribution map overlaid with the original image.
However, the allocation of positive or negative attribution
provides only limited insight, possibly due to the biomarker
features’ complexity. In the Ŷ (T = 1) − Ŷ (T = 0) attri-
bution map, positive attributions are given to the periphery
surrounding the dark center where the pigment network is
located. Notably, the model relies on the less pigmented

gaps between the dark grid-like structures to detect the pig-
ment network, suggesting that the gaps contain sufficient
information for their detection. The Ŷ (T = 0) attribution
map reveals that the model uses the dark lesion center for
control group predictions, with red and blue spots indicat-
ing the model’s search for the small globule dots.

In the first NSCLC-Radiomics example, the highest ab-
solute values in the Ŷ (T = 1) − Ŷ (T = 0) attribution
maps are observed within the tumor area. While the atten-
tion maps show negative attributions in the darker tumor
regions, positive attributions can be seen in the surround-
ing areas, indicating the presence of a strong predictive
biomarker. This observation is consistent with the ground
truth, where the energy value is comparably high, whereas
mostly negative attributions are observed for the second ex-
ample with a lower energy value. However, the attributions
are mainly given to the areas outside the outline of the tu-
mor, potentially due to the network’s difficulty in correctly
identifying the tumor boundary. The Ŷ (T = 0) attribution
maps show strong attributions mainly outside the tumor out-
line, which relates to the prognostic biomarker flatness. Ad-
ditionally, artifacts around the border suggest that the patch
shapes contribute partially to the prediction. Further results
and a more detailed qualitative XAI analysis can be found
in the Supplementary section A.2.

4. Discussion
The results suggest that the estimated CATE used in our

quantitative evaluation approach is a reliable measure both
for the predictive effect and the predictive biomarker it-
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self under the assumption of a linear biomarker-outcome
relation. The experiments also highlight how an image-
based CATE estimator can be employed to identify predic-
tive biomarkers from our simulated data while not being
affected by prognostic biomarkers across various types of
biomarkers and input images. This was validated by com-
paring the relative predictive strength tpred/tprog to our ex-
perimental baseline as well as our experimental upper and
lower bound in our proposed experiments. Even in scenar-
ios where predictive effects are smaller than prognostic ef-
fects for bpred/bprog < 1, which is often observed in real-
world data, the model demonstrated the ability to identify
predictive imaging biomarkers.

However, for the specific image-based CATE estima-
tor we used, weaker performance is observed for CUB-
200-2011, ISIC 2018, and NSCLC-Radiomics, particularly
when bpred/bprog is high and where tpred/tprog is close to
the baseline. This may be due to the model’s lower accu-
racy in predicting outcomes Y when facing more abstract
features, along with the imbalance and distribution of im-
age features found in the datasets, issues that could be ad-
dressed by CATE estimators designed for this purpose. In
practical applications, where a single model is trained on
data with unknown predictive effects, a quantitative evalu-
ation would entail performing regression and t-tests on the
parameters, as described in Sec. 2.3, to assess the model’s
ability to identify information relevant for treatment effects
(i.e. predictive biomarkers).

Our qualitative experimental results empirically demon-
strate how an image-based CATE estimator’s ability to iden-
tify predictive biomarkers can be assessed by comparing
whether the treatment effect attribution maps to the selected
ground truth predictive imaging biomarkers features. This
is effective for both localized features based on color and
shape (CMNIST, CUB-200-2011, NSCLC-Radiomics), as
well as first-order statistics (NSCLC-Radiomics) or patterns
(ISIC 2018). In applications, our XAI analysis is essential
for identifying and interpreting predictive and prognostic
imaging biomarkers. Unlike tabular data, images lack dis-
crete candidates for feature importance scores. Distinguish-
ing between predictive and prognostic imaging biomark-
ers using attribution maps becomes challenging when lo-
cated in the same image areas. The heatmap focuses on
the same pixels (as with energy and flatness in the NSCLC-
Radiomics example), making it difficult to discern whether
an image feature that is both predictive and prognostic is
present, or if two independent imaging biomarkers with dis-
tinct meanings are spatially overlapping. In such cases,
other XAI methods like counterfactual explanations [21]
could quantify the effect of different properties of the same
feature. Despite potential ambiguities for more abstract
biomarkers, our evaluation can offer valuable insights into
the features used by the model for its predictions.

While we acknowledge the limitations of using only
semi-synthetic data, due to the current unavailability of
public RCT image datasets with verified predictive imag-
ing biomarkers, we also emphasize its advantages. Semi-
synthetic data enables us to demonstrate the performance
of CATE estimation models in a reproducible way, as dis-
cussed in [12] and [11]. Our approach to predictive imag-
ing biomarker discovery and evaluation does not rely on
handcrafted features such as radiomics. Instead, we use ra-
diomics features as biomarkers to simulate outcomes in our
experiments, serving merely as a baseline for conducting
performance comparisons.

5. Conclusion
In this paper, we introduce the task of identifying predic-

tive imaging biomarkers and show how a candidate iden-
tified by a model can be evaluated through (1) a statisti-
cal evaluation comparing the predictive strength relative to
prognostic interactions, and (2) attribution maps to support
the interpretation of the identified candidate. We outline
an approach using an image-based CATE estimator to solve
this task, enabling the discovery of new predictive imag-
ing biomarkers without relying on potentially biased hand-
crafted features or image feature extractors. This also fa-
cilitates the detection of even abstract concepts from high-
dimensional data, as demonstrated by our experiments. Our
proposed experiments and analysis for assessing a model’s
qualitative and quantitative performance offer valuable in-
sights for developing image-based CATE estimation meth-
ods tailored to specific challenges, such as adapting various
network architectures for vision tasks and using CATE es-
timators previously applied to only tabular data. Our eval-
uation provides a foundation for future research address-
ing different imaging modalities and problem settings. This
may include addressing non-linear biomarker-outcome re-
lations, e.g. survival or time-to-event data, and mitigating
confounding effects in observational data. Overall, we be-
lieve that applying image-based CATE estimators to dis-
cover unknown predictive biomarkers from imaging data
can significantly enhance image-based treatment decision-
making for personalized medicine and applications beyond.
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