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Abstract

In the era of large-scale pretrained models, Knowledge
Distillation (KD) serves an important role in transferring
the wisdom of computationally-heavy teacher models to
lightweight, efficient student models while preserving per-
formance. Yet KD settings often assume readily available
access to teacher models capable of performing many in-
ferences—a notion increasingly at odds with the realities of
costly large-scale models. Addressing this gap, we study
an important question: how KD algorithms fare as the
number of teacher inferences decreases, a setting we term
Reduced-Teacher-Inference Knowledge Distillation (RTI-
KD). We observe that the performance of prevalent KD
techniques and state-of-the-art data augmentation strate-
gies suffers considerably as the number of teacher infer-
ences is reduced. One class of approaches, termed “rela-
tional” knowledge distillation underperforms the rest, yet
we hypothesize that they hold promise for reduced depen-
dency on teacher models because they can augment the ef-
fective dataset size without additional teacher calls. We find
that a simple change — performing high-dimensional com-
parisons instead of low-dimensional relations, which we
term Comparative Knowledge Distillation — vaults perfor-
mance well over existing KD approaches. We perform em-
pirical evaluation across varied experimental settings and
rigorous analysis to understand the learning outcomes of
our method. All code is made publicly available.

1. Introduction
The growing demand for smaller models that retain the

capabilities of large pretrained ones has spurred interest in
efficient compression techniques [16]. Although Knowl-
edge Distillation (KD) [9] stands out as a promising solu-
tion approach [16], KD settings usually assume access to
many teacher outputs, which are often costly to obtain from

*Equal contribution

today’s large models [26]. This naturally raises the ques-
tion: how can we perform effective knowledge distillation
while using fewer teacher calls?

KD is commonly performed by learning to imitate the
teacher’s representation of an input sample [9], and when
few samples are available, data augmentation techniques
can be used to generate new samples to ask additional ques-
tions of the teacher [2]. Yet to the best of our knowledge,
no works have investigated how well these methods fare as
the number of teacher calls they have access to is reduced,
a setting we term Reduced-Teacher-Inference Knowledge
Distillation (RTI-KD).

In this paper, we study the RTI-KD setting and find
that existing KD approaches struggle to effectively distill
knowledge as we reduce teacher calls. We investigate differ-
ent commonly used KD strategies and hypothesize that one
method called “relational” KD [21] shows promise in this
setting even though it underperforms other methods. While
relational KD has the interesting property that it can create
additional learning signals by recombining existing teacher
calls, it loses information in its training procedure because
it encourages student models to match teacher models’ low-
dimensional “relations”: low-dimensional metrics such as
Euclidean distance that define how a model interprets sam-
ple representations differently.

We propose a new method called Comparative Knowl-
edge Distillation (CKD) which builds on relational KD
by learning from pairs of teacher representations, and ex-
tends beyond it by encouraging students to learn how teach-
ers view comparisons: high-dimensional vector differences
between pairs of samples. By training to predict these
higher-dimensional comparisons directly we can boost per-
formance to well above any other recently proposed al-
gorithm in this setting. Across different image classifica-
tion architectures, number of teacher calls, and the depth
of access to the teacher model (intermediate outputs vs.
logits-only), CKD consistently outperforms baselines for
given teacher calls and requires fewer teacher inferences
to achieve the same performance, often reducing teacher
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Figure 1. Comparative Knowledge Distillation (CKD): a novel
training paradigm that encourages student and teacher represen-
tations of the differences between sample representations. Criti-
cally, since teacher representations can be cached and recombined
into many possible comparisons, CKD offers an additional learn-
ing signal without requiring additional teacher calls, building on
relational methods by introducing a high-dimensional loss term.

calls required by the next-best KD technique by a surpris-
ing 15% and for some performance targets, by up to 23%.
We provide extensive analysis on the differences between
relational and comparative knowledge distillation and some
insight into what CKD learns that makes its representation
space so performant in the RTI-KD setting. Our code is
publicly available.*

2. Related Work

There are four closely related areas in Knowledge Distil-
lation to our work: KD-Specific loss functions, Data Aug-
mentation Strategies for KD, Relational KD approaches,
Contrastive Learning.

KD-Specific Loss Functions Starting with [9]’s KL di-
vergence loss between teacher and student losses, many
papers built different loss functions specific to KD [1, 11,
22, 23]. Many papers have also applied KD to interme-
diate layer representations when given “white box” ac-
cess to the teacher model’s intermediate representations
[8, 15, 18, 24, 25, 27, 35, 42]. CKD is complementary to
these approaches, as these loss functions can be applied to
our comparative representations and to representations of
single samples. We explain this further in Section 4.4.

Data Augmentation Data augmentations such as flip-
ping, cropping, rotating, and cutout have set the state of
the art on some KD tasks [5, 6, 37, 38] and aggregat-
ing these strategies has shown promise as well [3]. Aug-

*https://github.com/alextxu/ckd

mentation strategies based on Mixup [41] have been par-
ticularly performant [17, 33] and synthetic data generation
techniques have enabled KD in extremely low-resource set-
tings [20, 32, 34]. Data augmentation strategies can be very
effective at augmenting the amount of data that can be used
to query the teacher, but in the RTI-KD setting teacher calls
are limited due to the cost of teacher queries. By contrast,
CKD adds additional learning signals without additional
teacher calls.

Relation-Based KD In relation-based KD losses, a stu-
dent’s learning signal is derived from a distance metric ap-
plied to both the student and the teacher’s representations
of a pair or group of samples. Many methods implement
variants of this approach [4, 19, 21, 23, 36], some apply-
ing these methods across or within representation chan-
nels [7, 10] or within prediction classes [10]. Relation-
Based KD losses are similar to CKD in that they com-
pare student and teacher representations of different sam-
ples, but different in that they collapse the representation
space into a single number: the Euclidean distance or an-
gle between vectors [21]. To the best of our knowledge,
no existing KD approaches have considered learning from
high-dimensional comparisons between samples.

Contrastive Learning Contrastive Learning approaches
for KD such as CRD [29] and ReKD [44] represent a dif-
ferent but related approach to ours. Contrastive learning
methods encourage the student’s representation of one sam-
ple to be similar or different to the teacher’s representation
of another, depending on whether the two samples are con-
sidered a “positive” or “negative” pair by a pseudo-labeling
function that may require ground truth labels [29]. This is
similar to our method in that representations from multiple
samples are involved, but different in the objective we opti-
mize. CKD encourages students to match a teacher’s com-
parison between two samples by having the student con-
sider both samples itself, and requires no pseudo-labeling
(i.e., positive and negative pairs).

Teacher-less Distillation Self-distillation [40, 43] and
teacher-free distillation [14, 39] approaches have been pro-
posed to address the heavy computation cost of teacher
models in the canonical knowledge distillation framework
by eliminating the use of a strong teacher altogether. In
contrast, CKD focuses on the RTI-KD setting where a per-
formant (albeit black-box) teacher is readily available.

3. Comparative Knowledge Distillation

3.1. Notation and Method Intuition

In this paper, we investigate the Reduced-Teacher-
Inference Knowledge Distillation setting (RTI-KD), study-
ing how well KD methods preserve student performance as
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the number of teacher calls n is reduced. KD losses are
commonly determined by comparing a student’s representa-
tion ẑi of sample xi to the teacher’s representation zi, where
z are encoded representations such as logit vectors or in the
case of “white-box” access, hidden layer outputs.

By contrast, Relational KD (RKD) [21] learns from how
students and teachers view the “relation” between two dat-
apoints i, j, formalized as

LRKD = L(ψ(ẑi, ẑj), ψ(zi, zj)) (1)

where ψ is a function that describes a low-dimensional
“relation” between two vectors such as the Euclidean dis-
tance. This has the fascinating property that RKD has ac-
cess to n2 learning signals LRKD((ẑi, ẑj), (zi, zj)) from
all pairs of i, j without requiring additional teacher calls
because representations zi, zj can be precomputed and
cached. We hypothesize this property may be important for
effective KD with reduced teacher calls because students
may get valuable learning signals from the nuances of how
the teacher interprets the similarities and differences be-
tween the many pairs of sample representations in a dataset.

Yet although RKD learns from these many pairs, its re-
lational function ψ reduces the dimensionality of the learn-
ing signal to a single value such as Euclidean distance, re-
moving critical information from the learning process. It is
perhaps unsurprising, then that RKD consistently underper-
forms recently proposed methods [10, 29].

3.2. From Relational to Comparative: the CKD
Loss Function

To address this shortcoming we propose a method,
termed Comparative Knowledge Distillation, which also
draws pairs of datapoints from the n2 possible combina-
tions, but attempts to match high-dimensional compar-
isons between teacher and student representations directly,
without the dimensionality reduction involved in calculat-
ing relations such as the angle between vectors or the Eu-
clidean distance.

Our method is illustrated in Figure 1, and our loss can be
formulated for datapoints i, j, student representations ẑ and
teacher representations z as:

LCKD(ẑi, ẑj , zi, zj) = LMSE(ẑi − ẑj , zi − zj) (2)

For a fair comparison with prior work [9, 10, 21] we also
apply our loss to the ground truth labels y. The complete
loss function is then

L =
∑
i,j

LCKD(ŷi, ŷj , yi, yj) + LCKD(ẑi, ẑj , zi, zj) (3)

Our intuition is that this method will help to regular-
ize the learning process in the presence of reduced teacher
calls by encouraging students to match how the teacher in-
terprets similarities and differences between many pairs of
datapoints in a rich high-dimensional space.

4. Experimental Setup
4.1. Methodology

Datasets We conduct our experiments on the CIFAR-
100 [13] and Stanford Cars [12] datasets which have been
commonly used in KD experiments [21, 25, 29]. We investi-
gate reduced teacher call settings by constraining the dataset
to randomly chosen subsets (n) in the range [6400, 1600] by
decrements of 400 for CIFAR, and [2000, 1400] by decre-
ments of 200 for Cars. We chose these ranges to test our per-
formance on as few teacher calls as possible while achieving
reasonable levels of variance during evaluation. This allows
us to establish a meaningful comparison with the baselines.
We explore a narrower range of teacher calls for Cars be-
cause runs take much longer due to the higher resolution
of the images. We split the data 80-20% for train and val-
idation and evaluate on the CIFAR-100 and Cars test sets,
maintaining the same train, validation and test splits for all
experiments.

Teacher-Student Combinations We explore the same
teacher-student model combinations as prior work [29]:
VGG13 to VGG8, WRN-40-2 to WRN-16-2, ResNet110
to ResNet32.

Data Preprocessing When passing samples through any
model (teacher or student) on CIFAR-100 [13], we per-
form a random cropping of 32x32 with a padding of 4, fol-
lowed by a random horizontal flip as in [29]. For Stanford
Cars [12], we resize the images to 64x64 and take a random
cropping of 56x56, followed by a random horizontal flip as
in RKD [21].

Training Details We run each student model over five tri-
als and report the mean and standard deviation of our re-
sults. We train to convergence using early stopping on the
validation loss instead of fixed epochs so that each algo-
rithm runs to convergence before evaluation. We use trained
teacher models from [29] and searched over hyperparame-
ters centered around the defaults found in [29]. Additional
training details can be found in Appendix A.

4.2. Baselines

We report results on the following baselines, selected be-
cause of their strong performance on KD tasks and their
data augmentation properties in low-resource settings.

1. Knowledge Distillation (KD) [9]: this is the standard
KD loss, employing KL divergence loss between the
teacher and student logits.

2. Contrastive Representation Distillation (CRD) [29]
is a contrastive learning method that uses the label to
group “positives” and “negatives” in each batch and
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encourage the student’s representations to be similar to
the teacher’s for positives and dissimilar for negatives.

3. Mixup: As Mixup applied to KD requires additional
teacher calls on the mixed up inputs [17], we imple-
ment the “Fixed Teacher” [2] version, in which the
teacher’s output logits from the original datapoints are
recombined and used for supervision.

4. Relational Knowledge Distillation (RKD) [21] is a
“relational” KD approach based on learning a low-
dimensional value such as angle-between or euclidean
distance that describes how the teacher interprets
two samples differently. By contrast, our proposed
CKD encourages students to match the teacher’s high-
dimensional comparisons between samples.

5. Distillation from a Stronger Teacher (DIST) [10] is
an approach that improves over the standard KD loss
by encouraging the student to match the intra-class
probabilities across samples. Explicitly, for two ma-
trices representing the teacher and student’s logits of a
batch, KD [9] attempts to match the rows (per-sample
logits), whereas DIST also includes a loss based on the
columns (encouraging representations across samples
in a batch to be similar for each dimension).

4.3. Evaluation

We evaluate our method using two metrics: Test Accu-
racy and Teacher Calls Required for Target Accuracy.
The former is calculated simply as top-1 accuracy on the
test set. For the latter, we are interested in, for a given tar-
get accuracy, how many teacher calls a method requires to
achieve that target accuracy. Because we test discrete val-
ues of teacher calls that may not perfectly match a perfor-
mance target, we linearly interpolate between the two clos-
est performance values to arrive at the estimate for the num-
ber of teacher calls required to achieve a given target per-
formance. For example, if a method required 4000 teacher
calls to achieve 40% accuracy and 4400 teacher calls to
achieve 50%, we would estimate the number of teacher calls
required to achieve a target accuracy of 45% to be 4200.

4.4. Extension to White-Box Setting

One common KD setting is “white-box,” in which not
only are the teacher-produced logits available for training,
but so too are the teacher model’s intermediate layer out-
puts for those samples. Some KD loss functions are de-
signed specifically for intermediate outputs [1, 25]. Our ap-
proach is complementary to these; we can simply replace
the teacher and student representations of a single sample
with the teacher and student’s representations of the com-
parison: the difference between two samples’ representa-
tions. Concretely, for student networks with ks layers and

(a) VGG13→ VGG8

(b) WRN-40-2→WRN-16-2

Figure 2. Experimental results on CIFAR-100 represented visu-
ally for VGG and WRN models. CKD consistently outperforms
baselines as teacher calls are reduced for different teacher-student
distillation settings common in the literature [29]. → indicates dis-
tilling a teacher into a student model. Points and error bars are the
mean and standard deviation of runs over five trials.

teacher networks with kt layers, white-box KD approaches
train the student with loss from a sequence of latent output
representations containing representations from each layer
of the student and teacher:

LWB(ẑ
1
i , ..., ẑ

ks
i , z1i , ..., z

kt
i ) (4)

CKD is compatible with these methods because we can
replace these latent vectors with high-dimensional compar-
isons: the vector difference between representations of sam-
ples i, j at the same layer of the network. This allows CKD
to then integrate with the white-box losses without modifi-
cation.

LWB+CKD = LWB(ẑ
1
i − ẑ1j , ..., ẑ

ks
i − ẑ

ks
j ,

z1i − z1j , ..., z
kt
i − z

kt
j )

(5)
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In our experiments, we investigate whether this com-
parative version can improve performance when used with
two widely used intermediate layer losses, FitNets [25] and
Variational Information Distillation (VID) [1]. We also inte-
grate the high performing KD method CRD [29] with these
white box losses, but it is important to note that because
CRD is not a method that alters the inputs, it must then
combine with white-box losses instead of integrating with
them as CKD can.

5. Results and Discussion

5.1. RTI-KD Results

Our results are depicted in Table 1 and Figures 2 and
3. We find that across a variety of student-teacher combi-
nations including Wide ResNet (WRN), VGG, and ResNet
models, our approach consistently outperforms KD base-
lines as the number of available teacher calls is reduced and
significantly reduces the number of teacher calls necessary
to achieve the same performance targets.

For WRN models to reach a target accuracy of 55% on
CIFAR-100, RKD requires 5981 teacher calls, CRD re-
quires 5199, and CKD requires only 3969, a reduction of
33.64% compared to RKD and 23.66% compared to CRD,
the next best performing approach. For WRN, VGG, and
ResNet models on CIFAR-100, averaged across all per-
formance targets in Table 1, CKD reduces the number of
teacher calls required compared with RKD by 36.63%,
30.44%, 30.56%. Compared with the next-best-performing
method, CRD, this reduces teacher calls by 25.9%, 21.34%
and 16.83%.

Considering performance at different teacher call val-
ues instead of reduction required to reach the same per-
formance, we find that CKD outperforms baselines sub-
stantially. For WRN models, CKD outperforms the base-
lines Dist, RKD, Mixup, KD, and CRD by 7.26%, 8.46%,
4.68%, 7.07%, and 5.03% absolute test accuracy averaged
across teacher calls; on VGG models too, CKD outperforms
these approaches by 4.18%, 5.88%, 4.44%, 4.82% and
3.64%, and for ResNet models by 7.82%, 7.81%, 4.00%,
7.27% and 4.35%. These results are visualized in Figure 2.
This trend holds for even larger number of teacher calls up
to 16000, before finally converging with top baseline meth-
ods, as shown in Appendix B.

On the Stanford Cars dataset as well, our method sig-
nificantly outperforms prior work. Compared with the next
best method, CRD, on VGG models CKD performs 8.19%
better on average across teacher calls, by 2.78% on ResNet
models, and by 8.63% on WRN models. This result is vi-
sualized in Figure 3.

(a) VGG13→ VGG8

(b) WRN-40-2→WRN-16-2

Figure 3. Experimental results on Stanford Cars represented vi-
sually. Similarly to Figure 2, points and error bars are mean and
standard deviations over five trials.

5.2. Extension to White-Box Access

We find that CKD also integrates with different interme-
diate layer loss functions well, often improving two com-
monly used intermediate layer loss functions by substantial
margins. Our results are depicted in Table 2. In the WRN
distillation setting averaged across low resource teacher
calls n ranging from 3200 to 1600, adding CKD to Fit-
Nets white-box loss led to an improvement of 8.84% ab-
solute top-1 accuracy improvement, and an improvement
of 8.50% over adding CRD to FitNets. Results of adding
CKD to VID were similar although not quite as pronounced,
leading to average improvements of 4.27% and 4.55% over
VID and VID+CRD, respectively. With VGG models the
results were even less pronounced, on VID leading to an
average improvement of 0.62% over VID and 1.68% over
VID+CRD. CKD modifications to the VID loss may be less
performant because of VID’s use of mutual information to
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Table 1. We calculate how many teacher calls (in thousands) are needed to achieve desired test accuracy thresholds on CIFAR-100 for
different teacher → student distillations. We find that CKD can achieve the same performance while reducing the number of teacher calls
required to do so. ∆ computes the percent reduction in teacher calls from the next closest baseline for that target accuracy.

Target Acc 55 50 45 40 35 30

WRN-40-2→WRN-16-2
KD [9] – 4.37 3.45 2.80 2.29 1.72
RKD [21] 5.98 4.63 3.83 3.13 2.46 2.02
Dist [10] 5.88 4.59 3.82 2.69 2.27 1.97
Mixup [41] 5.90 3.95 3.03 2.30 1.71 –
CRD [29] 5.20 3.96 3.35 2.56 2.08 1.65
CKD 3.97 3.11 2.34 1.84 – –
∆ ↓ 23.66% ↓ 21.45% ↓ 22.97% ↓ 19.72% – –

ResNet110→ResNet32
KD [9] – 5.07 3.89 3.14 2.50 1.97
RKD [21] – 5.00 3.76 3.34 2.70 2.19
Dist [10] 6.34 5.13 3.95 3.16 2.63 2.19
Mixup [41] – 4.58 3.33 2.38 1.87 –
CRD [29] 5.50 3.97 3.39 2.76 2.22 1.85
CKD 4.61 3.40 2.62 2.18 1.86 1.66
∆ ↓ 16.13% ↓ 14.46% ↓ 21.29% ↓ 8.40% ↓ 0.48% ↓ 10.63%

VGG13→VGG8
KD [9] – 5.44 3.99 3.10 2.37 1.69
RKD [21] – 5.57 4.32 3.37 2.59 1.92
Dist [10] – 5.10 3.97 3.03 2.29 1.75
Mixup [41] – 5.86 3.93 2.91 2.04 –
CRD [29] – 5.10 3.90 2.93 2.20 1.62
CKD 5.92 4.22 3.08 2.23 1.69 –
∆ – ↓ 17.11% ↓ 21.06% ↓ 23.45% ↓ 17.52% –

Table 2. Given white-box access to intermediate teacher outputs,
CKD seamlessly integrates with KD losses designed to learn from
intermediate representations, improving their performances in the
RTI-KD setting (and even improves over adding CRD loss).

Teacher Calls 3200 2400 1600
WRN-40-2→WRN-16-2
FitNets [25] 39.444.50 30.903.67 24.080.74

+CRD [29] 41.591.18 32.622.55 21.201.59

+CKD 47.780.96 41.432.29 31.722.46

VID [1] 42.700.97 37.401.33 28.821.34

+CRD [29] 45.291.19 36.281.00 26.532.47

+CKD 47.231.27 41.521.69 32.991.06

VGG13→VGG8
FitNets [25] 39.271.44 33.981.41 27.121.85

+CRD [29] 36.890.83 32.241.12 24.961.72

+CKD 40.910.97 36.180.91 30.151.53

VID [1] 40.871.09 35.871.02 29.291.28

+CRD [29] 39.881.18 34.741.29 28.231.01

+CKD 41.190.54 36.970.59 29.731.32

encourage student and teacher representations together – it
may be the case that our high-dimensional comparison vec-
tors require a particular normalization to integrate well with

VID. Using FitNets, however, average improvement on the
WRN and VGG models was more substantial: 2.29% and
4.38% over FitNets and FitNets+CRD respectively. These
results indicate that CKD is not only capable of replacing
single-sample representations in white-box distillation, but
that it can often outperform single sample losses as well.

6. Analysis

6.1. Understanding High-Dimensional Comparison

In this section, we investigate how important it is that
these students learn from high-dimensional comparative
signals. To explore this, we look to the relationship between
CKD and its closest counterpart, RKD.

As described in Section 2, RKD calculates low-
dimensional metrics they describe as a “relation” between
two samples, such as Euclidean distance. We investigate
how performance changes with different dimensionalities in
between single-dimension Euclidean distance and full di-
mension (for CIFAR-100 logits, this is 100-dimensional).
To study these in-between levels of dimensionality, we ap-
ply average pooling (θm) with a pool size and stride length
equal to d = D/m, effectively downsampling the differ-
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(a) VGG models

(b) WRN models

Figure 4. Dimensionality is important in transferring information
from teacher to student in the RTI-KD setting. Higher dimensional
versions of RKD, RKD100, RKD50, and RKD10 lead to increased
performance over the original RKD algorithm. Additionally, the
gap between RKD100 and CKD illustrates that it is also impor-
tant to apply comparative loss to the ground truth labels as well as
teacher representations.

ence vector to dimensionality d to before calculating the
MSE loss.

Formally, this loss function is described in Equation 6
below. As in Section 3, zi and zj are the teacher’s represen-
tations of samples i, j and ẑi, ẑj are the student’s representa-
tions. θd represents the pooling function that downsamples
the D-dimensional vector into an d dimensional vector.

LRKDd
(ẑi, ẑj , zi, zj) = Lmse (θd(ẑi − ẑj), θd(zi − zj))

(6)

We investigate how this loss performs on VGG and WRN
models on the CIFAR-100 dataset in Figure 4. At d = 100,
the only difference between this loss and CKD is that CKD
also applies its comparative loss to ground truth labels y,
as described in Equation 3, whereas LRKDd

uses standard
cross-entropy loss between single samples, as in RKD [21].

We find that dimensionality is indeed important; the 100-
dimensional comparison yields substantially better perfor-
mance than the 50, 10, or 1-dimensional versions, as shown
in Figure 4. On average across teacher calls on VGG mod-

els, RKD performs at 32.95% accuracy, RKD10 at 35.39%,
RKD50 at 37.08%, and RKD100 at 38.4%. The trend also
holds for WRN models: RKD performs at 33.19%, RKD10

at 34.96%, RKD50 at 37.73%, and RKD100 at 39.82%. This
supports our intuition that rich high-dimensional informa-
tion is important for transferring learning from teacher to
student in the RTI-KD setting. Additionally, as RKD100

and CKD differ only in their application of comparative
loss to the ground truth labels, CKD’s improvements over
RKD100 articulate the importance as well of using compar-
ative losses with both the labels and the teacher representa-
tions.

(a) n = 1600

(b) n = 2000

Figure 5. CKD acts as a regularizer, flattening student models’
representation spaces: a property that is closely tied to generaliza-
tion [28, 30].

6.2. Analyzing Representations Learned by CKD

Our intuition for why CKD performs well is twofold:
first, because CKD provides additional learning signals that
may help regularize the student in the low-data regime,
and second, because it provides rich high-dimensional com-
parisons that may allow the student to better match the
teacher’s representations. We evaluate these intuitions in
the two experiments that follow, and find that CKD does
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indeed act as a regularizer, and encourages the student to
better match the teacher’s representations than baseline ap-
proaches.

CKD Flattens the Representation Space Our first intu-
ition is that CKD may act as a regularizer, introducing an
additional learning signal that helps shape the optimization
space in ways that are favorable to generalizable learning
of the teacher model under low-resource conditions. To
investigate this, we analyze the flatness of logit represen-
tations space, which has been linked to generalization by
established theory [28, 30]. We do this by performing the
analysis from [31] which analyzes the flatness of the rep-
resentations by performing Singular Value Decomposition
(SVD) on the student representations, where a lower curve
indicates flatter representations. We perform this experi-
ment across two low-resource settings of n on the saved
WRN student models’ logit representations. Our results are
visualized in Figure 5 – CKD’s SVD curve is substantially
below others, indicating that CKD may act as a regularizer,
promoting generalization in the challenging low-resource
RTI-KD setting. Notably, the CKD curve is significantly
lower than even Mixup [41], a data augmentation strategy
specifically designed for regularization. The link between
regularization and generalization has been explored in many
works [41], and it is promising that CKD exhibits strong
regularization effects on the training process.

Table 3. Training with CKD leads to an improvement in match-
ing the student’s correlation across class logits to the teacher’s, a
property CRD [29] found important for KD representation learn-
ing. This table depicts the average absolute difference of student
and teacher’s correlation matrices; lower is better. Surprisingly,
CKD outperforms even CRD, which explicitly optimizes this ob-
jective.

Teacher ResNet110 VGG13 WRN-40-2
Student ResNet32 VGG8 WRN-16-2

Mixup [41] 0.109 0.109 0.101
DIST [10] 0.103 0.097 0.102
RKD [21] 0.102 0.099 0.098
CRD [29] 0.096 0.096 0.093
CKD 0.081 0.089 0.083

Student-Teacher Logit Correlations Tian et al. [29]
showed that capturing the inter-class correlations between
teacher logits is important to successful KD outcomes in
students. We reproduce their experiment [29] to analyze
how well CKD encourages this desirable property in stu-
dents: the details are described below.

Across 100 randomly chosen samples from the CIFAR-
100 test set, we first calculate the correlation matrices be-
tween class logits for both the teacher and the student. This

is done by centering the data by mean, computing the outer
product of the resulting vectors to arrive at the covariance
matrix, then normalizing by standard deviation to yield the
correlation matrix. Then, we report the average absolute
difference between the student (trained in different ways)
and the teacher’s correlation matrices. Lower is better, be-
cause a value of 0 would indicate perfect imitation of the
teacher’s inter-class logit correlations.

In Table 3 we report the numerical results of this cor-
relation analysis. We find that CKD outperforms baselines
including CRD [29], whose objective explicitly attempts to
capture inter-class correlations. This analysis, along with
the main results, indicates that CKD’s comparative loss
function is providing strong KD learning outcomes that
enable the student to match the teacher’s representations.
We hypothesize that this is largely due to the richness of
the high-dimensional comparisons, as RKD (without high-
dimensional comparison) augments the dataset size but does
not achieve nearly so precise a correlation with teacher out-
puts as CRD or CKD.

7. Conclusion
In this paper we introduced Comparative Knowl-

edge Distillation (CKD), a novel learning paradigm that
we show is useful in performing Knowledge Distilla-
tion as teacher inferences are reduced (RTI-KD). CKD
does this by recombining existing teacher calls into high-
dimensional comparisons, encouraging student models to
mimic teacher’s difference in representation between sam-
ples directly in a high-dimensional space. Empirical eval-
uations reveal CKD’s superiority over state-of-the-art KD
techniques across various settings. Moreover, CKD is com-
plementary to KD loss functions designed specifically for
intermediate representations; by modifying single sample
representations to be “comparative” sample representations
before feeding them into white-box loss functions, with no
additional changes to the loss functions we find that CKD
often outperforms those loss functions. In our analysis, we
find that CKD captures critical inter-class correlations and
acts as a regularizer on the logit space, enhancing general-
ization in the low-resource setting.

Finally, this study attempts to lay a foundation for effi-
cient KD research in the era of large-scale pretrained mod-
els, where teacher inferences can often be costly. One im-
portant limitation of this line of research is a deeper under-
standing of when and how biases in teacher models can be
inherited by student models. It will be important for future
work to conduct a principled investigation of bias transfer
in knowledge distillation to advise future directions in this
space. Future work may also find it fruitful to further inves-
tigate the reduced teacher inference setting and additional
applications of comparative training (for example, to large
language models or to different vision tasks).
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