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Abstract

Class-agnostic counting (CAC) has numerous potential
applications across various domains. The goal is to count
objects of an arbitrary category during testing, based on
only a few annotated exemplars. However, existing meth-
ods often count all objects in the image, including those
from different categories than the exemplars. To address
this issue, we propose localizing the area containing the
objects of interest via an exemplar-based segmentation
model before counting them. To train this model, we pro-
pose a novel method to obtain pseudo-labeled segmentation
masks. Specifically, we use an unsupervised image clus-
tering method to generate a set of candidate pseudo object
masks, from which we select the optimal one using a pre-
trained CAC model. We show that the trained segmentation
model can effectively localize objects of interest based on
the exemplars and prevent the model from counting every-
thing. To properly evaluate the performance of CAC meth-
ods in real-world scenarios, we introduce two new bench-
marks: a synthetic test set and a new test set of real images
containing countable objects from multiple classes. Our
proposed method shows a significant advantage over pre-
vious CAC methods on these two benchmarks.

1. Introduction
Class-agnostic counting (CAC) aims to infer the num-

ber of objects in an image, given a few object exemplars.
Compared to conventional object counters that count ob-
jects from a specific category, e.g., human crowds [32],
cars [28], animals [3], or cells [39], CAC can count objects
of an arbitrary category of interest, which enables numerous
applications across various domains.

Most of the current CAC methods focus on capturing the
intra-class similarity between image features [14,24,31,33].
For example, BMNet [33] adopts a self-similarity module
to enhance the feature’s robustness against intra-class vari-
ations. Another recent approach, SAFECount [43], uses a
similarity-aware feature enhancement framework to better
capture the support-query relationship. These methods per-

BMNet [33] SAFECount [43] OursBMNet+ SAFECount
BMNet+ SAFECount

Figure 1. Visualizations of the density maps predicted by BMNet
[33], SAFECount [43], and ours. BMNet and SAFECount count
everything regardless of the annotated exemplars.

form quite well on the current benchmark, i.e. FSC-147, in
which images only contain objects from a single dominant
class. However, we observe that they often do not work
well when there are distractors in the image and tend to
count every single object regardless of the exemplars (Fig-
ure 1). This issue greatly limits the potential applicability of
these methods in real-world scenarios. A possible reason is
that the current counting datasets only contain single-class
training images, causing the counting models to overlook
the inter-class discriminability due to the absence of objects
from different categories.

A natural solution to resolve this issue is to train the
counting model with images containing objects of multi-
ple classes. Since such training data does not exist, we
synthesize them by concatenating multiple single-class im-
ages together. However, our experiments show that while
the model trained on these images indeed performs better at
discarding distractors, the counting performance drops sig-
nificantly (5.3). This could be because selectively counting
the objects of interest requires recognizing certain discrim-
inative features that distinguish between different classes.
However, this could decrease its robustness against the
intra-class variations due to the invariance-discriminative
power trade-off [35].

Therefore, we adopt a decoupled approach that employs
two different networks for object localization and counting,
respectively. Compared to existing methods that directly
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perform counting, we use an additional exemplar-based seg-
mentation network to first localize the image patches con-
taining objects of the correct category. Our main contribu-
tion lies in generating pseudo-labels for training this seg-
mentation model. This is important since collecting large-
scale data with mask annotations is both time-consuming
and labor-intensive.

In this paper, we propose a novel method to obtain accu-
rate pseudo-labeled segmentation masks. For each train-
ing image, we first generate a set of candidate semantic
masks using an unsupervised image clustering method and
then select from them the one that would yield the most ac-
curate count when used together with a pre-trained object
counter. We show that the segmentation model trained on
those pseudo-labeled segmentation masks are significantly
better than other alternative approaches of pseudo labelling
such as similarity map or dot annotations (Table 3). In
essence, we use the performance of a pre-trained object
counter to pseudo-label the segmentation data. To the best
of our knowledge, we are the first to employ this technique
for obtaining pseudo-labeled segmentation masks.

Specifically, we use K-Means to obtain various candi-
date masks for masking the output similarity map of the
counter. Each pixel in this map corresponds to a patch in
the original image. These patches, along with provided ex-
emplars, are represented by feature embeddings computed
from a pre-trained ImageNet backbone [17]. We consider
the patches whose embeddings fall into the same cluster as
the exemplars to contain the objects of interest and assign
positive labels to the corresponding mask pixels. We as-
sign negative labels otherwise. The output of K-Means can
vary significantly with different choice of K, depending on
how many groups of irrelevant objects present in the image.
In our case, we choose the pseudo mask that when using it
to mask the output similarity map of the counting model,
would produce the most accurate count.

To properly evaluate the performance of CAC methods
in real-world scenarios, we introduce two new benchmarks,
a synthetic dataset originating from FSC-147, and a new test
set of real images in which objects from multiple classes are
present. Our proposed method outperforms current count-
ing methods by a large margin on these two benchmarks.

In short, our main contributions are:

• We identify a critical issue of the previous class-
agnostic counting methods, i.e., greedily counting ev-
ery object when objects of multiple classes appear in
the same image, and propose a simple segment-and-
count strategy to resolve it.

• We propose a method to obtain pseudo-labeled seg-
mentation masks using only annotated exemplars and
use them to train a segmentation model.

• We introduce new benchmarks for class-agnostic ob-
ject counting, on which our method outperforms the

previous counting methods by a large margin.

2. Related Work
2.1. Class-specific Object Counting

Class-specific object counting aims to count objects from
pre-defined categories, such as humans [1, 20, 23, 25, 32,
34, 36, 38, 40, 45–48], animals [3], cells [39] and cars
[18, 28]. Generally, there are two groups of class-specific
counting methods: detection-based methods [6, 18, 22] and
regression-based methods [5,9,10,26,37,46,48]. Detection-
based methods apply an object detector on the image and
count the number of objects based on the detected boxes.
However, accurately detecting tiny objects still remains
challenging [41]. Regression-based methods predict a den-
sity map for each input image, and the final result is ob-
tained by summing up the pixel values. Both types of meth-
ods require a large amount of training data with rich train-
ing annotations. Moreover, they can not be used to count
objects of arbitrary categories at test time.

2.2. Class-agnostic Object Counting

Class-agnostic object counting aims to count arbitrary
categories given only a few exemplars [2, 14, 24, 27, 29,
31, 33, 42, 44]. Previous methods mostly focus on how to
better capture the similarity between exemplars and image
features. For example, SAFECount [43] uses a similarity-
aware feature enhancement framework to better model the
support-query relationship. RCAC [14] is proposed to en-
hance the counter’s robustness against intra-class diversity.
Nguyen et al. [29] recently introduce new benchmarks for
object counting, which contains images of objects from
multiple classes, originating from the FSC-147 and LVIS
[15] datasets. However, these benchmarks are designed for
the task of jointly detecting and counting object instances in
complex scenes, where the central focus is on how to detect
them accurately.

2.3. Unsupervised Semantic Segmentation

A closely related task to ours is unsupervised semantic
segmentation [7, 8, 12, 13, 16, 19,21, 30], which aims to dis-
cover classes of objects within images without external su-
pervision. IIC [21] attempts to learn semantically meaning-
ful features through transformation equivariance. PiCIE [8]
further improves on IIC’s segmentation results by incorpo-
rating geometric consistency as an inductive bias. Although
these methods can semantically segment images without su-
pervision, they typically require a large-scale dataset [4,11]
to learn an embedding space that is cluster-friendly. More-
over, the label space of semantic segmentation is limited to
a set of pre-defined categories. In comparison, our goal is to
localize the region of interest specified by a few exemplars,
which can belong to an arbitrary class.
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Figure 2. Overview of our approach. We propose a method to obtain the pseudo segmentation masks using only box exemplars and dot
annotations (a), and then use the obtained pseudo masks to train an exemplar-based segmentation model (b). Specifically, given an image
and a few annotated exemplars, we crop a set of image patches, each of which corresponds to a mask pixel (we only visualize 6 patches
here for simplicity). We run K-Means clustering on the feature embeddings extracted from all cropped patches and the exemplars. Those
pixels whose embeddings fall into the same cluster as the exemplar form an object mask indicating the image area containing the objects
of interest. We find the optimal number of clusters, K, such that the counting model can produce the density map closest to the ground
truth after the pseudo mask is applied. We use the obtained pseudo masks to train an exemplar-based segmentation model, which can then
be used to infer the object mask given an arbitrary test image.

3. Method

To resolve the counting-everything issue, we train a seg-
mentation model to localize only objects to be counted. Fig-
ure 2 summarizes our approach. We propose a method to
obtain pseudo segmentation masks using only box exem-
plars and dot annotations, and then use these pseudo masks
to train an exemplar-based segmentation model.

Specifically, given an image and a few annotated exem-
plars, we tile the input image into different patches, each
of which corresponds to a pixel on the mask. We run K-
Means clustering on the feature embeddings extracted from
all cropped patches and the exemplars. Those mask pixels
whose corresponding patch embeddings fall into the same
cluster as the exemplar will form an object mask indicat-
ing the image area containing the objects of interest. We
find the optimal number of clusters, K, such that a pre-
trained class-agnostic object counting model can produce
the density map closest to the ground truth after the pseudo
mask is applied. We use the obtained pseudo masks to train
an exemplar-based segmentation model, which can then be
used to infer the object mask given an arbitrary test image.
For the rest of the paper, we denote the pre-trained single-
class counting model as the “base counting model”. Below
we will first describe how we train this base counting model
and then present the detail of our proposed clustering-based
pseudo mask acquisition method.

3.1. Training The Base Counting Model

We first train a base counting model using images from
the single-class counting dataset [31]. Similar to previous
works [31, 33], the base counting model uses the input im-
age and the exemplars to obtain a density map for object
counting. The model consists of a feature extractor F and
a counter C. Given a query image I and an exemplar B of
an arbitrary class c, we input I and B to the feature extrac-
tor to obtain the corresponding output, denoted as F (I) and
F (B) respectively. F (I) is a feature map of size d∗hI ∗wI

and F (B) is a feature map of size d ∗ hB ∗ wB . We further
perform global average pooling on F (B) to form a feature
vector b of d dimensions.

After this feature extraction step, we obtain the similarity
map S by correlating the exemplar feature vector b with the
image feature map F (I). Specifically, let w(i,j) = F(i,j)(I)
be the channel feature at spatial position (i, j), S can be
computed by:

S(i,j)(I,B) = wT
(i,j)b. (1)

In the case where n exemplars are given, we use Eq. 1 to
calculate n similarity maps, and the final similarity map is
the average of these n similarity maps.

We then concatenate the image feature map F (I) with
the similarity map S, and input them into the counter C to
predict a density map D. The final predicted count N is
obtained by summing over the predicted density map D:

N =
∑
i,j

D(i,j), (2)
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where D(i,j) denotes the density value for pixel (i, j). The
supervision signal for training the counting model is the L2

loss between the predicted density map and the ground truth
density map:

Lcount = ∥D(I,B)−D∗(I,B)∥22, (3)

where D∗ denotes the ground truth density map.

3.2. Pseudo-Labeling Segmentation Masks

In this section, we describe our method to obtain pseudo-
masks using only box exemplars and dot annotations. The
mask is of the same size as the similarity map from the
base counting model and each pixel on the mask is asso-
ciated with a region in the original image. Ideally, the pixel
value on the mask is 1 if the corresponding region contains
the object of interest and 0 elsewhere. Specifically, for the
pixel from the mask M at location (i, j), we find its corre-
sponding patch p(i, j) in the input image centering around
(iI , jI), where iI = i ∗ r+0.5 ∗ r and jI = j ∗ r+0.5 ∗ r.
Here, r is the downsampling ratio between the original im-
age and the similarity map. The width and height of p(i, j)
are set to be the mean of the width and height of the exem-
plar boxes.

We denote P = {p1, p2, ...pn} as a set of image patches,
each of which corresponds to one pixel in the mask. The
goal is to assign a binary label to each patch indicating if
it contains the object of interest or not. To achieve this, we
first extract the ResNet-50 features for all patches in P to get
a set of embeddings F = {f1, f2, ...fn}. Then we compute
the average of the embeddings extracted from the exemplar
boxes in this image, denoted as fB . We run K-means on
the union of {f1, f2, ...fn} and {fB}. Those patches whose
embeddings fall into the same cluster as fB will be consid-
ered to contain the object of interest, and result in a 1 value
in the corresponding pixel of the mask. On the contrary, the
pixel value will be 0 if the corresponding patch embedding
falls into a different cluster as fB . Here K-Means groups
similar objects together, which can serve our purpose of
segmenting objects belonging to different classes.

It is worth noting that the number of clusters, denoted as
K, has a large effect on the output binary mask and the final
counting results. If K is too small, too many patch embed-
dings will fall into the same cluster as the exemplar embed-
ding and the counter will over-count the objects; if K is set
too high, too few embeddings will fall into the same cluster,
which results in too many regions being masked out. In our
case, we find the optimal K for each image that results in
the binary mask that minimizes the counting error. Specif-
ically, for an input image I and the annotated exemplar B,
S(I,B) denotes the similarity map outputted by the pre-
trained counting model, and M(I,B)k denotes the mask
obtained when the number of clusters is set to k. By ap-
plying M(I,B)k on S(I,B), the similarity scores on the

non-target area are set to a small constant value δ and the
similarity scores on the target area remain the same:

S(i,j)(I,B)k =

{
S(i,j)(I,B), if M(i,j)(I,B)k = 1,

δ, otherwise.
(4)

We then input S(I,B)k to the pre-trained counter C to get
the corresponding density map D(I,B)k. We find the op-
timal k such that the L2 loss between the predicted density
map and the ground truth density map is the smallest:

k∗ = argmin
k

∥D(I,B)k −D∗(I)∥22, (5)

where k∗ denotes the optimal k and D∗(I) denotes the
ground truth density map for input image I .

3.3. Training Exemplar-based Segmentation Model

After obtaining the optimal masks for all the images in
the multi-class training set, we train a segmentation model
P to predict the pseudo segmentation masks based on the
input image and the corresponding exemplar. In particular,
for an input image I and the annotated exemplar B, we first
input I and B to the segmentation model to get the corre-
sponding feature map output P (I) and P (B). We then ap-
ply global average pooling on P (B) to form a feature vector
v. In the case where multiple exemplars are provided, we
apply global average pooling on each P (B) and the final
vector v is the average of all these pooling vectors.

The predicted mask Mp is obtained by computing the
cosine similarity between v and the channel feature at each
spatial location of P (I). Specifically, the value of the pre-
dicted mask at position (i, j) is:

M(i,j)(I,B)p = cos(P(i,j)(I)
T , v). (6)

The supervision signal for training this segmentation model
is the L2 loss between the predicted mask and the optimal
mask obtained by finding the best k with Eq. 5:

Lseg = ∥M(I,B)p −M∗(I,B)∥22, (7)

where M∗(I,B) denotes the optimal mask under k∗.

3.4. Inference on Testing Data

After the exemplar-based segmentation model is trained,
we use it together with the pre-trained counting model to
perform object counting. Given an input image for testing,
we first input it to the feature extractor of the pre-trained
counting model to get the corresponding similarity map.
Then we use the segmentation model to predict a coarse
mask where high values indicate the region of interets. We
binarize this predicted mask with a simple threshold and
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apply it on the similarity map based on Eq. 4. The counter
then take the masked similarity map as input and predict the
density map and final object counts.

4. Experiments

4.1. Implementation Details

Network architecture For the base counting model, we
use ResNet-50 as the backbone of the feature extractor, ini-
tialized with weights of a pre-trained ImageNet model. The
backbone outputs feature maps of 1024 channels. For each
query image, the number of channels is reduced to 256 us-
ing 1× 1 convolution. For each exemplar, the feature maps
are first processed with global average pooling and then lin-
early mapped to a 256-d feature vector. The counter consists
of 5 convolution and bilinear upsampling layers to regress a
density map of the same size as the query image. The seg-
mentation model shares the same architecture as the back-
bone of the feature extractor. The output mask is of the same
size as the similarity map from the base counting model.

Dataset We train the base counting model on the FSC-
147 dataset. FSC-147 is the first large-scale dataset for
class-agnostic counting. It includes 6135 images from 147
categories varying from animals, kitchen utensils, to vehi-
cles. The categories in training, validation, and test sets
have no overlap. We create synthetic images with 2 count-
able categories from FSC-147 dataset to train the segmen-
tation model. Specifically, we randomly select two images
belonging to different classes, crop a part from each im-
age and then concatenate the two cropped parts horizon-
tally. The synthetic validation set and test set contain 1431
and 1359 images respectively.

To properly evaluate the performance of class-agnostic
counting in real-world scenarios, we further collect a test
set of 450 images. Our test set includes objects from a wide
range of categories, varying in scale and mixed together in
diverse ways. For each image in this test set, there are at
least two categories whose object instances appear multiple
times. We provide dot annotations for 600 object instances
groups. We test the trained model on both the synthetic test
set and our collected real-world test set.

Training details Both the base counting model and the
segmentation model are trained using the AdamW opti-
mizer with a fixed learning rate of 10−5 and a batch size
of 8. The base counting model is trained for 300 epochs
and the segmentation model is trained for 20 epochs. We
resize the input query image to a fixed height of 384, and
the width is adjusted accordingly to preserve the aspect ra-
tio of the original image. Exemplars are resized to 128×128
before being fed into the feature extractor. We run K-
means on the extracted patch embeddings to find the K that
leads to the optimal mask for each image. The embeddings
are extracted from a pre-trained ImageNet backbone. The

threshold for binarizing the segmentation mask is 0.6 and
the number of clusters K ranges from 2 to 6.

4.2. Evaluation Metrics

For our collected real-world test set, the counting error
ϵ for image i is defined as ϵi = |yi − ŷi|, where yi and
ŷi are the ground truth and the predicted number of ob-
jects respectively. For our synthetic test set, the objects of
interest are only present in the left / right-half part of the
image. Ideally, the predicted number of objects should be
close to the ground truth in the area of interest while be-
ing zero elsewhere. Thus, we define the counting error as
ϵi = |yi − ŷi| + ¯̂yi, where ŷi and ¯̂yi denote the predicted
number of objects in the interest area and non-interest area
respectively.

We use Mean Average Error (MAE), Root Mean Squared
Error (RMSE), Normalized Relative Error (NAE) and
Squared Relative Error (SRE) to measure the performance
of different object counters over all testing images. In par-

ticular, MAE = 1
n

∑n
i=1 ϵi; RMSE =

√
1
n

∑n
i=1 ϵ

2
i ; NAE =

1
n

∑n
i=1

ϵi
yi

; SRE =
√

1
n

∑n
i=1

ϵ2i
yi

where n is the number of
testing images.

4.3. Comparing Methods

We compare our method with recent class-agnostic
counting methods, including CounTR (Counting TRans-
former [24]), FamNet (Few-shot adaptation and matching
Network [31]), SAFECount (Similarity-Aware Feature En-
hancement block for object Counting [43]) and BMNet (Bi-
linear Matching Network [33]).

4.4. Results

Quantitative results. We first use the synthetic im-
ages containing multiple categories to fine-tune existing
class-agnostic counting methods, including FamNet (Few-
shot adaptation and matching Network [31]), SAFECount
(Similarity-Aware Feature Enhancement block for object
Counting [43]) and BMNet (Bilinear Matching Network
[33]). We denote the test-time adapted version of FamNet
by FamNet+ following previous work [33]. Table 1 sum-
marizes the results of these methods on the synthetic test set
with and without fine-tuning. As shown in the table, fine-
tuning improves all the methods. SAFECount, for example,
shows an 8.30 error reduction w.r.t. MAE and an 11.99 error
reduction w.r.t. RMSE on validation set. Interestingly, we
find that FamNet, which has the largest counting error on
the FSC-147 test set among these methods, performs best
on the synthetic test dataset without fine-tuning. Unlike
other methods, FamNet keeps the backbone of the count-
ing model fixed during training, which prevents the model
from overfitting into capturing the similarity between object
instances and greedily counting everything. Furthermore,
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Figure 3. Qualitative results on our collected counting test dataset. We visualize a few input images, the corresponding annotated exemplar
(bounded in a dashed white box) and the predicted density maps. Predicted object counts are shown at the top-left corner. Our predicted
density maps can highlight the objects of interest specified by the annotated box, which will lead to more accurate object counts.

Method Training Synthetic Val Set Synthetic Test Set
Set MAE RMSE NAE SRE MAE RMSE NAE SRE

FamNet [31]

FSC-147

18.15 33.16 0.63 4.42 22.22 40.85 0.79 9.29
FamNet+ [31] 27.74 39.78 1.33 7.29 29.90 43.59 1.16 8.82
BMNet+ [33] 31.09 42.43 1.75 9.51 39.78 57.85 1.81 11.96
SAFECount [43] 22.57 34.81 1.20 7.49 26.40 40.60 1.13 9.45

FamNet [31]

FSC-147 + Synthetic

17.30 28.87 0.60 3.74 20.75 29.07 0.68 4.47
FamNet+ [31] 16.79 28.44 0.60 3.71 20.34 28.66 0.68 4.47
BMNet+ [33] 25.73 34.93 1.26 6.77 29.83 42.64 1.23 8.39
SAFECount [43] 14.27 22.82 0.59 3.89 15.79 34.16 0.65 8.25

Seg-then-Count - 14.34 26.03 0.61 4.48 11.13 16.96 0.41 2.80

Table 1. Performance on our synthetic test set. Our proposed ‘Seg-then-Count’ strategy effectively alleviates the counting-everything issue.

we present the results of our proposed method, “seg-then-
count”, which utilizes an additional segmentation model tai-
lored specifically for segmentation tasks. As shown in the
table, our proposed method achieves the lowest MAE and
RMSE on the test set.

Table 2 shows the results on our collected real-world test
set. Similarly, both fine-tuning existing counting models
and training another segmentation model effectively alle-
viates the counting-everything issue. Segment-then-count
generalizes better to real-world images, achieving an error
rate of 6.97 in terms of MAE and 13.03 in terms of RMSE.

Qualitative analysis. In Figure 3, we present a few in-
put testing images, the corresponding annotated bounding
box and the density maps produced by different counting
methods. We can see that when there are objects of mul-
tiple classes present in the image, previous methods fail
to distinguish them accurately, which often leads to over-

counting. In comparison, the density map predicted by our
method can highlight the objects of interest specified by the
annotated box, even for the hard case where the objects are
irregularly placed in the image (the 3rd row).

Method Training Real Set
Set Test MAE Test RMSE

FamNet [31]

FSC-147

13.03 20.28
FamNet+ [31] 19.42 39.78
BMNet+ [33] 25.55 40.35
SAFECount [43] 23.57 40.99

FamNet [31]

FSC-147 + Synthetic

11.03 17.60
FamNet+ [31] 11.31 18.84
BMNet+ [33] 11.44 23.22
SAFECount [43] 9.80 32.40

Seg-then-Count - 6.97 13.03

Table 2. Performance of fine-tuning existing CAC models and us-
ing another segmentation model on the real-world test set. ‘Seg-
then-Count’ generalizes better to real-world images containing
multiple countable categories.
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Figure 4. Qualitative analysis on the number of clusters. We visualize a few input images, the corresponding annotated exemplar (bounded
in a dashed white box) and the density maps when using masks computed from K-means as well as predicted by our segmentation model.
Predicted counting results are shown at the top-left corner. The density maps under the optimal K are framed in green. The value of K
has a large effect on the counting results and the optimal K varies from image to image.

5. Analysis
5.1. Comparison of Pseudo-labeling Methods

In this section, we compare our proposed clustering-
based pseudo-labeling method with other pseudo-labeling
methods including 1) binarizing the similarity map between
the image and the exemplar, and 2) creating pseudo boxes
from dot annotations. For the first approach, we use a
pre-trained feature extractor (ResNet-50 pre-trained on Im-
ageNet) to extract the feature maps from the image and the
exemplar. Then we correlate the pooled exemplar feature
with the image feature to get the similarity map. The pseudo
mask is obtained by binarizing this similarity map with a
threshold. For the second approach, we create a pseudo box
centering around each annotated dot. The size of the box
is the average of the annotated exemplars. These pseudo
boxes form a mask containing all the object dots. Results
of these two approaches are summarized in Table 3. As can
be seen, our pseudo masks result in most accurate object
counts, outperforming other methods consistently.

5.2. Analysis on the Number of Clusters

When running K-means, the number of clusters, K, has
a large effect on the computed binary mask and the final
counting results. However, it is non-trivial to determine K
given an arbitrary image. To resolve this issue, we first com-

Pseudo
Masks Threshold Synthetic Real

Val MAE Test MAE MAE RMSE

w/o Mask - 32.46 42.22 24.68 41.70

Similarity Map

0.2 31.35 38.63 24.94 37.60
0.4 20.91 22.95 11.08 19.78
0.6 27.12 27.52 17.93 29.76
0.8 30.50 32.60 20.67 31.85

Dot Annotation - 18.93 12.48 9.26 19.23

K-Means - 14.34 11.13 6.97 13.03

Table 3. Comparison with pseudo-labeling via binarizing the sim-
ilarity map and creating pseudo boxes from dot annotations. Our
proposed method consistently outperforms other pseudo-labeling
methods.

pute the optimal pseudo masks for the training images based
on the dot annotations. Then we train an exemplar-based
segmentation model to predict the obtained pseudo masks.
During testing, we can use the trained model to predict the
segmentation mask based on exemplars. In this section, we
provide analyses on how K affects the final counting results
and show a comparison with our proposed method.
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5.2.1 Quantitative Results

We report the counting performance when computing
masks by running K-means under different values of K as
well as using our predicted masks on the collected test set.
Results are summarized in Table 4. As K goes from 2 to 6,
both the MAE and RMSE decrease first and then increase,
achieving the lowest when K = 5, i.e., 7.98 w.r.t. MAE and
14.93 w.r.t. RMSE. Using our predicted masks outperforms
the performance under the best K by 12.6% w.r.t. MAE and
12.7% w.r.t. RMSE, which demonstrates the advantages of
using our trained segmentation model to predict the mask.

5.2.2 Qualitative Results

In Figure 4, we visualize a few input images and the corre-
sponding density maps when using masks computed from
K-means as well as using masks predicted by our segmen-
tation model. The choice of K has a large effect on the
counting results. If K is too small, too many patch em-
beddings will fall into the same cluster as the exemplar em-
bedding and the counter will over-count the objects (the 4th
row when K = 2); if K is too large, too few embeddings
will fall into the same cluster, which results in too many re-
gions being masked out (the 2nd row when K = 6). The
optimal K varies from image to image, and it is non-trivial
to determine the optimal K for an arbitrary image. Using
our trained segmentation model, on the other hand, does not
require any prior knowledge about the test image while pro-
ducing more accurate masks and density maps based on the
provided exemplars.

K 2 3 4 5 6 Ours

MAE 15.13 10.77 8.17 7.98 8.03 6.97
RMSE 28.09 20.71 15.38 14.93 15.31 13.03
NAE 0.94 0.63 0.44 0.42 0.40 0.37
SRE 1.68 1.18 0.69 0.62 0.54 0.54

Table 4. Quantitative analysis on the number of clusters. Our
proposed method outperforms K-Means under different values of
K on our collected test set.

5.3. Analysis on the Trade-off between Invariance
and Discriminative Power

We observe that fine-tuning existing CAC models with
synthetic data containing multiple categories will negatively
impact their counting ability. Our explanation is that when
images contain objects from a single dominant class, the
model will focus on capturing the similarity between in-
stances to minimize the counting errors, while ignoring the
discrepancy between categories; when images contain ob-
jects from multiple classes, the model will instead focus
more on the inter-class discrepancy to distinguish between
them. To get a better understanding of this trade-off, we

provide the detailed feature distribution statistics in Table
5. Specifically, we measure the intra-class distance and
inter-class distance of the exemplar features extracted from
the counting model before and after fine-tuning on the syn-
thetic dataset. Intra-class distance refers to the mean of Eu-
clidean distance between a feature embedding and the cor-
responding class’s embedding center. Inter-class distance
refers to the mean of the minimum distance between em-
bedding centers. As shown in the table, after fine-tuning
the model using the synthetic images, both intra-class dis-
tance and inter-class distance increase. Larger inter-class
distance means features from different classes are more sep-
arable, suggesting a increased discriminative power of the
model; larger intra-class distance means features within the
same class are less compact, suggesting decreased robust-
ness against within-class variations. This trade-off between
invariance and discriminative power makes it challenging
for one model to distinguish and count simultaneously. Cor-
respondingly, we observe an error increase on the FSC-147
test set and an error decrease on the synthetic test set after
fine-tuning.

Split Training Intra Inter FSC-147 Synthetic
Set MAE MAE

Val FSC-147 2.35 1.12 18.55 32.46
FSC-147+Synthetic 2.90 1.30 32.36 (+13.81) 25.74 (-6.99)

Test FSC-147 2.31 1.19 20.68 42.22
FSC-147+Synthetic 2.86 1.48 32.34 (+11.66) 29.12 (-13.1)

Table 5. Analysis on the trade-off between invariance and dis-
criminative power of the counting model. After fine-tuning on the
synthetic dataset, both the intra-class and inter-class distances of
exemplar features become larger, leading to an error increase on
FSC-147 test set and an error decrease on the synthetic test set.

6. Conclusion

In this paper, we identify a critical issue of the previous
class-agnostic counting methods, i.e., greedily counting ev-
ery object when objects of multiple classes appear in the
same image. We show that simply training the counting
model with synthetic data can alleviate this issue but often
at the price of sacrificing the ability to count objects from
a single class accurately. Thus, our strategy is to localize
the area of interest first and then count the objects inside
the area. To do this, we propose a method to obtain pseudo
segmentation masks using only box exemplars and dot an-
notations. We show that a segmentation model trained with
these pseudo-labeled masks can effectively localize the im-
age area containing the objects of interest for an arbitrary
testing image.
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