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Abstract

The performance of perception tasks is heavily influ-
enced by imaging systems. However, designing cameras
with high task performance is costly, requiring extensive
camera knowledge and experimentation with physical hard-
ware. Additionally, cameras and perception tasks are
mostly designed in isolation, whereas recent methods that
jointly design cameras and tasks have shown improved
performance. Therefore, we present a novel end-to-end
optimization approach that co-designs cameras with spe-
cific vision tasks. This method combines derivative-free
and gradient-based optimizers to support both continuous
and discrete camera parameters within manufacturing con-
straints. We leverage recent computer graphics techniques
and physical camera characteristics to simulate the cam-
eras in virtual environments, making the design process
cost-effective. We validate our simulations against phys-
ical cameras and provide a procedurally generated vir-
tual environment. Our experiments demonstrate that our
method designs cameras that outperform common off-the-
shelf options, and more efficiently compared to the state-
of-the-art approach, requiring only 2 minutes to design a
camera on an example experiment compared with 67 min-
utes for the competing method. Designed to support the
development of cameras under manufacturing constraints,
multiple cameras, and unconventional cameras, we be-
lieve this approach can advance the fully automated de-
sign of cameras. Code is available on our project page at
https://roboticimaging.org/Projects/TaCOS/.

1. Introduction
The quality of camera captures directly affects percep-

tion tasks. An analogy in nature is how animals’ visual per-
ceptions impact their daily activities. It is believed that evo-
lution designs distinct visual systems for different species to
suit their habitats [30], suggesting a need for a sophisticated
and application-based camera design approach.

Currently, designing cameras is cumbersome, typically

Synthetic Images

Derivative-Free
Optimization

Perception Tasks

Gradient-Based
Optimization

Camera Simulation

Continuous
Camera 

Parameters

Discrete 
Camera

Parameters
Sensor Size
Pixel Size

... ...

+

Scene Generation

Focal Length
Placement

Noise Model

Scene Capture Camera

Figure 1. Our method combines a derivative-free optimizer and
gradient-based optimizer to co-design the camera with perception
tasks in simulation, which utilizes ray tracing and a physics-based
noise model. Our approach supports optimising discrete and con-
tinuous camera parameters for manufacture constraints and the
generalization to other camera design problems.

requiring professionals to devise designs based on their ex-
periences, followed by extensive experiments with various
design decisions. Moreover, the camera hardware is often
designed in isolation from perception tasks, despite litera-
ture showing the benefits of joint design.

Existing methods optimize imaging systems for tasks
through software, often using ray tracing renderers to sim-
ulate the physical image formation process. Ray tracing
render has been widely used for designing and evaluating
cameras for autonomous driving [5, 32–34, 58]. However,
manual tuning of camera parameters for optimization is still
required, and joint optimization of the cameras and the tasks
is not addressed in these methods.

Other works propose propose automatic co-design of
imaging systems and perception tasks using differentiable
ray tracing or proxy neural networks [2, 6, 7, 9, 11, 25, 36,
39, 40, 46, 48, 50, 52, 53, 59, 60, 62]. Nevertheless, these
methods focus primarily on optics design since their design
space is restricted by using captured image datasets which
prevents them from generalizing to more complex camera
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design problems involving field-of-view (FOV), resolution,
multi-cameras, or unconventional cameras.

Game engines like Unreal Engine (UE) [13] are repur-
posed for simulating cameras due to their ray tracing sup-
port and ability to produce video sequences and interact
with virtual environments. Klinghoffer et al. [29] propose
a reinforcement learning (RL) method for camera design
evaluated with a UE-based simulator. While this method
achieves high performance, it optimizes a complex neural
network to design cameras, making it less efficient than di-
rectly optimizing camera parameters.

As illustrated in Fig. 1, we introduce an end-to-end cam-
era design method that directly optimizes camera param-
eters for perception tasks. We propose a camera simula-
tor that allows tuning various parameters and addresses im-
age signal-to-noise ratio (SNR) with a physics-based noise
model [18]. Additionally, we use a procedural generation
algorithm to create indoor virtual environments in UE 5
with machine learning labels for our method.

Inspired by evolution, we employ a genetic algo-
rithm [22], a derivative-free optimizer, to optimize discrete,
continuous, and categorical variables, which supports man-
ufacturing constraints and selecting parts (optics, image
sensors, etc.) from catalogs where custom manufacture is
infeasible. Finally, we adopt a quantized continuous ap-
proach [9] for discrete variables, considering their interde-
pendencies.

We implement our approach on two design problems,
demonstrating our method’s efficiency compared to the
state-of-the-art (SOTA) design method, and cameras de-
signed by our approach achieve compelling performance
compared to high-quality robotic/machine vision cameras.
We also validate our simulation’s accuracy by comparing it
with physical cameras. In summary, our contributions are:

• We introduce an end-to-end camera design method that
combines derivative-free and gradient-based optimiza-
tion to automatically co-design cameras with percep-
tion tasks, allowing continuous, discrete, and categori-
cal camera variables.

• We develop a camera simulation with a physics-based
noise model and a virtual environment, and provide a
procedurally generated virtual environment.

• We validate our simulator by establishing equivalence
in both low-level image statistics and high-level task
performance between synthetic and captured imagery.

• We validate our method with improved performance
compared to other methods and off-the-shelf options.

This work is a key step in simplifying the process of de-
signing cameras for autonomous systems, emphasizing task
performance and manufacturability constraints.

Limitations Our work focuses exclusively on camera pa-
rameters set during the manufacturing stage. Parameters
that can be dynamically adjusted during camera operation,

such as exposure settings, will be addressed in future work.
Nevertheless, our method can still select algorithms that
control these dynamic parameters dynamically.

2. Related Work

Task-Specific Simulation-Based Camera Design Design-
ing cameras tailored for vision tasks using simulation has
gained popularity. Blasinski et al. [5] propose optimizing
a camera design to detect vehicles. They used synthetic
data generated with ISET [55, 56]. The method optimizes
cameras by experimentally analyzing the impact of image
postprocessing pipelines and auto-exposure algorithms on
object detection tasks. This work continues in [32–34, 58]
with larger datasets and an optimization framework for high
dynamic range (HDR) imaging. Nevertheless, these meth-
ods require manual tuning and testing of camera parameters,
whereas our method is an automatic end-to-end approach.

Other works have proposed end-to-end methods to op-
timize the imaging system based on tasks. Many use
gradient-based optimization with differentiable camera sim-
ulators, including differentiable ray tracing and proxy neu-
ral networks for non-differentiable image formation pro-
cesses. In these works, prerecorded images are used as
input scenes to their pipeline, and their simulators con-
vert the input images to images formed by their proposed
cameras. Applications include extended depth of field
(DOF) [48,50,59], depth estimation [2,7,20,25], object de-
tection [9,46,52,53], HDR imaging [39], [36], image classi-
fication [6,11,60,62], and motion deblurring [40]. However,
these methods use precaptured images so that their cam-
era simulation is restricted to the domains of the data. Key
camera design decisions such as the FOV, resolution, use
of multiple cameras, and the design of unconventional cam-
eras (light field, etc.), are not addressed. Our method estab-
lishes a virtual environment to support the simulation and
optimization of a much broader range of camera designs.

RL has also been explored for end-to-end optimization of
imaging systems. Klinghoffer et al. [29] uses RL to train a
camera designer, encompassing various camera parameters
using the CARLA Simulator [12]. Hou et al. [24] introduce
another RL-based approach for pedestrian detection. Al-
though RL demonstrates impressive results in camera de-
sign, it involves optimizing complex neural networks that
learn to design cameras, demanding more training data and
time since the neural network contains a larger number of
parameters that need to be optimized. In contrast, our ap-
proach directly optimizes the camera’s parameters, yielding
competitive results with much less computation.

Genetic Algorithms for Camera Design Genetic algo-
rithms [22] are widely applied across many domains thanks
to their flexibility, robustness, and ability to explore com-
plex search spaces including continuous, discrete, and cat-
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Figure 2. We establish a virtual environment and capture scene renders using a ray-traced scene capture camera. We then add physics-
based, sensor-specific noise to the renders and input them into perception tasks for evaluation. In our optimization process, we jointly
optimize the camera parameters Φcamera using a fitness function F with a derivative-free optimizer (blue arrow), as well as the parameters
of perception tasks Φmodel (if trainable) on their corresponding loss function lperception with gradient-based optimizers (red arrow).

egorical variables. For imaging systems design, exist-
ing works have applied genetic algorithms for optimizing
camera placements in a network of cameras [1, 21, 41],
and for optimizing optics design to improve image qual-
ity [4, 14, 15, 42, 51, 54, 61], a review can be found in [23].
To our knowledge, none of these existing methods com-
bines genetic algorithms with gradient-based optimizers to
co-design the camera hardware and perception tasks for au-
tomatic camera design and improved performance, which is
the primary contribution of our work.

3. Method

Our method (Fig. 2) uses a simulated camera to capture a
virtual environment and apply a physics-based noise model.
We then evaluate the resulting images in perception tasks
and use this data to optimize the camera design. Our method
outputs the designed camera parameters and trained models
for perception tasks if the task is trainable.

3.1. Simulation Environment

The simulation environment should be photorealistic to
minimize the sim-to-real gap. It should support rendering
with various camera parameters and illuminations to maxi-
mize the design space, as well as the deployment of multiple
cameras for unconventional imaging systems.

Considering the desired features of the simulation envi-
ronment, we chose to use UE for this work. UE utilizes
real-time hardware ray tracing combined with software ray
tracing for global illumination and reflection, aligning with
the physics of light and providing realistic shadowing, am-
bient occlusion, illumination, reflections, etc. [13]. UE sup-
ports the alteration of various camera parameters, detailed
in Sec. 3.2, and the application of multiple cameras. Nev-
ertheless, our method is not limited to UE, other simulators

with the desired features or suited to the downstream tasks
can also be used to build the simulation environment.

We deploy cameras on an auto-agent simulating the plat-
form that uses the camera. The agent navigates the vir-
tual environment autonomously, enabling a fully automated
design process. The cameras capture scene renders as the
agent moves, which are then used in downstream processes.

To demonstrate our method, we implemented the proce-
dural generation of random indoor virtual environments and
their associated semantic labels with UE 5, with support for
application-specific objects. The implementation details of
the environment are further explained in Sec. 4.3.

3.2. Camera Simulation

Our camera simulation includes a scene capture compo-
nent from the simulation environment and an image noise
synthesis component to augment the scene captures to en-
hance the realism of our simulation.
Scene Capture The scene capture component captures
scene irradiance from the virtual environment. We em-
ploy the camera in UE that captures the scene renders,
which allows the configuration of parameters associated
with camera placement (location, orientation), optics (focal
length and aperture), the image sensor (width, height, and
pixel count), exposure settings (shutter speed and ISO), and
multi-camera designs (number of cameras and their poses).
It also allows the configuration of algorithms in the image
processing pipeline (auto-exposure, white balancing, tone
mapping, color correction, gamma correction, and compres-
sion) and includes image effects like motion blur.

We experimentally validate our method using parameters
supported by UE. Additional parameters like geometric dis-
tortion and defocus blur could be added by augmenting the
renderer. The noise synthesis model described below serves
as an example of such augmentation.
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Noise Synthesis Image noise is a fundamental limiting fac-
tor for many vision tasks that is tightly coupled to camera
parameters such as pixel size and exposure settings. As UE
lacks a realistic noise model, we incorporate a post-render
image augmentation that introduces noise. We employ ther-
mal and signal-dependent Poisson noise following the affine
noise model [18]. The noise model is calibrated with a
physical camera following established methods [31, 43, 57]
and then generalized for different exposure time and gain
settings. The generalized form of the noise model defines
the variation of intensity at a pixel as

σ2 =
G

G0
σ2
p Ī +

G2

G2
0

σ2
r , (1)

where σp and σr are photon and thermal noise respectively,
G and G0 are the new gain and calibrated gain, and Ī is the
measured intensity. We detail the noise model calibration
and generalization method in the supplementary material.

To generalize the noise model to different image sensors,
we consider the ratio of their pixel sizes. For the same illu-
mination, larger pixel sizes capture more photons, resulting
in a higher measured intensity level, which is readily re-
flected by adjusting the gain in Eq. 1 inversely proportional
to the pixel area. While we employ these observations to
generalise noise characterisations, it is also possible to di-
rectly characterize multiple sensors and directly use these
characterizations for more accurate noise characteristics.

3.3. Optimization

Optimizers We employ a derivative-free optimizer to opti-
mize the camera parameters as many simulators and tasks
used for designing cameras are non-differentiable, and
numerous camera parameters are discrete or categorical,
which makes gradient-based optimizers, such as gradient-
descent, and gradient estimation based method, such as sur-
rogate gradient and finite differences, inapplicable. Hence,
we utilize the genetic algorithm [22] as the derivative-
free optimizer, although other derivative-free optimizers can
also be integrated into the proposed pipeline.

To enhance the performance of perception tasks, we
jointly optimize the tasks (if applicable) along with the de-
sign of the camera hardware. The applicable tasks are the
ones that involve machine learning models and are opti-
mized using their corresponding optimizers. Given that
neural networks are commonly used in SOTA methods
for these tasks, gradient-based optimizers such as Stochas-
tic Gradient Descent [45] or Adam [28] are typically em-
ployed. Therefore, our method simultaneously optimizes
the camera hardware with a derivative-free optimizer and
the trainable perception tasks with gradient-based optimiz-
ers. However, perception tasks that are not trainable, such as
extracting Oriented FAST and Rotated BRIEF (ORB) fea-
tures [47], are not jointly optimized.

Camera Parameters Our optimizer can handle the opti-
mization of all parameters captured in the camera simu-
lation, e.g. those outlined in Sec. 3.2, which can be both
continuous and discrete. For instance, parameters related
to optics and image sensors can be optimized as continu-
ous variables if there are no manufacturing constraints on
new optics/sensors. Alternatively, they can be selected from
existing lens/sensor catalogs, allowing manufacturing and
availability to be considered.

Discrete Variable Optimization Our approach offers two
schemes to optimize the discrete camera variables: fully
discrete and quantized continuous. In the fully discrete
scheme, we optimize the parameter x, representing the dis-
crete parameter in its available values, by constraining the
mutation stage of the genetic algorithm to ensure that only
available values of this variable are used.

In the quantized continuous scheme, we adopt the “quan-
tized continuous variables” method introduced in [9]. Here,
in each iteration, the discrete parameter x can freely change
as a continuous variable from its current best value obtained
in the previous iteration. However, it is then replaced with
the closest value from its available range:

x∗ = argmin
k

||x− xk||22, (2)

where x∗ is the parameter retained from its available range,
x is the variable obtained from the optimization process,
and xk represents the k-th parameter in its available values.

A limitation of the fully discrete scheme arises when
a variable x encompasses multiple interconnected parame-
ters. For instance, if x represents available image sensors, it
includes parameters such as width, height, and pixel size.
Selecting x categorically does not leverage the relation-
ships between these parameters. The quantized continuous
scheme addresses this by optimizing all parameters within
x freely and then replaced by it with the closest categorical
x. Therefore, the fully discrete scheme is suitable for inde-
pendent parameters like the number of cameras, while the
quantized continuous scheme is beneficial for parameters
with interdependencies like image sensors.

Fitness Function The fitness function is constructed based
on the performance of tasks, which is used to optimize the
camera parameters using the derivative-free optimizer. We
demonstrate the construction of the fitness function incor-
porating various perception tasks in our experiments.

4. Experiments
We apply our proposed method to two design problems

for demonstration: designing a stereo camera with two com-
ponents for depth estimation on a vehicle and designing a
monocular camera for multiple tasks on a Mixed Reality
(MR) device. Additionally, we validate our camera simula-
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Figure 3. Comparison of captured and synthetic images in terms of (a) variance in pixel intensities and (b) perception task performance.
In (a), despite differences in color intensities due to manufacturing variations of the test target, the variances of pixel values in synthetic
images match those in captured images, validating the accuracy of our noise model. In (b), the ranking of camera performance in our
simulation aligns with physical cameras, and the differences in their performance between captured and synthetic images are consistent.

tion approach by comparing it with physical cameras. Ad-
ditional details and results are provided in the supplement.

Assumptions (1) Objects’ distances to the camera exceed
the camera’s hyperfocal distance so that the DOF is safely
neglected. (2) The lens of our camera is free of geometric
distortion and chromatic aberration.

Noise Synthesis We apply the affine noise model calibrated
using a FLIR Flea3 Camera [17] with a Sony IMX172 sen-
sor to all synthetic images, except the simulations of off-the-
shelf cameras used in Sec. 4.1 and 4.3, which are calibrated
using their corresponding noise model.

4.1. Simulator Validation

To validate our simulator, we compare synthetic images
from our simulator with those captured by physical cameras
in terms of image statistics and task performance.

Image Statistics We use a test target with linear greyscale
colorbars in a controlled illumination environment, captur-
ing images with the FLIR Flea3 Camera [17]. The same
test target is then recreated in our simulator, maintaining
consistent illumination, camera position, and parameters.
Fig. 3(a) shows intensity variances versus pixel intensities
for both captured and synthetic images, with good align-
ment validating the accuracy of our noise model. The slight
differences in mean intensity for each greyscale bar are
caused by printer variations during manufacturing.

Perception Task Performance We further validate the
cameras’ performance on perception tasks in our simula-
tion, which serves as the evaluation method in Sec. 4.3. In
this experiment, we focus on a feature extraction task using
the widely applied ORB feature extractor [47].

We use a test target from [10] with features of varying
scales and depths, set against a texture-less background.
Ten frames are captured with constant translational motion,
ensuring consistent illumination, camera parameters, and
relative positioning between real and virtual experiments.
Fig. 3 (b) shows the number of inlier features (correctly

matched points across consecutive frames) along with the
ratio of inliers to total features (inliers plus outliers).

The comparison includes three robotic/machine vision
cameras: the RGB camera of the Luxonis OAK-D Pro
Wide [35], the FLIR Flea3 [17], and the Basler Dart
DaA1280-54uc [3]. Specific noise models for these cam-
eras, calibrated as described in Sec. 3.2, are applied in our
simulator. The feature extraction task serves as a reliable
measure of performance consistency between physical and
simulated environments.

Fig. 3 (b) shows that synthetic images from our simula-
tor yield more inlier features and a higher inlier ratio due to
quality reduction in the physical test target from the manu-
facturing process. However, the relative performance of the
cameras, crucial for optimization, remains consistent be-
tween simulated and physical settings. This validates that
our simulations accurately reflect real-world camera perfor-
mance and effectively evaluate camera designs.

4.2. Stereo Camera on Autonomous Vehicle

We apply our method to design a stereo camera on an
autonomous vehicle for the task of depth estimation.

Environment and Data This experiment is conducted in
CARLA [12], based on UE 4. The stereo camera is mounted
to a car that moves automatically. The environment is con-
figured with constant illumination, and motion blur enabled
due to the moving platform. Images are captured during
both training and testing. In training, each camera config-
uration captures one image per step, totalling 1000 images
over 1000 steps. For testing, each camera design captures
1500 images to evaluate performance. Training and testing
are performed on different urban outdoor maps.

Design Space We optimize the baseline (b ∈ [0.01m, 3m])
and horizontal FOV (fov ∈ [50◦, 120◦]) as continuous vari-
ables. We use two cameras with fixed sensor sizes of 1.536
mm×0.768 mm, a pixel size of 1.55 µm, and a mounting
height of 2 m, positioned forward-facing with no slant.

Stereo Matching Network We use the PSMNet [8] to pre-
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Figure 4. Training curves comparing the design of cameras us-
ing our method with and without joint optimization, and curve of
DISeR [29], are plotted. Zoomed-in windows from 0 to 50 and
950 to 1000 timesteps are provided for visualization. The curves
demonstrate that our method with joint optimization achieves su-
perior task performance with fewer steps and smoother behaviour.

dict the disparity map, which is pretrained on the KITTI
Stereo 2015 dataset [37, 38] and subsequently fine-tuned
with the optimization of camera parameters using its loss
function (ldisparity, Smooth L1 Loss), and the maximum
disparity for this model is capped as 192 following [8]. We
use an Adam optimizer [28] with a batch size of 4 and a
learning rate of 1 · 10−3 to train the network.

Fitness Function We use the inverse of the log error be-
tween the predicted and ground-truth disparity maps (nor-
malized by baselines), which emphasizes the depth predic-
tion accuracy in both large and small distances.

Derivative-Free Optimization The genetic algorithm uses
5 solutions per generation, retaining the top 2 for the next it-
eration. The top 3 generate offspring via uniform crossover,
followed by mutation with a random factor (0.8 to 1.2) and
an addition value (-5 to 5 for FOV, -0.2 to 0.2 for baseline).
Hyperparameters are empirically chosen, and optimization
parameters are randomly initialized. See the supplement for
comparisons of hyperparameters and initialization.

Results Tab. 1 details the performance of stereo cameras
designed by our method, compared with two off-the-shelf
models, the Intel RealSense D450 [26] and ZED 2i [49], as
well as a camera designed with the RL method DISeR [29].
We also compare results from jointly optimizing camera de-
sign and perception tasks against optimizing camera design
alone while fixing perception model parameters (pretrained
with 2500 images from CARLA using 50 camera configura-
tions). • indicates optimized parameters and• indicates
fixed parameters. Performance is evaluated using Average
Log Error and Root Mean Square Error (RMSE) between
estimated and ground-truth depths in meters.

Our camera design and DISeR perform best in terms of
log error, which evaluates depth estimation accuracy across
both short and long distances, and RMSE, which favors

Table 1. Depth estimation performance of stereo cameras designed
using our method, the RL method (DISeR [29]), and two off-the-
shelf cameras. The proposed method incorporating joint optimiza-
tion of camera parameters and perception tasks shows similar per-
formance as DISeR at a fraction of the training time.

Camera
Camera Parameters Performance

Baseline Horizontal FOV Log Error RMSE
b (m) fov (°) ↓ ↓

RealSense [26] 0.095• 87• 0.39• 178.94•
ZED [49] 0.12• 72• 0.29• 134.74•

DISeR [29] 1.84• 50• 0.16• 75.05•
Ours - Frozen 1.41• 50• 0.19• 111•
Ours - Joint 1.6• 50• 0.14• 79.81•

larger baselines for more accurate long-distance estima-
tion as long-distance has a greater impact on this value.
However, larger baselines struggle with short-distance ac-
curacy due to limited overlapping FOVs and the percep-
tion model’s maximum disparity setting. While increasing
FOVs can improve overlap, it reduces accuracy by lowering
disparity values. As a result, both our method and DISeR
converge on small FOVs and moderate baselines to balance
accuracy across all distances. See the supplementary mate-
rial for qualitative results and analysis.

Fig. 4 compares the training curves for our joint opti-
mization method, our method with fixed perception param-
eters, and the RL method. Our method converges faster than
DISeR by directly optimizing camera parameters, whereas
DISeR optimizes a policy network with many parameters to
predict them. The RL method shows abrupt changes during
training, as all network parameters are updated in each it-
eration, leading to significant fluctuations in camera param-
eters and performance. In contrast, the genetic algorithm
makes smaller parameter adjustments, resulting in smoother
performance changes. Our method converges with 45 steps
in 2 min and completes 1000 steps in 38 minutes with an
NVIDIA RTX4070 GPU, while DISeR takes 700 steps (67
min) to converge and 97 minutes to complete 1000 steps.

4.3. Monocular Camera on Mixed Reality Headset

In our second experiment, we apply our method to de-
sign a monocular RGB camera for an MR headset. Object
detection, obstacle avoidance, and feature extraction for 3D
reconstruction are selected as examples of tasks as they are
essential for most MR devices. However, other tasks can be
added depending on the target application.
Environment and Data We establish an indoor environ-
ment in UE 5 with 10 object classes. Floorplans and object
locations are randomly generated to introduce variability
and the camera is mounted on an auto-agent acting as a user.
During training, each camera design captures 500 images,
indicating 10000 images in total as we optimize for 20 gen-
erations, 10 solutions per generation. Testing is conducted
with 1000 images using different scene configurations.
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Table 2. We compared the parameters and performance of cameras designed with our method using both fully discrete and quantized
continuous schemes alongside three robotic/machine vision cameras. Optimized parameters via our method are labeled with•, covering
all camera parameters, the object detection network in the joint optimization scheme, and mounting angles of off-the-shelf cameras. Our
approach consistently designs cameras with higher performance in both scenarios. The quantized continuous scheme notably outperforms
the fully discrete scheme, benefiting from its consideration of parameter interdependencies. Joint optimization of the object detector also
enhances detection precision, while the performance of non-trainable tasks remains similar.

Scenario Camera
Camera Parameters Performance

Pitch Angle Focal Length Sensor Size Pixel Size Obstacle Detect. Object Detect. Inlier Number Inlier Ratio
θ (◦) f (mm) w × h (mm) p (µm) Accuracy ↑ AP ↑ ↑ ↑

Day

OAK-D [35] -20.04• 2.75• 6.29×4.71• 1.55• 1 0.37• 115 0.07
FLIR [17] -23.28• 3.6• 6.2×4.65• 1.55• 1 0.37• 77 0.05
Basler [3] -25.90• 3.6• 4.8×3.6• 3.75• 1 0.23• 131 0.08

Ours - Fully Discrete -27.87• 4.01• 8.45×6.76• 6.6• 1 0.43• 191 0.13
-24.69• 3.77• 8.45×6.76• 6.6• 1 0.51• 189 0.12

Ours - Quantized Continuous -21.86• 2.99• 8.45×6.76• 6.6• 1 0.46• 230 0.13
-26.34• 2.88• 7.31×5.58• 4.5• 1 0.64• 224 0.13

Night

OAK-D [35] -19.72• 2.75• 6.29×4.71• 1.55• 1 0.34• 117 0.06
FLIR [17] -22.71• 3.6• 6.2×4.65• 1.55• 1 0.36• 69 0.03
Basler [3] -25.83• 3.04• 4.8×3.6• 3.75• 1 0.16• 122 0.07

Ours - Fully Discrete -23.65• 2.61• 7.2×5.4• 4.5• 1 0.37• 179 0.11
-23.66• 3.10• 7.2×5.4• 4.5• 1 0.42• 170 0.11

Ours - Quantized Continuous -29.86• 3.33• 8.45×6.76• 6.6• 1 0.37• 165 0.11
-22.58• 3.49• 14.48×9.94• 9• 1 0.57• 172 0.11

Design Space We focus on designing geometric parameters
that determine the camera’s FOV and photometric param-
eters affecting resolution, crucial for user mobility and ob-
jects’ effective resolution. For FOV, we optimize the mount-
ing angle in pitch direction (θ ∈ [−30◦, 30◦], focal length
(f ∈ [1mm, 20mm]), and image sensor dimensions (width
w and height h). The number of pixels is decided by the sen-
sor’s pixel size (p) and its dimensions. The camera’s height
varies randomly between 1 m to 2 m per training step to
ensure robustness across different user heights.

We restrict our design to readily available sensors by op-
timizing the image sensor (i) as a categorical variable, se-
lecting from a catalog of 43 commercial CMOS image sen-
sors from five manufacturers (ic1, ic2,..., ic43). Each sen-
sor (i) comprises a set of sensor-related parameters (w, h,
and p). We compare two optimization techniques for dis-
crete variables, treating i as fully discrete and using the
quantized continuous approach. Our catalog predominantly
features 28 Sony sensors, reflecting their widespread use in
machine vision cameras, and our noise model is more likely
to generalize well across sensors from the same manufac-
turer. Hence, we also used a Sony sensor to calibrate.
Obstacle Avoidance To assess the camera’s ability to de-
tect obstacles affecting user mobility, we place thresholds
at room entrances in our virtual environment. These low-
height obstacles highlight the importance of an appropriate
FOV and mounting angle. We focus on low-height obstacles
because taller ones are constrained by object and feature
detection tasks. Visibility to the camera is determined by
whether the obstacle appears in rendered images. Addition-
ally, the auto-agent is programmed to react when stepping
on a threshold, regardless of its visual rendering.
Feature Extraction We extract ORB features [47] and
employ the Brute-Force Matcher in OpenCV [27] to

match features across consecutive frames, we then apply
RANSAC [16] to find inlier features while estimating trans-
formation matrix between frames.
Object Detector We utilize a Faster R-CNN [44] object
detector with a ResNet-50 [19] backbone, pretrained on
2000 images generated by our simulator and then fine-tuned
alongside the camera parameters. Training employs an
Adam optimizer [28] with a batch size of 8 and a learning
rate of 1 · 10−4, which decays by 0.5 every 5 steps during
both pre-training and fine-tuning.
Fitness Function The fitness function combines three per-
ception tasks. For obstacle avoidance, it calculates the ratio
of the number of obstacles seen by the camera (oseen) to
the total number of obstacles (ototal) in the user’s path. The
object detector is trained using its loss function (lOD), and
we take the Average Precision (AP) with a 0.5 Intersection-
over-Union (IoU) threshold as a term in the fitness function.
Feature extraction contributes through the number of inlier
features (ninlier) and the ratio of inlier features to total fea-
tures (ntotal), emphasizing both the quantity and accuracy
of detected features. Thus, the total fitness function is

F = λfeature(λinlierninlier + λratio
ninlier

ntotal
)

+λODAP@0.5IoU + λobstacle
oseen
ototal

,
(3)

where we balance the weights of all terms by setting λinlier

to 0.0025 (inlier in an image is typically 100-250), λratio to
0.5, λobstacle, λOD, and λfeature to 1 as we consider these
tasks equally significant.
Derivative-Free Optimization We optimize the camera
parameters using the genetic algorithm over 20 generations
with 10 solutions per generation. A uniform crossover is ap-
plied using the top 5 solutions to produce offspring, while
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Figure 5. The vertical (a) and horizontal (b) FOVs of cameras optimized by our method with joint optimization, alongside those designed by
humans under the daytime scenario, and example evaluation (c). Our method designs a camera with the largest FOV, enabling the capture
of all obstacles and objects, extracting more features while maintaining sufficient resolution for effective object and feature detection.

the top 3 solutions are reused. The mutation process re-
mains consistent with the previous experiment, except the
addition value is randomly selected between -3 and 3. These
hyperparameters are chosen empirically. Each solution in-
volves collecting 500 images to evaluate both the feature
extraction and obstacle (threshold) avoidance tasks.

Results We present the optimized set of camera parame-
ters obtained through our approach and evaluate the cam-
era’s performance in Tab. 2, considering obstacle detection
accuracy, AP score, average number of inlier ORB fea-
tures across consecutive frames, and ratio of average in-
lier features to total features extracted. Additionally, we re-
port optimized parameters under two application scenarios:
daytime operation in a well-illuminated simulation environ-
ment (20 lux) with a lower baseline camera gain (5 dB), and
nighttime operation in low-light conditions (2 lux) with a
higher baseline camera gain (15 dB). We observed that dif-
ferent application scenarios led to distinct camera designs.
Our approach designed a camera with a larger pixel size for
nighttime applications, which is expected as a sensor with
larger pixels delivers higher SNR since larger pixels gather
more light. Hence, sensors with larger pixels require lower
gain to capture images with the comparable measured in-
tensity compared to sensors with smaller pixels.

We compare our optimized camera with three human-
designed robotic/machine vision cameras, OAK-D, FLIR,
and Basler, used in previous experiments in our simulation.
Specific noise models are applied to these cameras, with op-
timized mounting angles while others remain fixed due to
configurability. Additionally, we report performance with-
out joint optimization, where parameters of the object de-
tection network are frozen. Fig. 5 illustrates FOVs and ex-
ample evaluations of our proposed cameras with joint opti-
mization alongside robotic/machine vision cameras. Please
refer to the supplementary material for more visualisations.

The results show performance improvements across all
tasks with our method, while lower performance is observed

under night scenarios due to reduced SNR. Fully discrete
optimization schemes show lower performance, indicating
the importance of considering parameter interdependencies.
Similarly, freezing parameters of the perception model re-
sults in reduced performance. The performance of obstacle
avoidance is always perfect because we optimized the pitch
angle of all the cameras, including the off-the-shelf ones.

We note that the RL method was developed for and
demonstrated on single-frame tasks [29]. Both feature
matching and obstacle avoidance are episodic, multi-
frame tasks requiring consecutive images for precise per-
formance evaluation, and this data collection process is
time-consuming. The RL method demands significantly
more training steps and image data than ours, applying it
to episodic tasks requires impractically long optimization
times that prevent us from making a direct comparison.
Hence, it is not compared in this experiment.

5. CONCLUSION
We presented a novel end-to-end approach that combines

derivative-free and gradient-based optimizers to co-design
cameras with perception tasks efficiently. Utilizing UE and
an affine noise model, we constructed a camera simulator
and validated its accuracy against physical cameras. Our
method handles continuous, discrete, categorical camera
parameters, and advances a quantized continuous approach
for discrete variables to consider their interdependencies.
We believe this work can be generalized easily and is an
important step toward principled and automated camera de-
sign for autonomous systems that account for the interde-
pendency between cameras and the algorithms that interpret
them. For future work, we aim to develop a task-driven con-
trol algorithm that dynamically adjusts camera parameters,
such as exposure settings, in an online manner.
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