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Abstract

Recent video semantic segmentation (VSS) methods have
demonstrated promising results in well-lit environments.
However, their performance significantly drops in low-light
scenarios due to limited visibility and reduced contextual
details. In addition, unfavorable low-light conditions make
it harder to incorporate temporal consistency across video
frames and thus, lead to video flickering effects. Compared
with conventional cameras, event cameras can capture mo-
tion dynamics, filter out temporal-redundant information,
and are robust to lighting conditions. To this end, we pro-
pose EVSNet, a lightweight framework that leverages event
modality to guide the learning of a unified illumination-
invariant representation. Specifically, we leverage a Mo-
tion Extraction Module to extract short-term and long-term
temporal motions from event modality and a Motion Fu-
sion Module to integrate image features and motion features
adaptively. Furthermore, we use a Temporal Decoder to ex-
ploit video contexts and generate segmentation predictions.
Such designs in EVSNet result in a lightweight architecture
while achieving SOTA performance. Experimental results
on 3 large-scale datasets demonstrate our proposed EVS-
Net outperforms SOTA methods with up to 11× higher pa-
rameter efficiency.

1. Introduction
Video semantic segmentation, a problem of assigning a

category label to each pixel in the video frames, has become
a hot research topic in recent years. It plays a fundamental
role in a wide range of multimedia and computer vision ap-
plications including video parsing [30, 36], video process-
ing [3, 34, 71], and autonomous driving [25, 69, 75, 76].

While video semantic segmentation of normal light
scenes has made tremendous achievements [34, 41, 49, 54,
74], low-light scenarios are still challenging due to limited
visibility and degraded image quality. In low-light con-
ditions, conventional frame-based cameras have difficulty
capturing a wide range of brightness levels, resulting in low
contrast and loss of textures. The reduced contrast hinders

(a) Normal Light Frame (b) Low-Light Frame

(c) Normal Light Event (d) Low-Light Event

Figure 1. Comparison among (a) normal light frame, (b) low-
light frame, (c) events generated from normal light frames, and
(d) events generated from low-light frames. Events demonstrate
robustness against lighting changes and effectively capture tempo-
ral motion features in low-light environments.

accurate discrimination of object boundaries, ultimately di-
minishing clarity and fidelity of the captured images. In
addition to limited visibility, low-light semantic segmenta-
tion is also challenging because of luminance noise. Severe
noises caused by constrained photon counts and imperfec-
tions in photodetectors manifest as random bright or dark
pixels scattered throughout the whole image. Such noises
often lead to inaccurate segmentation predictions.

To resolve the above issues, researchers have explored
event cameras as an alternate sensing modality. Event sen-
sors asynchronously measure sparse data streams at high
temporal resolution (10µs vs 3ms), higher dynamic range
(120dB vs 60dB), and significantly lower energy (10mW vs
3W) compared to conventional cameras. In recent years,
it has been increasingly utilized in the computer vision
[5, 18, 24, 27, 35, 48] and robotics [53, 58] community. Re-
searchers have explored event modality in many tasks such
as 3D reconstruction [77], pose estimation [5], and simulta-
neous localization and mapping (SLAM) [19].

Instead of capturing an image at a fixed interval, the
event cameras, such as the Dynamic Vision Sensor (DVS),
only record a single event based on the brightness changes
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Figure 2. Different from existing approach which fuse event fea-
tures in the encoder, our model utilizes event features to learn
short-term and long-term motions and leverage these motion fea-
tures to gain video temporal contexts.

at each pixel. This makes it suitable for edge-case scenarios
and video-related tasks. For low-light video semantic seg-
mentation task, event modality offers two advantages: (1) it
facilitates the learning of temporal consistency; (2) it pro-
vides an alternative perspective through intensity changes.
Figure. 1 explains the potential of event modality in low-
light conditions. Although bringing a new paradigm shift,
event modality presents two challenges: firstly, it only cap-
tures pixels in motion, leading to sparse information; sec-
ondly, it demonstrates distinct attributes compared with vi-
sual image modality, highlighting the significance of effec-
tively modeling event features.

To address the above challenges, we propose a
lightweight framework, namely EVSNet, that exploits both
image and event modalities for low-light video semantic
segmentation. Figure. 2 illustrates the difference between
existing works and our approach. The architecture of EVS-
Net is shown in Figure. 3. It consists of three parts: an
Image Encoder, a Motion Extraction Module, a Motion Fu-
sion Module, and a Temporal Decoder. Specifically, we first
adopt a lightweight backbone as the Image Encoder to ex-
tract image features. Inspired by Atkinson-Shiffrin mem-
ory model [2] which hypothesizes that the human memory
consists of short memory and long memory, we then pro-
pose a Motion Extraction Module to extract short-term and
long-term motion features and acquire the video contexts to
guide semantic understanding through such motions. We
apply Event Encoder to extract event features (can be seen
as short-term motions between 2 consecutive frames) and
leverage the Temporal Convolutional Block to learn long-
term motions. Furthermore, we devise a Motion Fusion
Module to integrate image and motion features adaptively.
It contains a Channel Attention layer and a Spatial Atten-
tion Layer to blend cross-channel and spatial information.
By leveraging both modalities, EVSNet extracts richer and

complementary information, leading to more accurate seg-
mentation compared to the single modality. Finally, we use
a Temporal Decoder to exploit video contexts and generate
final predictions. Extensive evaluations using three large-
scale low-light datasets show EVSNet results in better se-
mantic segmentation results.

In summary, our contributions to this paper include:

• We propose EVSNet, a lightweight framework that ex-
ploits image and event modality. To the best of our
knowledge, we are the first to introduce event modal-
ity to video semantic segmentation task. Event infor-
mation focuses on the motion changes and thus can be
used to learn better short and long-term temporal con-
sistent representations.

• We propose a Motion Extraction Module (MEM) and
a Motion Fusion Module (MFM) for learning tem-
poral motion and adaptively learning the spatial and
channel-wise relationship between image and motion
features. Unlike existing extraction and fusion mod-
ules, our design alleviates misalignment while lower-
ing computational cost.

• We conduct experiments to evaluate our EVSNet
model using three large-scale low-light video seman-
tics segmentation datasets and demonstrate its effec-
tiveness using standard segmentation metrics. Com-
pared to SOTA models with similar parameter effi-
ciency and inference cost, our EVSNet achieves su-
perior performance on these 3 datasets.

2. Related Works
2.1. Event-Based Semantic Segmentation

Event cameras have the potential for semantic segmen-
tation and there have been several efforts exploring event
modality. Some researchers use knowledge distillation [47]
to solve domain shift problems. ESS [51] proposed to lever-
age unsupervised domain adaptation by aligning event fea-
tures with image features. EvDistill [55] designed a stu-
dent network on unlabeled event data to distill knowledge
from a teacher network trained with labeled data. Some
researchers use other ways to encode event features. Ev-
SegNet [1] built an Xception-based CNN to train on event
data. HALSIE [4] proposed to use hybrid spiking neural
networks [20] and convolution neural networks to extract
spatiotemporal features to combine events and frames.

While researchers started to exploit event modality for
semantic segmentation, most works [7, 32] didn’t explore
how to effectively fuse the multimodality and alleviate mis-
alignment. Unlike existing approaches, our design learns
longer term motion features from event data, and fuse such
features with image features at a later stage. Such a design
yields better segmentation results.
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2.2. Low-light Semantic Segmentation

Low-light semantic segmentation has been popular in re-
cent years. Due to the absence of a real-world low-light
segmentation dataset in early stages, some previous meth-
ods [56, 65] utilized domain adaptation to transfer knowl-
edge from the normal light domain to the low-light domain.
DANNet [64] designed a domain adaptation network utiliz-
ing an annotated normal light dataset as the source domain
and an unlabeled dataset that contains coarsely matched im-
age pairs (the target normal light and low-light domains).
It used multi-target adaptation and re-weighting strategy to
enhance the accuracy. LISU [73] devised a cascade frame-
work to enhance segmentation predictions of low-light sce-
narios by jointly learning semantic segmentation and re-
flectance restoration. [16] utilized semantic segmentation as
guidance to help the Retinex-based model learn low-light
image enhancement based on structural and semantic prior.
It reduces noise and color distortion and improves visual
quality in low-light environments.

2.3. Video Semantic Segmentation

Video semantic segmentation, compared to image seg-
mentation, exploits temporal information in consecutive
frames leveraging motion cues and temporal context. Some
researchers [17, 26, 29, 43, 67] utilized optical flow to warp
features from frames and then aggregate wrapped features.
EVS [45] proposed a novel Refiner to Warp semantic in-
formation and IAM focusing on regions where the optical
flow is unreliable. Accel [26] proposed to use a reference
branch for extracting fine-grained features from keyframes
and warping features using optical flow, and an update
branch for performing a temporal update on the current
frame. DEVA [11] developed bi-directional propagation
fusing of segmentation hypotheses and current segmenta-
tion results to predict coherent labels. Further works fo-
cus on how to model temporal consistency between frames
[22, 28, 44, 49, 50]. CFFM [49] proposed coarse-to-fine
feature assembling and cross-frame feature mining. The
former extracted fine-grain and coarse-grain features while
the latter mined temporal relations based on focal features.
Video K-Net [34] proposed a unified framework for multi-
ple video segmentation tasks but requires separate training
for each task.

Despite the promising results, existing approaches do not
learn temporal motion features well. NetWarp [17] wraps
previous frame to learn temporal motions, but it fails to
consider long-term motion contexts. MRCFA [50] models
cross-frame temporal relations, but it fails to model relation
between short-term and long-term temporal motions. In ad-
dition, SOTA methods [21, 33, 44, 46] learn temporal mo-
tions from image modality. It is suboptimal because of the
complexity of capturing and interpreting dynamic changes
from static images over time. Requiring the model to ef-

fectively differentiate between spatial and temporal infor-
mation in low-light conditions is extremely challenging due
to both low image contrast and ambiguity of object bound-
aries. This paper highlights a new direction of mining both
short and long-term motions from the event modality and is
compatible with most of the encoder-decoder architecture
in Video Semantic Segmentation task.

3. Methodology
3.1. Motivation

In low-light scenarios, where visibility is severely com-
promised, conventional cameras often fail to provide ade-
quate information for robust segmentation due to the low
contrast between objects. Furthermore, noise and blur in-
troduced by RGB cameras in low-light environments cause
image quality degradation. Video semantic segmentation
models designed for normal light scenarios thus cannot
clearly capture low-level and high-level features in each
video frame and have difficulty acquiring scene understand-
ing capabilities [6]. Adding extra denoising/restoration
steps or modules brings excessive computational cost and
exacerbates the overall latency of the pipeline.

The event modality, characterized by its ability to cap-
ture dynamic changes (such as motion and sudden illumi-
nation alterations) in the scene, offers valuable structural
and motional information that is not captured by conven-
tional cameras. It naturally responds to motion and is espe-
cially suitable for video-related tasks. By integrating the
event modality alongside image modality, the model ex-
ploits complementary sources of richer semantic informa-
tion, understands more comprehensively about the environ-
ment, and ultimately enhances segmentation accuracy and
robustness. Hence, the model can better adapt to challeng-
ing low-light conditions and offer a promising avenue for
improving performance and applicability in real-world sce-
narios.

3.2. Problem Formulation
Assuming there is an input video clip containing l + 1

video frames {It, It−k1 , ..., It−kl} ∈ RH×W×3 with
corresponding per-frame ground-truth segmentation label
{St, St−k1 , ..., St−kl} ∈ RH×W×1. Note that It is re-
ferred as current frame and {It−k1 , ..., It−kl} are l pre-
vious frames which are {k1, ..., kl} frames away from It.
They are defined as reference frames. Our objective is to
make pixel-wise segmentation on It.

Event cameras capture the changes in intensities for each
pixel and output a stream of events. One event ei is repre-
sented as the 4-tuple: ei = [xi, yi, pi, ti] where xi, yi indi-
cates the spatial coordinates of the pixel where the bright-
ness changes at timestamp ti and polarity pi ∈ {0, 1} de-
notes either increasing or decreasing of the local bright-
ness. Event simulators [23] usually transform the asyn-
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Figure 3. Overview of EVSNet: Given a set of input RGB images It:t−k3 , the Image Encoder extracts image features at each scale and
multi-scale features are aggregated in the Multi-scale Mixer. The Motion Extraction (MEM) Module is applied to extract short-term and
long-term motions from event features generated by event simulator. The Motion Fusion (MFM) Module further aggregates both features
adaptively. Finally, the Temporal Decoder combines fused features from all frames to learn the temporal consistency and predicts the final
segmentation results.

chronous event flows into synchronous event image by
stacking the events in a fixed time interval ∆t. Similar
to [42], we encode the event information as a one-channel
grey-scale image to facilitate the learning of event modal-
ity. Event images of the given video clip are referred
as {Et, Et−k1 , ..., Et−kl} ∈ RH×W×1 for each corre-
sponding frame.

3.3. Method Overview

The proposed framework of EVSNet, as illustrated in
Figure. 3, consists of an Image Encoder for feature ex-
traction from image modality, a Motion Extraction Module
(MEM) for extracting temporal motions from event modal-
ity, a Motion Fusion Module (MFM) for feature integration,
and a Temporal Decoder for modeling temporal relations
between frames and generating pixel-wise predictions.

Image Encoder. Given a current video frame It ∈
RH×W×3, the Image Encoder utilizes a lightweight pre-
trained backbone to extract multi-scale features and reduce
the computational overhead. Specifically, we adopt two effi-
cient architectures: Afformer (Base and Tiny) [15] and MiT
(B0 and B1) [66]. In addition, the low-pass filter design in
the backbone can help suppress noise generated in low-light
conditions [6]. Note that the Image Encoder extracts fea-
ture maps from the current frame It ∈ RH×W×3 and refer-
ence frames {It−k1 , ..., It−kl} ∈ RH×W×3, respectively.

Finally, we leverage the MLP decoder in SegFormer [66]
as the Multi-scale Mixer to aggregate multi-scale features
F I
t ∈ RH/4×W/4×C where local features from earlier lay-

ers can be combined well with global features from the lat-
ter layers.

Motion Extraction Module. Similar to the Image En-
coder, the Motion Extraction Module (MEM) uses a pre-
trained backbone on the event images {Et, ..., Et−kl} ∈
RH×W×1 to generate event features {FE

t , ..., FE
t−kl

} ∈
RH×W×C . Subsequently, we pass event features through
the Temporal Convolutional block to learn the long-term
temporal relations. The Temporal Convolutional block ex-
tracts motion feature maps from the current and past l event
frames to generate motion features Fm

t . For instance, for
the current frame t, it outputs long-term motion features
Fm
t ∈ RH×W×C based on {Et, ..., Et−kl}. More details

of the Motion Extraction Module are described in Section
3.4.

Motion Fusion Module. The output of the Image En-
coder and Motion Extraction Module are passed through
a Motion Fusion Module (MFM). Specifically, we apply a
Channel Attention Layer to learn inter-channel dependen-
cies of both features and then a Spatial Attention Layer to
learn spatial structural details. It then feeds the updated fea-
tures to the decoder. The MFM is lightweight and efficient
while yielding a powerful representation, incorporating the
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Figure 4. Illustration of Motion Fusion Module (MFM): From left
to right, the components are Channel Attention Layer and Spatial
Attention Layer.

short-term and long-term temporal contexts. More details
of the Motion Fusion Module are described in Section 3.5.

Temporal Decoder. The Temporal Decoder takes the
fused features from the image and motion features as input.
The Temporal Decoder consists of several focal blocks from
Focal Transformer [68]. It is applied to learn the temporal
consistency of consecutive frames and further predicts the
segmentation results Ŷt ∈ RH×W×1. More details of Tem-
poral Decoder selections are elaborated in Section 4.7.

3.4. Motion Extraction Module

The image features contain more semantic and category-
aware information while the event features contain more
structural and category-agnostic information [38]. There is
a significant domain gap in the two modalities and how to
alleviate the domain shift problem is important [8, 31, 57,
59–62, 78]. Some prior works directly fuse features from
multiple scales or streams [4, 9], and other researchers in-
troduce atrous spatial pyramid pooling or pyramid feature
fusion modules to encode spatial dependencies [70]. How-
ever, pixels corresponding to the same scene points in the
event and RGB images are recorded in different temporal
resolutions, leading to severe misalignment, and this mis-
alignment cannot be easily solved by multimodality fusion.

Based on the analysis of existing fusion modules above,
we summarize the following design principles for our
model: (1) The event modality is mainly used to extract
temporal motions. Given that the event records brightness
changes between two consecutive frames, it can be seen as
short-term temporal motions. Inspired by Atkinson-Shiffrin
memory model [2], we also leverage event modality to learn
long-term temporal motions. (2) Directly integrating event
features in RGB Image Encoder introduces misalignment
and may affect the semantic understanding. Instead, we ex-
tract motion features and utilize such information to gain
video contexts.

The Motion Extraction Module consists of 2 parts:

Event Encoder and Temporal Convolutional block. Given
the input event frames {Et, ..., Et−kl} ∈ RH×W×1,
the Event Encoder extracts multi-scale high-level features
{FE

t , ..., FE
t−kl

} ∈ RH×W×C . The event features FE are
then fed to the Temporal Convolutional block. The block
consists of a 2×3×3 3D Convolution layer, a 1×3×3 3D
Convolution layer, a 2×H ×W 3D average pooling layer
layer, and skip connections. Each operation above is pre-
ceded by a feature compression layer, which is a 1× 1× 1
3D Convolutional layer. For a specific frame t, the final
output motion features Fm

t are the fused features after con-
catenation of short-term event features FE

t and long-term
motion features FM

t as follows:

FM
t = ReLU(τ(AvgPool(τ(f2(τ(f1(F

E
t )))) + FE

t )))
(1)

Fm
t = τ(FE

t ⊕ FM
t ) (2)

where f1 and f2 represents 2 × 3 × 3 and a 1 × 3 × 3 3D
Convolution layer, τ represents 1 × 1 × 1 3D Convolution
layer and Fm

t ∈ RH×W×2C represents the concatenated
motion features.

3.5. Motion Fusion Module

Based on the two principles in Section 3.4, we propose
a lightweight Motion Fusion Module (MFM) to adaptively
aggregate image and event features from spatial and channel
aspects and improve cross-modal generalization. Specifi-
cally, the MFM consists of one Channel Attention layer and
one Spatial Attention layer.

Channel Attention Layer. The Channel Attention layer
is based on the channel-wise attention mechanism [72] with
two key modifications in Figure. 4. (1) Instead of using the
image to query and focusing solely on each pixel to learn
which channel is more important, we use the event image
to query and compute cross-covariance across feature chan-
nels. It updates image features with the guide from the event
information and focuses on more important channels based
on the event modality’s motional and structural perspective.
(2) We add an additional 5×5 depth-wise convolution layer
in parallel and remove the Feed Forward Networks (FFN) in
the original attention blocks. Replacing FFN with the extra
depth-wise convolution layer can greatly reduce the com-
putational cost and potential feature misalignment between
the two modalities.

Given the image F I and motion feature maps Fm, the
Channel Attention Layer first uses two parallel depth-wise
convolution layers (3 × 3 and 5 × 5) and one 1 × 1 con-
volution layer for both inputs. Our design has two advan-
tages: (1) it implicitly models contextual relationships be-
tween surrounding pixels; (2) it needs fewer computations
than the standard convolutional layer. Afterward, it gener-
ates a query vector from the motion features and key/value
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vectors from image features:

Q = WQ(f3(F
m)⊕ f4(F

m)) (3)

K = WK(f3(F
I)⊕ f4(F

I)) (4)

V = WV (f3(F
I)⊕ f4(F

I)) (5)

where ⊕ denotes concatenation and f3 and f4 are 3×3 and
5×5 depth-wise convolution layer, respectively. The spatial
resolution of input F I and Fm is RH×W×Ĉ .

We then reshape query and key projections such that
their dot-product can be multiplied with the reshaped value
projections. The updated image features F ′

I after the Chan-
nel Attention Layer are:

F I′ = V · softmax((K ·Q)/α) (6)

where Q ∈ RHW×Ĉ , K ∈ RĈ×HW and V ∈ RHW×Ĉ are
reshaped tensors originally from the size RH×W×Ĉ and α is
a learnable temperature parameter to adjust the magnitude
of inner products.

Spatial Attention Layer. Our Spatial Attention Layer
(SAL) is employed to capture spatially local and global con-
texts from both image and motion features. It is inspired by
the spatial attention module in CBAM [63] because their
design is more lightweight as a convolution-based attention
module and provides fine-grained spatial relationships be-
tween pixels. Specifically, we first use max and average
pooling operations across the channel on both feature in-
puts. These generated 4 feature maps are concatenated and
fed into a multilayer perceptron block (MLP) to generate a
spatial attention map A. The final output F I′′ after the Spa-
tial Attention Layer is element-wise multiplication of A and
input image features F I′:

A(F I′,Fm) = σ(f(MaxPool(F I′)⊕AvgPool(F I′)⊕
MaxPool(Fm)⊕AvgPool(Fm))) (7)

F I′′ = F I′ ⊙A(F I′,Fm) (8)

where ⊕ denotes concatenation, σ represents the activation
function and f denotes a 7× 7 convolution layer.

4. Experiments
4.1. Implementation Details

We implement our model using MMSegmentation [12]
framework and run all experiments on 2 NVIDIA RTX
A5000 GPUs. For training, we use 160000 iterations with
a batch size of 2. For the backbone, we adopt the Afformer
(Base and Tiny) [15]and MiT (B0 and B1) [66] pre-trained

on ImageNet-1K dataset [14]. We train the entire model us-
ing AdamW optimizer [40] and poly learning rate schedule
with the initial learning rate 6e-5. The data augmentation
used in our work includes random crop, random flipping,
photometric distortion, and gamma correction distortion.
During training, we crop size the RGB images and event im-
ages to size 480×480 for the low-light VSPW dataset [41],
512 × 1024 for the low-light Cityscapes dataset [13] and
512× 512 for the NightCity dataset [52].

When selecting AFFormer-Tiny and AFFormer-Base as
the backbone, we set the four scales as {1/4, 1/8, 1/8, 1/8}
of the input image spatial resolution. When using MiT-B0
and MiT-B1 as the backbone, the four scales are {1/4, 1/8,
1/16, 1/32} of the input image spatial resolution.

Follow [49], our model uses l = 3 reference frames un-
less otherwise specified, and {k1,k2,k3} = {3, 6, 9}.

4.2. Data Preparation

Following previous work [37], we synthesize a specific
low-light video frame It from a normal light frame Xt us-
ing linear scaling and gamma correction:

It = β × (α×Xt)
γ (9)

where α, β, γ are sampled from a uniform distribution
U(0.9, 1), U(0.5, 1), U(2, 3.5), respectively.

To generate events based on the low-light videos, we use
a popular video-to-event simulator v2e [23]. The event im-
ages have the same spatial resolution as video frames.

4.3. Datasets

Our experiments are mainly conducted on 2 synthetic
(low-light VSPW dataset [41] and low-light Cityscapes
dataset [13]) and 1 real-world datasets (NightCity dataset
[52]). Details of how to generate synthetic low-light dataset
are described in the supplementary material.
Low-light VSPW. It has 2806 videos (198244 frames) for
the training set, 343 videos (24502 frames) for the valida-
tion set, and 387 videos (28887 frames) for the test set. It se-
lects 231 indoor and outdoor scenes and contains 124 object
categories. VSPW provides the per-frame pixel-level anno-
tations at 15 FPS which allows video scene parsing models
learn the temporal information.
Low-light Cityscapes. It is a large dataset for scene un-
derstanding of urban street scenarios. Cityscapes provides
pixel-level annotations per 30 frames, containing 30 ob-
ject categories. Overall, it has 3475 annotated images for
train/val split and 1525 annotated images for test split from
collected video sequences.
NightCity. It is a large dataset with urban driving scenes
at nighttime designed for supervised semantic segmenta-
tion and contains 19 categories. Overall, it consists of 4,297
real night-time images with ground truth pixel-level seman-
tic annotations from collected video sequences.
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Table 1. Baseline comparisons on the low-light VSPW dataset [41]

Method Backbone mIoU ↑ Weighted IoU ↑ mVC8 ↑ mVC16 ↑ Params(M) ↓ GFLOPs ↓
Event EV-SegNet [1] Xception 18.9 41.2 78.9 74.4 29.1 188.6
Event ESS [51] E2ViD 22.4 45.8 82.7 75.6 12.9 36.4

Event + Image-based ESS [51] E2ViD 21.6 43.6 81.5 74.7 12.9 36.4
Image-based Mask2Former [10] R50 18.1 42.0 78.3 73.4 44.0 110.6
Image-based Mask2Former [10] Swin-T 19.5 45.5 79.2 74.2 47.4 114.4
Video-based TCB [41] PSPNet 21.5 44.0 81.3 75.0 70.5 —
Video-based TCB [41] OCRNet 21.8 44.4 82.4 76.1 58.1 —
Video-based MRCFA [50] MiT-B0 16.1 36.1 74.2 68.9 5.3 48.2
Video-based MRCFA [50] MiT-B1 16.3 37.7 76.3 71.4 16.3 91.5
Video-based CFFM [49] MiT-B0 19.9 46.3 83.0 75.9 4.7 26.4
Video-based CFFM [49] MiT-B1 22.2 47.8 83.6 77.9 15.5 49.9

Video-based EVSNet (Ours) AFFormer-T 23.6 52.0 84.9 79.4 7.4 30.8
Video-based EVSNet (Ours) AFFormer-B 26.7 53.5 85.1 80.0 8.2 37.8
Video-based EVSNet (Ours) MiT-B0 28.2 55.7 87.0 82.1 9.0 30.1
Video-based EVSNet (Ours) MiT-B1 34.1 59.0 87.7 83.0 19.9 64.1

Table 2. Baseline comparisons on Low-light Cityscapes dataset
[13]

Method Backbone mIoU ↑ Params(M) ↓ GFLOPs ↓
ESS [51] E2ViD 49.6 12.9 46.9

EV-SegNet [1] Xception 41.1 29.1 245.2
MRCFA [50] MiT-B0 42.1 5.3 77.5
MRCFA [50] MiT-B1 45.7 16.3 145.0
CFFM [49] MiT-B0 46.0 4.7 62.4
CFFM [49] MiT-B1 50.3 15.5 118.3

EVSNet (Ours) AFFormer-T 57.9 7.4 70.2
EVSNet (Ours) AFFormer-B 60.9 8.2 86.0
EVSNet (Ours) MiT-B0 59.6 9.0 70.9
EVSNet (Ours) MiT-B1 63.2 19.9 150.1

4.4. Evaluation Metrics

We use mean Intersection over Union (mIoU) and
Weighted IoU (WIoU) to measure the per-frame segmenta-
tion performance. Weighted IoU refers to the IoU weighted
by total pixel ratio of each category [39]. Following [41],
we also use Video Consistency (VC) to evaluate the tempo-
ral consistency across long-range adjacent frames category.
Specifically, given a video clip with t frames, ground-truth
labels are S1:t. Assume the predicted segmentation masks
areŶ1:t, the video consistency of is defined as:

V Ct =
(S1 ∩ ... ∩ St) ∩ (Ŷ1 ∩ ... ∩ Ŷt)

(Ŷ1 ∩ ... ∩ Ŷt)
(10)

We use a sliding window to scan all videos with a stride of
1 and calculate the corresponding mean value mV C8 and
mV C16

To evaluate the model size and computational efficiency,
we compare the number of parameters of the model and
Giga Floating-Point Operations per Second (GFLOPS).

4.5. Quantitative Results

We evaluate the performance of our proposed EVS-
Net and other SOTA models on the low-light VSPW

Table 3. Baseline comparisons on the NightCity dataset [52]

Method Backbone mIoU ↑ Params(M) ↓
DLV3P [51] Res101 54.7 60.1
MRCFA [50] MiT-B0 45.5 5.3
MRCFA [50] MiT-B1 47.8 16.3
CFFM [49] MiT-B0 47.2 4.7
CFFM [49] MiT-B1 49.1 15.5

EVSNet (Ours) MiT-B0 53.9 9.0
EVSNet (Ours) MiT-B1 55.2 19.9

dataset in Table 1. SOTA models evaluated include Event-
based models (EV-SegNet [1]), Event+image-based models
(ESS [51]), image-based models (Mask2Former [10]), and
Video-based models (TCB [41], CFFM [49], MRCFA [50])
using their default settings. We train these SOTA models
using the training set of the low-light VSPW dataset from
scratch.

From the table, we see that EVSNet achieves an mIoU
of 23.6, 26.7, 28.2, and 34.1 using the AFFormer-Tiny,
AFFormer-Base, MiT-B0, and MiT-B1 backbone. It out-
performs SOTA methods by a large margin on the low-light
VSPW dataset. The mIoU increases by 54% and mV C16

increases by 7% with similar model size.

We additionally compare the performance of all mod-
els using the low-light Cityscapes dataset in Table 2. From
the table, we found that EVSNet achieves a mIoU of 57.9,
60.9, 59.6, and 63.2 using the AFFormer-Tiny, AFFormer-
Base, MiT-B0, and MiT-B1 backbone, which also outper-
forms other SOTA models. The mIoU increases by 26%
with similar model size.

Similar gain is observed for NightCity in Table 3. EVS-
Net achieves a mIoU of 53.9 & 55.2 using the MiT-B0 and
MiT-B1 backbone, which shows significant improvement.
The mIoU increases by 1% with only 1/3 model size.
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Normal Light 
Frame

Low-Light Frame GT EVSNet (Ours) CFFMEvent

Figure 5. Qualitative results on low-light VSPW dataset [41]. From left to right: the normal light video frames, low-light video frames, the
ground truth, predictions of EVSNet (ours), and predictions of CFFM [49]. It shows that our model generates more robust and temporal
consistent results, compared to the SOTA method. Best viewed in color.

Table 4. Ablation study of the arrangement of Motion Fusion
Module

Methods mIOU↑ mVC8 ↑ mVC16 ↑
No fusion (CFFM) 19.9 83.0 75.9

Channel 22.5 84.1 76.3
Spatial 21.2 83.7 75.9

Spatial + Channel 24.5 86.3 79.4
Channel & Spatial in parallel 27.3 85.2 80.7

Channel + Spatial (ours) 28.2 87.0 82.1

4.6. Qualitative Results

We visualize segmentation predictions on several video
frames from the low-light VSPW dataset to better evalu-
ate our proposed model, as shown in Figure. 5. We com-
pare the qualitative results of our method with one SOTA
model, CFFM [49] using its default settings. In CFFM’s
predictions, the category ”ground” is mistakenly labeled as
”stone” at the bottom, and ”sky” around the person’s arm is
inaccurately identified as ”tree”, showing its struggle to rec-
ognize the object boundaries. EVSNet generates more ac-
curate boundaries and resolves the temporal inconsistency
issues of existing SOTA approaches, demonstrating the ef-
fectiveness of EVSNet.

4.7. Ablation Study

Design Choices for Motion Fusion Module: In our pro-
posed Motion Fusion (MFM) Module, the Channel Atten-
tion Layer and Spatial Attention Layer can be placed in par-

allel or sequentially. We show the ablation study results of
different arrangements in Table 4 using MiT-B0 backbone
on the low-light VSPW dataset. Note that the no fusion op-
tion is the baseline (CFFM [49]) results without using any
event data. From our observations, both the Channel At-
tention Layer and Spatial Attention Layer are valuable for
the proposed EVSNet. We also found that the sequential
arrangement gives better result than a parallel arrangement.
Further experiments also show that moving the Channel At-
tention Layer ahead is slightly better than having the Spatial
Attention Layer first.

5. Conclusion
In this paper, we propose a novel lightweight event-

guided low-light video semantic framework, EVSNet. In-
spired by Atkinson-Shiffrin memory model [2], we lever-
age event modality to estimate short-term and long-term
motions and further solve the video temporal inconsistency
issue in low-light environments. We validate our frame-
work using 3 large-scale datasets, low-light VSPW, low-
light Cityscapes, and NightCity, and our design demon-
strates significant improvements. Our results highlight the
importance of effectively incorporating event features to
capture motion and structural details.
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