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Abstract

Current cardiac cine magnetic resonance image (cMR)
studies focus on the end diastole (ED) and end systole (ES)
phases, while ignoring the abundant temporal information
in the whole image sequence. This is because whole se-
quence segmentation is currently a tedious process and in-
accurate. Conventional whole sequence segmentation ap-
proaches first estimate the motion field between frames,
which is then used to propagate the mask along the tem-
poral axis. However, the mask propagation results could
be prone to error, especially for the basal and apex slices,
where through-plane motion leads to significant morphol-
ogy and structural change during the cardiac cycle. In-
spired by recent advances in video object segmentation
(VOS), based on spatio-temporal memory (STM) networks,
we propose a continuous STM (CSTM) network for semi-
supervised whole heart and whole sequence cMR segmen-
tation. Our CSTM network takes full advantage of the spa-
tial, scale, temporal and through-plane continuity prior of
the underlying heart anatomy structures, to achieve accu-
rate and fast 4D segmentation. Results of extensive experi-
ments across multiple cMR datasets show that our method
can improve the 4D cMR segmentation performance, espe-
cially for the hard-to-segment regions. Project page is at
https://github.com/DeepTag/CSTM .

1. Introduction

Cardiac cine magnetic resonance (cMR) imaging is the
gold standard for heart function evaluation [1]. Limited by
the slow MR imaging speed, current clinical scan protocols
are 2D-based. As shown in Fig. 1, to cover the whole heart
region, we usually acquire stacks of 2D short-axis image
sequences along the long-axis of the heart. While complete
motion information of the heart is present in the cine se-
quence, current quantitative function assessments of cMR
images, e.g., the stroke volume (SV) and the ejection frac-
tion (EF), just focus on the end diastole (ED) and end sys-
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Figure 1. Cardiac cine magnetic resonance (cMR) images. (a)
and (d) show the long-axis 4 chamber views; (b) and (c) show
the short-axis views at/near (1) basal, (2) middle and (3) apex
region. While (a) and (b) show the images at the end diastole
(ED) phase, (c) and (d) show the images at the end systole (ES)
phase. Through-plane motion of the heart causes in-plane struc-
tural change, which can be observed in (b) and (c), especially for
the basal and apex slices. The red box in (b) and (c) shows the
area of/nearby the heart ventricles. Note that slice position 1 cor-
responds to the left ventricle (LV) and right ventricle (RV) at ED,
but to the left atrium (LA) and right atrium (RA) at ES; slice posi-
tion 3 has an intersection with the LV apex at ED, but not at ES.

tole (ES) phases, which could lead to potential inaccurate
heart disease diagnosis and less effective treatment [38].
Failure to analyze the complete image sequence is due in
large part to the lack of reliable and efficient methods for
whole sequence segmentation [3, 22]. Conventional whole
sequence cMR segmentation relies on a two-step approach:
in-plane heart motion between frames is first estimated [42],
and then is used to propagate the 2D segmentation mask
through the cardiac cycle [33, 43]. While intuitive and sim-
ple, mask propagation results from this approach are prone
to error, especially for the basal and apex slices, where
through-plane motion of the heart leads to significant in-
plane morphology and structural changes over time, as can
be observed in Fig. 1 (b) and (c). Recent single-frame seg-
mentation models based on deep convolutional neural net-
works [31] and vision transformers [15] may also fail to
properly segment the basal and apex regions [7]. One rea-
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son leading to such failure is that both training and infer-
ence of those models are typically based on a single frame,
without explicitly using the temporal coherence in the im-
age sequence.

More recently, the task of mask propagation in an video
has been formulated as a semi-supervised video object seg-
mentation (VOS) problem [30, 48]. The idea of a spatio-
temporal memory (STM) network [28] has greatly ad-
vanced VOS performance for natural scenes. The success of
STM lies in fully exploiting existing and intermediate seg-
mentation results with corresponding frames, the memory,
in an video, and the dense matching between the query,
the current frame to be segmented, and the memory, by
using the attention mechanism [35]. Following this idea,
a series of methods have been developed to improve the
dense matching accuracy between query and memory [13],
or to construct a more efficient memory [11]. For medical
image segmentation, recently introduced interactive meth-
ods [25] formulate the mask propagation process from an
annotated slice to remaining slices as being the same as a
VOS task [47]. Although memory-based networks improve
the mask propagation performance during interactive med-
ical image segmentation, no corresponding mask propaga-
tion methods have been proposed, which are dedicated to
volumetric images.

This work is dedicated to the semi-supervised 4D car-
diac cine MRI VOS problem. We assume that the seg-
mentation mask of the first frame (typically ED phase) in
the middle wall region exists, and we design a continuous
spatio-temporal memory (CSTM) network to propagate the
mask to remaining frames and slices, so that we can obtain
whole heart and whole sequence cMR segmentation. We
are inspired by the 4D spatio-temporal continuity of the un-
derlying heart anatomical structures in the image sequences
to develop our CSTM network, which takes full advantage
of the spatial, scale, temporal and through-plane continu-
ity of an image volume over time, to achieve accurate, fast,
whole heart and whole sequence cMR segmentation. Our
main contributions are summarized as following: (1) We
proposed patch-level matching to filter out noisy memory
matching and to efficiently use multi-level memory fea-
tures. (2) We proposed 4D inference strategy which greatly
benefits the 4D cMR segmentation. (3) We performed ex-
tensive experiments on three cMR datasets to validate the
efficacy of our method.

2. Related Work

2.1. Cardiac Cine MRI and Its Segmentation

Although MR imaging can directly provide motion in-
formation on the beating heart by cine imaging, its inher-
ently slow imaging speed makes current clinical cMR scan
protocols 2D-based. By gradually shifting the cine imag-

ing slice position from the apex to the base of the heart,
we obtain the whole heart dynamic imaging data, in the
form of a stack of 2D cMR image sequences. Deep con-
volutional neural networks [20, 21, 31] and attention-based
vision transformer networks [14, 15, 46] have been broadly
applied to the automatic segmentation of cMR images. Sev-
eral benchmarks, e.g., ACDC [4], MnM [7], and MnM-
2 [26], have greatly boosted the associated work. How-
ever, most previous cMR segmentation models are based
on a single frame at a given slice, without the ability to ex-
ploit temporal coherence between frames, which leads to
inaccurate segmentation of the basal and apex slices.

Conventional whole sequence cMR segmentation ap-
proaches rely on in-plane motion estimation of the moving
heart [23,33,43]. However, the through-plane motion of the
heart cannot be accounted into the in-plane motion estimate
alone. Thus, erroneous mask propagation results are often
found in basal and apex regions, where through-plane mo-
tion significantly changes the in-plane heart structures seen
in the fixed imaging plane over time. The mask propaga-
tion between slices along the long axis (z-axis) is challeng-
ing, because of the large background variation, which leads
to inaccurate deformation field estimation. Therefore, it is
common in conventional approaches that all z-axis slices
at the starting time point have been segmented to achieve
whole heart and whole sequence segmentation. We utilize
not only the temporal coherence in an image sequence, but
also the spatial coherence of the underlying heart, which
spans the full 3D space, to achieve better whole heart and
whole sequence cMR segmentation, while only a single ini-
tial slice segmentation is required.

2.2. Memory-Based Video Object Segmentation

While there are various approaches for video object seg-
mentation (VOS) [30, 48], we focus on a semi-supervised
one. Object appearances changing over time, occlusions,
similar surrounding distractors, and imaging noise make ac-
curate mask propagation in a video challenging. Early VOS
methods were based on online propagation [18, 24, 29], ob-
ject detection [2,6,9], and hybrid networks [27,39]. Spatio-
temporal memory (STM) network [28] is a pioneering work
which has greatly advanced VOS performance. Follow-
ing this work, new methods have been developed to obtain
more accurate matching between the query and the mem-
ory [10,13,34,36,45], and to construct more efficient mem-
ory [11]. For multi-object VOS, multi-object association is
achieved through an identification mechanism [40, 41]. Re-
cently, the vision transformer (ViT) network has been used
to jointly extract features from query and memory frames
and to model the interaction between query-memory fea-
tures, without explicit query-memory matching [37, 44].
To train such ViTs for VOS, large scale pretraining, e.g.,
MAE [16], is necessary. Despite achieving high mask
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Figure 2. Architecture of CSTM. Both key and value encoders are based on ResNet. The key encoder takes a query/memory frame as input
and outputs multi-scale query/memory key features. The value encoder inputs a memory frame with the corresponding segmentation mask
and outputs multi-scale value features. We perform patch-level memory matching (PLMM) at scale 3 and 4 to read out memory values,
which are fed into the decoder to output the segmentation mask of the query frame.

propagation accuracy, the inference speed of those methods
is relatively slow, because of the quadratic computational
complexity of self-attention in ViTs.

Memory-based VOS has been applied to interactive
medical image segmentation [25, 47]. In a volumetric im-
age, a center slice of an organ is first segmented, and
the mask is then propagated bi-directionally to remaining
slices, given that the in-plane organ appearance is similar
to each other and changes slowly across slices. However,
no mask propagation method has been proposed to be fully
adaptive to properties of dynamic volumetric medical im-
ages. Therefore, we designed a novel mask propagation
method, accounting for the 4D continuity in cMR image
sequences, to achieve accurate and efficient segmentation.

3. Methods
The architecture of CSTM is shown in Fig. 2. The de-

sign of CSTM is based on STCN [13], which consists of
a key encoder, a value encoder and a mask decoder. The
key encoder is a Siamese structure [5], which is shared by
the query and memory frames. Thus, the key encoder can
map the query frame and memory frames into the same key
feature space, where correspondence can be easily estab-
lished by comparing the affinity scores. Formally, given
a query frame and T memory frames, the key encoder
maps the images into the following key features: query
key q ∈ RCk×HW and memory key k ∈ RCk×THW .
Differently from STCN, we design a patch-level memory
matching (PLMM) module to determine the query-memory
matching weights1 w ∈ RTHW×HW . The value encoder

1As we will show next, the matching weight matrix for query-memory
patches takes a different form.

(a) Query (b) Memory 1 (c) Memory 2 (d) Pixel-level affinity map (e) Patch-level affinity map

Figure 3. An illustration of patch-level memory matching
(PLMM). We first divide an image or feature map into patches,
then we match each query patch in (a) with top-K memory patches
in (b) and (c). Finally, we perform dense pixel-level matching be-
tween the query patch and the top-K memory patches. In (d), we
show the pixel-level affinity map of the query pixel in (a) with
memory 2 in (c). In (e), we show the patch-level affinity map of
the query patch in (a) with memory 2 in (c). PLMM can efficiently
filter out noisy matches, e.g., the dashed line between the left ven-
tricle area (purple) and the stomach area (gray), by leveraging the
local spatial continuity prior in an image.

encodes memory frames and their corresponding segmenta-
tion masks as memory values: v ∈ RCv×THW . With the
query-memory matching weights, we can read out memory
values: vro = vw, where vro ∈ RCv×HW . The retrieved
memory values vro are then fed into the mask decoder to
predict the segmentation mask of the query frame. We per-
form query-memory matching and memory value read out
at both the coarse and fine scales (scale 3 and 4), which is
another difference from STCN. Below, we give details of
CSTM.

3.1. Patch-Level Memory Matching

Our patch-level memory matching (PLMM) module
makes use of the local spatial continuity in an image to
efficiently filter out noisy query-memory matches. Pre-
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vious methods perform dense query-memory matching at
pixel level, which could result in false matching because
of noise in the key feature maps. For cMR images, due to
the lack of image contrast, the key feature noise could be
even more worse compared with natural images. For ex-
ample, as shown in Fig. 3, pixels of the left ventricle area
(purple) in the query frame are often matched with pixels
of the stomach area (gray) in the memory frame, because of
their similar appearance. However, we can easily observe
that a local image patch often clusters with pixels of the
same semantic region, i.e., the local spatial continuity prior
in an image. Therefore, we first perform patch-level query-
memory matching to filter out noisy memory patches, then
we perform pixel-level matching within the matched query
and memory patches. In this way, we can not only estab-
lish robust query-memory matching, but also greatly reduce
the computational complexity of matching, as shown in the
Supplementary Material.

Formally, we first divide the key feature maps and
memory value maps into overlapping patches: q ∈
RCk×NHpWp , k ∈ RCk×TNHpWp , v ∈ RCv×TNHpWp ,
where N is the total number of patches generated in a key
feature or memory value map, Hp and Wp are the height
and width of the feature patch, respectively. For simplicity,
we set Hp = Wp = P . To ensure each pixel can be lo-
cated in the center of a patch, we set the overlapping size as
P/2. In our implementation, we use the unfold operation
in PyTorch to finish this patch dividing process.

Then, we compute the patch-level affinity scores:

Apatch = d(qpatch,kpatch), (1)

where qpatch ∈ RN×CkHpWp and kpatch ∈ RTN×CkHpWp

are the flattened query and key patches, d(·, ·) is the l2 dis-
tance following [13], and A ∈ RN×TN . With Apatch,
we can search the top-K matched K memory patches for
each query patch: ktopk

patch = k[topk−id], where ktopk
patch ∈

RN×CkKHpWp , topk−id is a mapping which selects out
the top-K memory patches from the TN memory patches
for each query patch. In the same way, we can select out
the corresponding top-K matched memory value patches:
vtopk
patch = v[topk−id], where vtopk

patch ∈ RN×CvKHpWp . As
shown in Fig. 3, the top-K filtering can eliminate false patch
matching (gray dashed line) with the help of a local spatial
continuity prior.

Next, we compute the pixel-level query-memory match-
ing weights within the matched query-memory patches, in
the form of softmax:

wpatch[i, j] =
exp(d(qpatch[i],k

topk
patch[j]))∑

j exp(d(qpatch[i],k
topk
patch[j]))

, (2)

where d(·, ·) is the l2 distance, wpatch ∈ RNHpWp×KHpWp ,
i ∈ [1, HpWp], j ∈ [1,KHpWp]. We show an exam-
ple in Fig. 3. For a query pixel (white circle) in the query

Query Memory

Query Memory

(b) scale s-1    

(a) scale s         

Figure 4. Multi-scale memory matching by leveraging the scale
continuity prior in a feature pyramid. The feature map size at scale
s is 1/4 of that at scale s−1. We set the patch size at scale s−1 as
4× of that at scale s. After performing patch matching at scale s,
we directly copy the topk−id to scale s− 1. The scale continuity
prior can ensure the patch matching accuracy at the coarser scale
s− 1 by passing the matching results across scales.

patch, the pixel-level dense matching in Eq. (2) can deter-
mine the matching weights with pixels (white circles) in the
top-4 matched memory patches. Although the top-K filter-
ing in the patch matching process is not differentiable, the
softmax operation in Eq. (2) is differentiable. Thus, by
training the CSTM network, it can learn to assign proper
matching weights (different depth of green lines) in wpatch.
With wpatch and vtopk

patch, we read out the memory values2:

vro, patch = vtopk
patchwpatch, (3)

where vro, patch ∈ RCv×NHpWp .
Lastly, we use the fold operation to combine the array

of vro, patch into a memory value map:

vro = fold(vro, patch), (4)

where vro ∈ RCv×HW . The overlapped areas in vro, patch

are averaged, in order to alleviate the blocking effect in the
final output of vro.

3.2. Multi-Scale Memory Matching

We perform memory matching at both low and high res-
olution scales. Although accurate matching can be achieved
at the coarse scale with higher level semantic features,
fine-grained features within the high resolution scale can
result in more accurate segmentation masks [32]. The
prohibitively heavy computation for dense self-attention
matching at the fine scale prevents multi-scale memory
matching in previous work [13, 28]. In addition to the
PLMM design, we leverage the scale continuity prior within
a feature pyramid to achieve accurate and fast multi-scale
memory matching.

2In practice, we properly permute the tensors to calculate the memory
readout values; however, it takes the form of the tensor product shown in
Eq. (3).
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Figure 5. An illustration of the inference strategy of CSTM. The annotated frame is shown in the purple box (tz0 = 0), in which red is the
LV, green is the myocardium wall (Myo), and blue is the RV. We propagate the mask first along the temporal t-axis (blue line); then along
the z-axis (green and yellow lines). For each query frame tz = τ (red box) in the basal or middle region, we use the memory at tz0 = 0
and tz−1 = τ for spatio-temporal matching. For each query frame tz = τ in the apex region, we use the memory at tz0 = 0, tz+1 = τ
and tz = τ − 1, for spatio-temporal matching.

As shown in Fig. 4, the feature map size at scale s is 1/4
of that at scale s − 1. We set the patch size at scale s − 1
as 4× of that at scale s: H ′

p = W ′
p = 2P . We first per-

form patch matching at scale s, then we directly assign the
topk−id to scale s− 1 to match the query-memory patches.
At each scale, since the local spatial continuity prior holds,
this direct crossing scale matching results passing should
be guaranteed accurate. After we match the patches at scale
s−1, we compute the pixel-level matching weights and read
out the memory values in the same manner as at scale s.

Our method is different from the top-K guided memory
matching method in [32]. In their method, dense memory
matching is first performed at the coarse scale; then, the top-
K matching guidance for each pixel is mapped to a finer
scale by using the scale continuity. The dense matching
at the coarse scale can result in false matching because of
noisy features, which will be propagated to the finer scale.
We believe this why their model tends to converge to a sub-
optimum without the dropout layer at the finer scale. In
contrast, we never observe the sub-optimal convergence re-
sults with our multi-scale memory matching model.

3.3. 4D Inference Strategy

Considering the 4D nature of cMR sequences, the in-
ference of CSTM is different from previous memory-based
VOS models operating on natural scene videos. This is be-
cause we can make better use of the temporal and through-
plane continuity prior in 4D cMR sequences to reduce com-

putation, while maintaining the mask propagation accuracy.

As shown in Fig. 5, through-plane motion of the heart
near the ES phase (shortening along the long axis) can cause
in-plane content change for both basal and apex regions.
For such regions, if we just propagate the mask along the
temporal axis, the spatio-temporal continuity prior will be
broken at some frames. However, for the middle region
slices, the content change caused by through-plane heart
motion during a cardiac cycle can be ignored. Therefore,
we first propagate the mask along the temporal t-axis (blue
line) within the middle slice 2D cMR sequence. We use
the first frame and the previous frame, if available, as the
memory (Tmax = 2). Then at each phase, we propagate the
mask along the z-axis (green and yellow lines). Although
breath-holding inconsistency during 2D cine MR imaging
can cause in-plane misalignment of the heart region [8], the
spatial continuity along the z-axis at each cardiac phase,
i.e., through-plane continuity, always holds. In this way, we
can make full use of the spatio-temporal continuity in the
4D cMR sequence for accurate query-memory matching.

During mask propagation, for the basal and middle re-
gions, we always take the memory at tz0 = 0 and tz−1 = τ
into the memory bank (Tmax = 2); for the apex region,
we always take the memory at tz0 = 0, tz+1 = τ , and
tz = τ − 1, if available, into the memory bank (Tmax = 3).
We first perform multi-scale patch-level memory matching
between the query frame (tz = τ ) and the memory frames,
to retrieve the top-K matched memory patches for each
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Method Dice ↑ HD (mm) ↓
LV Myo RV Avg LV Myo RV Avg

Basal
STM 0.944 0.899 0.929 0.924 1.349 2.006 3.250 2.201

HMMN 0.941 0.892 0.930 0.921 1.497 2.267 2.988 2.251
STCN 0.940 0.897 0.910 0.916 1.476 2.019 3.475 2.323
XMem 0.941 0.895 0.930 0.922 1.385 2.057 3.211 2.218
Ours 0.950 0.905 0.938 0.931 1.249 1.876 2.836 1.987

Middle
STM 0.951 0.906 0.910 0.923 1.415 1.736 2.552 1.901

HMMN 0.953 0.907 0.914 0.924 1.388 1.653 2.476 1.839
STCN 0.956 0.914 0.923 0.931 1.212 1.522 2.101 1.612
XMem 0.954 0.910 0.922 0.929 1.210 1.651 2.077 1.646
Ours 0.956 0.916 0.924 0.932 1.172 1.508 1.926 1.535

Apex
STM 0.866 0.813 0.836 0.838 2.685 3.340 3.452 3.159

HMMN 0.861 0.814 0.835 0.836 2.890 3.590 3.317 3.266
STCN 0.892 0.857 0.872 0.874 2.029 2.306 2.524 2.286
XMem 0.895 0.865 0.891 0.884 1.921 2.144 2.119 2.061
Ours 0.891 0.861 0.875 0.876 2.005 2.472 2.391 2.289

Whole Heart
STM 0.921 0.873 0.892 0.895 1.816 2.360 3.085 2.420

HMMN 0.918 0.871 0.893 0.894 1.925 2.503 2.927 2.452
STCN 0.929 0.889 0.902 0.907 1.572 1.949 2.700 2.074
XMem 0.930 0.890 0.914 0.911 1.506 1.951 2.469 1.975
Ours 0.932 0.894 0.913 0.913 1.475 1.952 2.384 1.937

Table 1. Comparisons between different 4D cMR segmentation methods on ACDC test set. We report the segmentation results at the basal,
middle, apex and whole heart level, respectively.

query patch. Then, for each pixel in a query patch, we per-
form pixel-level dense matching and read out the memory
values with the computed matching weights.

3.4. Implementation Details

Networks. Following previous work [11, 13], we imple-
mented the key encoder and value encoder with ResNet-50
and ResNet-18 [17], respectively. We removed the classi-
fication head and the last convolutional layer (conv5−x)
in each ResNet. Thus, the coarsest scale of the resulting
features is 4 (stride=16). Since we used multi-scale mem-
ory matching, to reduce computational complexity, we set
Ck = 32 for both scale 3 and scale 4; Cv = 256 for scale 3
and Cv = 512 for scale 4. The decoder in CSTM is close to
that of STCN [13]. It has 3 residual connected layers with
2× upsampling and 1 convolutional layer. For each scale in
scales 3 and 4, the memory read-out values are first concate-
nated with query key features along the channel dimension,
and then fed into the corresponding layer in the decoder.
The query key features at scale 2 are directly fed into the
decoder, using skip-connections. The last layer of the de-
coder predicts a segmentation mask with stride 4, which is

upsampled to the original image resolution, using 4× bilin-
ear interpolation.

Training and Testing. We curated a large 4D cMR
dataset from three public 4D cMR datasets: ACDC [4],
MnM [7], and MnM-2 [26]. Each 4D cMR set in these
datasets only has mask annotations on the ED and ES
phases. We trained and tested CSTM based on these
sparsely annotated data. For each training iteration, we
sampled three frames along the temporal axis (ED-ES-ED)
or three spatially ordered slices along the z-axis as a training
sample. We predicted the mask of the second frame with the
first frame taken as the memory. The mask prediction, along
with the first frame, will be used as the memory to predict
the mask of the third frame. The maximum spatial sampling
distance along the z-axis was set as 5. During patch-level
memory matching, we set the patch size P = 6, and K = 4
for top-K patch matching. We used bootstrapped cross en-
tropy loss following [12, 13]. During inference, an A100
GPU was used with full floating point precision, for infer-
ence efficiency comparison.
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Method Dice ↑ HD (mm) ↓
LV Myo RV Avg LV Myo RV Avg

Basal
STM 0.923 0.886 0.942 0.917 1.894 2.405 1.901 2.067

HMMN 0.919 0.886 0.939 0.915 2.059 2.397 1.903 2.120
STCN 0.883 0.856 0.918 0.886 2.698 2.749 2.381 2.609
XMem 0.905 0.867 0.927 0.900 2.169 2.461 2.116 2.249
Ours 0.923 0.889 0.945 0.919 1.814 2.127 1.736 1.892

Middle
STM 0.865 0.800 0.835 0.834 3.222 3.420 4.157 3.600

HMMN 0.865 0.802 0.834 0.834 3.231 3.369 4.160 3.587
STCN 0.871 0.808 0.842 0.840 3.110 3.246 4.073 3.476
XMem 0.852 0.773 0.822 0.816 3.562 4.275 4.506 4.114
Ours 0.873 0.815 0.844 0.844 3.046 3.179 3.924 3.383

Apex
STM 0.868 0.816 0.878 0.854 2.585 3.088 2.516 2.730

HMMN 0.868 0.824 0.872 0.855 2.514 2.873 2.578 2.655
STCN 0.873 0.820 0.871 0.855 2.475 2.823 2.563 2.620
XMem 0.853 0.804 0.874 0.844 2.773 3.071 2.551 2.798
Ours 0.875 0.830 0.881 0.862 2.320 2.806 2.423 2.516

Whole Heart
STM 0.885 0.834 0.885 0.868 2.567 2.971 2.858 2.799

HMMN 0.884 0.837 0.882 0.868 2.601 2.880 2.880 2.787
STCN 0.875 0.828 0.877 0.860 2.761 2.939 3.005 2.902
XMem 0.870 0.815 0.874 0.853 2.835 3.269 3.058 3.054
Ours 0.890 0.845 0.890 0.875 2.394 2.704 2.694 2.597

Table 2. Comparisons between different 4D cMR segmentation methods on MnM validation and test sets. We report the segmentation
results at the basal, middle, apex and whole heart level, respectively.

Method STM HMMN STCN XMem Ours
FPS ↑ 45.7 16.0 62.5 56.1 44.9

Table 3. Running time comparisons between different 4D cMR
segmentation methods.

4. Experiments

The experiments were conducted on the ACDC testing
set and the MnM validation and testing sets. We com-
pared our method with recent memory-based VOS methods:
STM [28], HMMN [32], STCN [13], and XMem [11]. We
trained these baseline models from scratch, following their
original hyper-parameter settings. To evaluate the segmen-
tation accuracy, we computed the Dice score [20] and the
95th quantile Hausdorff distance (HD) score [19] for the left
ventricle (LV), myocardium wall (Myo), and right ventricle
(RV), which are commonly used in medical image segmen-
tation evaluation. To measure the inference efficiency, we
use the frames per second (FPS) metric.

4.1. Evaluation Results

ACDC. The results on ACDC is shown in Table 1 and
Fig. 6. Our method outperforms all baseline methods on
average. More specifically, it mainly improves the cMR
segmentation performance for the basal and middle regions
while it performs the second best for the apex regions. The
through-plane motion affects the basal region more than
the apex region. Thus, it is more challenging to segment
the basal region. The results demonstrate that our method
can improve the segmentation performance on the hard-to-
segment instances near the base.

MnM. The results on MnM are shown in Table 2 and
Fig. 6. Our method outperforms all baseline methods on
average. For this dataset, it improves the cMR segmen-
tation performance for all the basal, middle and apex re-
gions. We note that, the MnM dataset is a highly hetero-
geneous cMR dataset, which consists of multi-center and
multi-vendor datasets. In the test and validation dataset,
it contains out-of-distribution subdatasets. Therefore, it is
more challenging to segment the MnM dataset than the
single-center ACDC dataset. This is why the segmentation
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(a) cMR         (b) STM          (c) HMMN        (d) STCN       (e) XMem         (f) Ours           (g) GT

Figure 6. Qualitative comparison between different methods. The
first two rows show the results on ACDC. The last two rows show
the results on MnM.

Scale Dice ↑ HD (mm) ↓ FPS ↑
3 0.905 2.197 61.9
4 0.909 2.003 61.5

3, 4 0.913 1.937 44.9

Table 4. Ablation study of the feature scales used for query-
memory matching.

K Dice ↑ HD (mm) ↓ FPS ↑
1 0.907 2.080 45.5
2 0.911 1.954 45.2
4 0.913 1.937 44.9
6 0.913 1.945 42.1

Table 5. Ablation on the top-K query-memory patch matching.

performance drops for all the methods. While STCN and
XMem perform better than STM and HMMN on the ACDC
dataset, they perform worse on the more challenging MnM
dataset. Our method, however, performs the best for both of
the two datasets.

Running Time. During inference, we resized each in-
put 2D image to ensure the shorter side has 384 pixels.
Inference efficiency comparison is shown in Table 3. Our
method ensures FPS > 40, which satisfies real-time infer-
ence efficiency requirement in clinical applications.

4.2. Ablation Studies

All of our ablation studies were conducted on the ACDC
dataset as shown in the following: (1) Query-Memory
Matching Scales. In Table 4, we show that incorporation of
both the coarse and fine scale query-memory matching can
improve the segmentation performance. (2) Top-K Patch
Matching. In Table 5, we show that the Top-K number

P Dice ↑ HD (mm) ↓ FPS ↑
2 0.910 2.019 51.6
4 0.912 1.943 47.3
6 0.913 1.937 44.9
8 0.913 1.971 42.2

Table 6. Ablation on patch size used for query-memory matching.

Continuity Dice ↑ HD (mm) ↓ FPS ↑
Spatial 0.910 2.027 44.2

Temporal 0.908 2.038 45.4
Both 0.913 1.937 44.9

Table 7. Ablation on spatial-temporal continuity for query-
memory matching.

Tmax Dice ↑ HD (mm) ↓ FPS ↑
2 0.912 1.945 45.8
3 0.913 1.937 44.9
5 0.914 1.932 43.5
10 0.915 1.928 40.9
15 0.915 1.926 34.1

Table 8. Ablation on memory frames used for apex regions.

can affect the segmentation performance of our method. A
smaller K would reduce useful memory information, while
a larger K could introduce noise which leads to inaccu-
rate query-memory matching. (3) Patch Size. In Table 6,
we show the effects of patch size on the segmentation per-
formance of our method. Either a too small or too large
patch cannot make use of the local spatial continuity and
would introduce noisy query-memory matching results. (4)
Spatial-Temporal Continuity. In our 4D inference strat-
egy, we use both the spatial and temporal continuity to en-
sure accurate cMR segmentation. From Table 7, only using
the temporal continuity, as in natural scene VOS applica-
tions, cannot obtain the optimal 4D cMR segmentation re-
sults. (5) Maximum Memory Frames for Apex Regions.
From Table 8, the apex region is small, which needs more
memory information to accurately segment it.

5. Conclusion
In this work, we made full use of the spatial, scale,

temporal and through-plane continuity prior in 4D cMR
sequences, to ensure accurate whole heart and whole se-
quence segmentation. We performed extensive experiments
and demonstrated that our method could improve the mask
propagation performance on challenging-to-segment heart
regions and out-of-distribution datasets.
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Säckinger, and Roopak Shah. Signature verification using
a” siamese” time delay neural network. Advances in neural
information processing systems, 6, 1993. 3

[6] Sergi Caelles, Kevis-Kokitsi Maninis, Jordi Pont-Tuset,
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