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Abstract

Recent advances in vision-language models have com-
bined contrastive approaches with generative methods to
achieve state-of-the-art (SOTA) on downstream inference
tasks like zero-shot image classification. However, a per-
sistent issue of these models for image classification is their
out-of-distribution (OOD) generalization capabilities. We
first show that when an OOD datapoint is misclassified, the
correct class can be typically found in the Top-K predicted
classes. In order to steer the model prediction toward the
correct class within the top predicted classes, we propose
the Image-Caption Encoding (ICE) method, a straightfor-
ward approach that directly enforces consistency between
the image-conditioned and caption-conditioned predictions
at evaluation time only. Intuitively, we take advantage of
unique properties of the generated captions to guide our
local search for the correct class label within the Top-K
predicted classes. We show that our method can be eas-
ily combined with other SOTA methods to enhance Top-1
OOD accuracies by 0.5% on average and up to 3% on chal-
lenging datasets. Our code: https://github.com/
Chris210634/ice

1. Introduction

There has been rapid progress in zero-shot image clas-
sification over the past two years, thanks to advancements
in vision-language (VL) pre-training such as CLIP, ALIGN,
and BLIP [9,13,20]. At a high level, these models use a pair
of encoders that project visual and textual inputs into a joint
latent embedding space. As described in the CLIP frame-
work [20], zero-shot classification can be reformulated as
an image-to-text retrieval problem, where the class name
closest to the image in embedding space is predicted as the
label. However, state-of-the-art (SOTA) zero-shot classifi-
cation lags behind in-distribution supervised fine-tuning on

*Equal contribution.
†Based on work done at MIT Lincoln Laboratory.

Figure 1. A demonstration for how our ICE method can be used to
reclassify correctly. In these examples, ICE is applied directly to a
frozen pre-trained CLIP-based model for zero-shot classification.
Using the contexts given from the generated captions, ICE is able
to successfully influence the pretrained model into predicting the
correct classes.

all benchmarks. In many applications, in-distribution data
is not available during training, so fine-tuning on out-of-
distribution (OOD) source data in a way that generalizes
to unseen data and labels remains a challenging problem.
Prior works in this area follow two general directions: (1)
Few-shot OOD methods such as CoOp [34], CoCoOp [33],
and MaPLe [10] fine-tune the VL model on generic few-
shot source data (e.g. ImageNet). The fine-tuning process
is constrained to a carefully selected subset of parameters to
ensure generalization to target datasets. (2) Zero-shot meth-
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ods, such as [16] and manual prompt ensembling [20], focus
on refining the zero-shot prediction without additional fine-
tuning. These methods do not require additional data, but
they typically either require a large closed-source LLM or
human-engineered prompts.

Our goal is improve zero-shot classification by lever-
aging captioners, which is previously under-explored. To-
wards this goal, we first observe in Figure 2a that the Top-
K accuracy (the percentage of samples where the correct
label is within the K classes with highest predicted scores,
K > 1) is consistently higher than the Top-1 accuracy. The
reason is that the Top-K predicted classes form a strict su-
perset of the Top-1 predicted classes when K > 1, and thus
characterize a wider range of potentially correct classes. We
observe from Figure 2a that when an image is misclassified,
the correct class can usually be found within the Top-5 pre-
dicted classes. Thus, our motivating question is: in order
to improve Top-1 accuracy, how can we steer the model
prediction toward the correct prediction within the Top-K
predicted classes using generated captions?

Before we address this question, we first note that cur-
rent SOTA zero-shot image classification methods perform
a nearest-neighbor search between image and text CLIP em-
beddings [20]. Recently, many works such as CoCa [31],
BLIP-2 [12] and LLaVA [14] extend CLIP with an addi-
tional text decoder. This text decoder is trained to output a
description of the image by cross-attending to all image to-
kens outputted by the image encoder. Consequently, the de-
coder output captures fine-grained spatial information that
may be absent from the image cls token. Furthermore, the
caption verbalizes the content of the image as discrete text
tokens, which can oftentimes be used to directly infer the
image label. These advantages are illustrated in Figure 2b,
where we use a spider plot to compare the Top-1 zero-shot
accuracies achieved by CLIP image embeddings, CoCa im-
age embeddings, and CoCa caption embeddings, across 15
datasets. We notice that while the caption-only CoCa under-
performs compared to standard CoCa, it is still competitive
and even surpasses CLIP on many datasets. This suggests
that the captions likely contain enough information about
the image to supplement the standard zero-shot prediction.

To leverage this additional information, we propose a
novel zero-shot method called Image-Caption Encoding
(ICE), where we combine the information encoded by both
image embeddings and caption embeddings in order to
make a more informed decision at test time. As illustrated in
Figure 3a, ICE is a zero-shot method with no training com-
ponent and can be easily paired with existing SOTA meth-
ods for improved downstream classification performance.

Although ICE draws inspiration from traditional ensem-
bling techniques, there are several key differences. First,
ICE leverages the predictions obtained from a single model
rather than those from several different models. Second, in-

(a) A visualization of the Top-5 accuracies on misclassified Top-1 dat-
apoints in each test dataset. Recall that correct Top-5 classifications
form a strict superset over the correct Top-1 classifications. We ob-
serve that across all datasets, the true correct class can be found within
the Top-5 predicted classes for most misclassified datapoints.

(b) A visualization of Top-1 accuracies between CLIP, CoCa using im-
age embeddings only, and CoCa using caption embeddings only. We
observe that while caption embeddings generally underperform com-
pared to standard CoCa, they still retain competitive performance. We
include more details on datasets and experiments in Section 4.

Figure 2. Quantitative motivation and results visualization.

stead of aggregating predictions over all classes, we only
consider the Top-K image predicted classes. Third, we
incorporate a lightweight confidence selection mechanism
that sets the weight on the caption prediction dynamically.
Finally and most importantly, we exploit specific properties
induced within captions that are not present in the image
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(a) An overview of our Image-Caption Encoding (ICE) method. Here,
we query a captioner and obtain the caption embedding using the text
encoder. We calculate the image and caption probability distributions
over the classes by passing the image embeddings, caption embed-
dings, and class embeddings through the cosine similarity function ✓
and softmax operation. Then, we select the Top-K classes and perform
a weighted sum of the image and caption probabilities. The weight on
the caption prediction � is adaptively selected based on the relative
confidence of the image and caption predictions.

+ =
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text 
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“a photo containing”
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✓

(b) A more detailed look at how our Image-Caption Encoding (ICE)
method works. In practice, instead of using a single caption for ICE,
we use the centroid of � differently-prompted caption embeddings.
Then, using the centroid caption embedding, we adaptively select the
� weight by comparing the standard deviations of the image predic-
tion probabilities and caption prediction probabilities, over the Top-5
classes. The final ICE scores are then a �-weighted sum between the
two probability distributions.

Figure 3. Illustrations of our ICE method.

embeddings for standard zero-shot classification. We dis-
cuss these properties in-depth in Section 3.4 and demon-
strate specific examples of their non-trivial impact in Sec-
tion 4.3.

Our contributions are as follows:
1. We extend the zero-shot classification literature by lever-
aging captioners, which is a direction that is previously
under-explored.
2. We propose Image-Caption Encoding (ICE), a novel
zero-shot classification method that utilizes information
from both images and captions to make a decision at
evaluation-time only.
3. We provide experimental results for ICE paired with
several different SOTA baselines across 15 different OOD
datasets. We show consistent improvements of 0.5% on av-
erage and up to 3% on several challenging datasets.
4. We analyze the benefits and drawbacks of using ICE, and
provide ablation studies to analyze the effects of changing
different parameters in our ICE method.

2. Related Works

Multimodal foundational models. Many VL foundational
models have emerged over the past two years, including
CLIP [20], ALIGN [9], BLIP [13], CoCa [31], BLIP-2 [12],
and LLaVA [14]. These models achieve SOTA on VL tasks
by using vast quantities of un-curated image-text data from
the web. CLIP uses an image encoder and a text encoder
to project the two modalities into a joint latent embedding
space. Popular downstream applications include zero or
few-shot classification and image-text retrieval. The more
recent models such as CoCa, BLIP-2 and LLaVA improve
CLIP by additionally training a text decoder to explain the
embedding space with a caption. In the current work, we
leverage this additional captioning capability to improve the
CLIP zero-shot accuracy.
Robust fine-tuning. There is growing interest in fine-
tuning multimodal foundational models on limited training
data such that the resulting model achieves high accuracy
even on domain-shifted data and data with labels not seen
during training. Many modern approaches rely on prompt
tuning and ensembling. CoOp [34] is a seminal work which
treats the prompt preceding the label names as soft learnable
tokens. CoCoOp [33] trains a meta-network to condition the
prompt tokens on the image embedding. MaPLe [10] shows
that learning a conditional visual prompt jointly with textual
prompts improves target accuracy. All three works achieve
impressive results on a diverse set of test datasets despite
only being trained on few-shot ImageNet data. ClipOOD
[24] uses an adaptive margin loss to optimize the visual
encoder only, attaining good results on domain generaliza-
tion benchmarks. Our proposed method ICE is a training-
free approach that can be readily combined with the above
fine-tuning methods to yield higher accuracy on most target
datasets.
Ensembling for robust classification. Ensembling meth-
ods leverage multiple diverse predictions to form a robust
final prediction; many recent works, including ours, focus
on discovering new sources of diversification. WiSE-FT
[29] calculates a weight space ensemble of the fine-tuned
and pre-trained models to increase robustness under distri-
bution shifts in target data, while inference time remains
the same. [27] demonstrate that combining cross-entropy
fine-tuning with stochastic weight averaging improves do-
main generalization. [16] use GPT descriptions to generate
a more diverse set of text prototypes for zero-shot classifi-
cation. [20] use an ensemble of 80 handcrafted prompts to
achieve the same goal. In our paper, while drawing inspi-
ration from ensembling, we introduce the novel use of cap-
tions as a unique source of diversification, an avenue not yet
explored by previous studies. Importantly, our approach is
designed to seamlessly integrate with other zero-shot meth-
ods, as demonstrated in our experimental results. We em-
phasize that, contrary to ensembling methods which use a
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separately trained LLM [16,32], our method uses the CoCa
model [31], which trains a pair of aligned image and text
encoders jointly with a text decoder on the same dataset.
Under this constraint, our method does not use more pre-
training data than baselines.

3. Methodology

3.1. Preliminaries

Consider a dataset D ⇢ I ⇥ T where I is the image do-
main and T is the text domain, and (Ii, Ti) forms a corre-
sponding image-text pair (i.e. Ti is a caption that describes
Ii). In the CLIP framework [20], there are two main archi-
tectural components: an image encoder fI : I ! Rl that
maps images to a shared latent space, and a text encoder
fT : T ! Rl that maps text to the same shared latent space.
Both encoders are pre-trained using a contrastive loss that
pulls corresponding image-text embeddings close together
in latent space, and pushes non-corresponding image-text
embeddings away from each other. In our framework, we
require an additional text decoder, pre-trained using a next-
token-prediction loss, to provide captioning functionality.

In image classification following the CLIP frame-
work [20], for an image vector I and class labels vec-
tor y := [y1, y2, . . . , ym]|, we first feed each class label
through a prompt skeleton to obtain class prompts (e.g.
for class “cat” and a prompt skeleton “A photo of a {}”,
the resulting prompt is “A photo of a cat”). Then, both
the image and class prompt vectors pass through the im-
age and text encoders to obtain latent embeddings eI and ey,
respectively. The predicted class label ŷ is then given by
argmaxi ✓(eI, eyi), i 2 {1, 2, . . . ,m}, where ✓ : Rl ⇥ Rl !
R is the cosine similarity function.

3.2. Image-Caption Encoding

Consider a text decoder f� : P ⇥ I ! T that maps
a prompt p 2 P (e.g. ”a photo of”) and an image I to a
caption c 2 T . We can feed caption c back through the text
encoder to obtain ec := fT (c).

Using the Softmax function [2], we obtain the class prob-
abilities for image I and caption c, respectively, as

SI := Softmax
✓h

✓(eI, ey1), ✓(eI, ey2), . . . , ✓(eI, eym)
i|◆

Sc := Softmax
✓h

✓(ec, ey1), ✓(ec, ey2), . . . , ✓(ec, eym)
i|◆

.

(1)
The indices corresponding to the K classes with highest
image-predicted probability, and the final ICE prediction,
are computed respectively as:

⌦I
K := argmax

J⇢M,|J|=K

X

j2J

SI
j argmax

!2⌦I
K

SI
! + �Sc

! (2)

where M = {1, 2, . . . ,m} and � is a scalar variable. In

essence, the ICE prediction remains anchored within the
primary Top-K classifications as determined by the image
class probabilities. When we incorporate the caption scores
tied to these Top-K predictions, it reshapes the probability
landscape over the initial Top-K image-determined classes.
By selecting the class with the highest probability from this
refined distribution, we aim to align closer with the true
class while retaining the accuracy of previous classifica-
tions. Intuitively, the caption probability distribution should
provide information about the image that is not clear or fully
captured by the image probability distribution, as detailed in
Section 3.4, and their aggregated prediction should provide
a more reasonable downstream prediction. Figures 3a and
3b contain a high-level overview and an in-depth visual in-
terpretation of our method, respectively.
3.3. Additional Modifications

As visualized in Figure 3b, in our experiments, we use
the centroid of a diverse set of captions rather than a sin-
gle caption for increased robustness. That is, for a set
of prompts P 2 P� , we generate a set of correspond-
ing captions C 2 T � , obtain their caption embeddings
eC := {fT (c1), fT (c2), . . . fT (c�)}, and finally, their cen-
troid ec := 1

�

P�
i eci. The centroid ec is then used in place of

c in Equations 1 and 2.
In addition, we dynamically compute the caption scalar

variable � 2 R+ as a function of the standard deviation of
the captions. That is, given some image I and caption c, we
compute � as

� = ⇠
�(Sc

K)

max(||[�(SI
K),�(Sc

K)]||2, ✏)
(3)

where ⇠ is a constant, ✏ is a small constant, SI
K and Sc

K
are the Top-K probabilities for SI and Sc respectively (i.e.
the probabilities whose indices are specified by ⌦I

K), and
� is the standard deviation operator. Intuitively, the stan-
dard deviation of the Top-K highest probabilities of the im-
age and caption distributions correspond to the model con-
fidence about their respective predictions. On one hand,
when the model confidence for the image prediction is high
and the caption confidence is low, then the caption probabil-
ities should not influence the image probabilities as much.
On the other hand, when the image confidence is low but
the caption confidence is high, the caption probabilities
should more heavily influence the image probabilities. In
the event when both image and caption confidences are high
or low, the default weighting would be relatively equal. The
constant ⇠ can specify how much the caption probabilities
should affect the image probabilities overall.
3.4. Caption Properties

In general, the zero-shot accuracy obtained using only
the caption embeddings is significantly (on average about
5 %, see Table 1) lower than the zero-shot accuracy ob-
tained using image embeddings, with the notable exception
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of aircraft fine-grained classification. Caption-only zero-
shot classification is often unreliable, since the caption does
not always correspond to one of the label choices. For ex-
ample, a picture containing a teddy bear on top of a bed
might be captioned as “a picture of a teddy bear”, ignoring
the bed in the background. However, if teddy-bear is not
one of the labels, and the correct label is “bed”, the cap-
tion does not provide useful information for the classifica-
tion problem. For this reason, the optimal hyperparameters
for ICE place a greater emphasis on the prediction from the
image embedding eI . Nonetheless, for the caption embed-
ding to contribute to a higher aggregate accuracy, we only
require that the caption-predicted probabilities Sc

K be not
completely correlated with SI

K . In other words, the caption
sometimes contains extra information that nudges the pre-
diction in the correct direction. We list here a few intuitions
for why using captions can improve overall classification
accuracy:
1. The text decoder cross-attends to all output image tokens
from the vision encoder, while the image prediction only
uses the output cls token. The image token matrix contains
spatial information that may be pertinent to the target task.
Specifically for the CoCa model we use, every other trans-
former layer in the text decoder stack attends to the full spa-
tial grid of output image tokens.
2. The text decoder was pretrained to caption images with
a language-modeling loss. Consequently, it exhibits some
rudimentary reasoning ability based on learning relation-
ships between certain concepts. For example, the text de-
coder has learned that the painting “the starry night” is au-
thored by Vincent van Gogh. This correspondence is learnt
by the weights of the decoder and may be useful for some
classification tasks. In our experiments, we found that the
caption prediction is much better than the image prediction
on aircraft classification. This is likely because the cor-
respondence between fine-grained visual concepts and the
aircraft model name is learned by the text decoder. This
intuition is experimentally confirmed in Table 6 of the Ap-
pendix, where textual cues from the image caption correctly
steer the prediction on 5.9 % of aircraft images.
3. The caption effectively isolates visual concepts; this is
an inherent property of textual data. For example, a caption
that reads “a rough red blanket” effectively isolates the tex-
ture, color and content of the image. In our experiments,
we found that captions on the EuroSAT dataset often iso-
late the land-use information from the geographical infor-
mation, e.g. “a photo of agricultural land in China”. The
caption explicitly separates useful information (agricultural
land) from information that is irrelevant to the classification
problem (China). Consequently, a classifier trained on cap-
tions is less likely to learn domain-specific spurious correla-
tions, especially in the few-shot setting. This intuition is ex-
perimentally confirmed in Table 6 of the Appendix, where

textual cues from the image caption correctly steer the pre-
diction on 3.4 % of satellite images.

We provide concrete examples of these discussed intu-
itions in our empirical analysis in Section 4.3.

4. Experiments

In our experiments in Table 1, we analyze the impact
of combining ICE with different zero-shot (ZS) baselines
across a suite of benchmarks. We show that our method
consistently improves ZS baselines without requiring addi-
tional training. In addition, we analyze several data points
to show how ICE improves over the base method that it is
paired with. All implementation details can be found in Ap-
pendix A. To demonstrate the general applicability of our
ICE method, we also present results using three different re-
cent multimodal models that contain a decoder component:
CoCa [31], BLIP-2 [12], and LLaVA [14]. These results are
included in Table 3. For the CoCa setup, all model compo-
nents are pretrained using the LAION dataset [23], similar
to baselines. We emphasize that the captioner/text decoder
component does not see more data than the contrastively
trained text and image encoders. This is important for fair
comparison with prior work. In the Appendix, we show
that the LAION dataset is not contaminated with the test
images by showing nearest neighbors to select test samples.
BLIP-2 and LLaVA are VLMs instruction-tuned with ad-
ditional supervised image-text data; we included results on
these larger models for readers who might be less familiar
with CoCa.

Datasets. In line with prior work, our datasets are split
into two categories: cross-dataset evaluation and domain
generalization. For cross-dataset generalization, each eval-
uation dataset has mostly non-overlapping classes and un-
related data distributions for zero-shot classification. For
domain generalization, the evaluation datasets are domain-
shifted variations of the ImageNet dataset and share the
same classes as ImageNet. We evaluate our method on 11
cross-dataset generalization datasets covering a wide range
of image recognition tasks. These include two generic
objects datasets, ImageNet [22] and Caltech101 [4]; five
fine-grained datasets, OxfordPets [18], StanfordCars [11],
Flowers102 [17]), Food101 [1], and FGVCAircraft [15];
a scene categorization dataset, SUN397 [30]; an action
recognition dataset, UCF101 [25]; a describable textures
dataset, DTD [3], and a satellite images dataset, EuroSAT
[5]. In addition, we consider four domain generalization
datasets, each applying a different distribution shift to the
source ImageNet dataset. These include an extension of
the ImageNet dataset, ImageNetV2 [21]; a black and white
sketches dataset, ImageNet-Sketch [28], a naturally adver-
sarial dataset, ImageNet-A [8], and a dataset containing dif-
ferent renditions (e.g. cartoons, graffiti, plush objects, etc.)
of the ImageNet classes, ImageNet-R [6].
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4.1. Zero-Shot Classification

Baselines. We consider four existing SOTA methods as
zero-shot classification baselines for ICE: (1) a pre-trained
CoCa model [31] with class embeddings generated using
the prompt “a photo of a {}”, where “{}”is replaced by
the corresponding class (2) the pre-trained model with class
embeddings calculated from the centroids of 80 intermedi-
ate embeddings generated using hand-crafted prompts from
[20] (3) the pre-trained model using large language model
(LLM) generated descriptors from [16] (4) a variation of
the previous baseline, where we take the centroid of each
descriptor embedding for standard zero-shot classification.

Results. In Table 1, we observe that stacking ICE
achieves consistent improvements of around 0.5% on
average across cross-dataset evaluation and domain-
generalization evaluation benchmarks, with improvements
of up to 3% on datasets like FGVCAircraft and EuroSAT.
We emphasize that these ZS accuracy improvements are
consistent across all datasets (Table 1) and three different
pretrained model architectures (CoCa, BLIP-2 and LLaVA
in Table 3).

4.2. Few-Shot Classification

Although our ICE method is a zero-shot method, it can
be trivially extended to the few-shot learning setting by ap-
plying it to the few-shot finetuned model. Accordingly, we
consider SOTA methods where a pre-trained model is fine-
tuned on 16-shot ImageNet training data. Specifically, the
ImageNet training dataset contains 1000 classes with 16
images per class, for a total of 16,000 images in the train
dataset. These few-shot results are included in Table 2.

Baselines. We consider two prompt learning methods,
CoOp [34] and MaPLe [10], and a fine-tuning method
CLIPood [24] as our ICE baselines. We use each method for
few-shot fine-tuning on the CLIP components of the CoCa
[31] architecture, and perform standard zero-shot classifica-
tion by following the CLIP framework [20].

Results. As seen in Table 2, applying ICE to each baseline
provides improvements of 0.5% on average across cross-
dataset generalization evaluation datasets, and smaller im-
provements for the domain generalization datasets. For the
methods such as CLIPood where we do not see improve-
ments in domain generalization on average, we find that ICE
at least maintains the average performance of the classifica-
tion backbone.
4.3. Understanding ICE Improvements

To better understand why ICE improves the base meth-
ods paired with it, we analyze examples in Figure 4 where
ICE correctly reclassifies a previously incorrectly classified
datapoint, where ICE preserves a previously correct classi-
fication, where ICE fails to correctly reclassify a previously

Base ICE
Original prediction: App. Sen. ; ICE prediction: B. Collie

“a photo of a black and white dog”

✗ ✓

✓✓
Original prediction: metal nail ; ICE prediction: metal nail

“a photo of a fruit platter”

Original prediction: tray ; ICE prediction: tray

Original prediction: mag. compass ; ICE prediction: ana. clock

“a photo of rusty nails on a wooden fence”

“a photo of the instrument's dial”

✗

✓

✗

✗

Figure 4. A qualitative analysis on various ways ICE can affect
the downstream classification performance.

incorrect classification, and where ICE accidentally incor-
rectly reclassifies a previously correct classification.

In the first example of Figure 4, we observe that ICE
reclassifies the incorrectly predicted Appenzeller Sennen-
hund class to the correct Border Collie class. One intuition
for why this occurs is that Border Collies most commonly
have black and white fur, whereas Appenzeller Sennenhund
dogs typically have unique tricolor fur coats. Thus, the cap-
tion “a photo of a black and white dog” would correspond
more with the Border Collie purely based on its bicolor fur.
Additional examples of correct ICE reclassifications can be
found in Figure 1.

In the second example, we observe that ICE is able to
successfully preserve an originally correct classification.
Here, since the caption agrees with the image predicted
class, ICE is able to predict the same class as before.

In the third image, ICE fails to correctly reclassify an ini-
tially incorrect prediction. In this case, the original predic-
tion was a tray, which would make sense since this image
can technically be described as a “tray of fruits”. Similarly,
the captions describe the image as “a photo of a fruit plat-
ter”, which can correspond more to a plate or tray than a
strawberry. Thus, the ICE predicted class still matches that
of the original class.

Finally, the fourth image is an example for how ICE can
accidentally incorrectly reclassify an initially correct pre-
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Zero-shot(Image) 75.1 97.6 93.8 92.7 77.3 87.5 36.8 73.6 57.2 58.5 73.4 74.8 67.5 63.5 53.8 87.0 68.0
Zero-shot (Caption) 58.8 85.6 76.3 83.1 63.6 72.7 40.7 54.8 44.0 34.9 60.3 61.6 50.2 50.7 38.7 73.8 53.3
+ ICE (ours) 75.6 97.1 93.8 93.0 78.0 87.7 38.3 74.0 59.3 61.3 74.3 75.7 67.8 64.0 54.4 87.5 68.4

Manual Prompts [20] ICML ’21 75.5 97.1 93.7 92.7 77.5 87.5 37.5 74.0 60.7 60.2 73.8 75.5 67.8 64.7 53.2 88.1 68.4
+ ICE (ours) 75.9 97.1 93.8 93.1 78.7 87.6 39.7 74.1 61.6 61.2 73.9 76.1 68.2 64.7 54.4 88.4 68.9

GPT Centroids [16] ICLR ’23 74.8 97.8 93.3 92.4 75.8 87.4 36.4 73.9 58.8 63.7 73.2 75.3 67.3 63.3 52.6 86.7 67.5
+ ICE (ours) 75.2 97.4 93.0 92.8 76.3 87.7 39.1 74.2 60.2 64.2 73.7 75.9 67.4 63.5 53.5 87.1 67.9

GPT Score Mean [16] ICLR ’23 74.9 97.6 93.7 92.4 76.2 87.3 36.2 73.9 58.9 64.9 73.6 75.5 67.6 63.5 52.8 86.8 67.7
+ ICE (ours) 75.4 97.4 93.5 92.8 77.0 87.6 39.2 74.2 60.2 65.5 73.9 76.1 67.9 63.7 53.4 87.2 68.1

CuPL [19] ICCV ’23 75.6 - 93.0 92.1 77.0 87.1 39.9 74.2 67.1 - 76.0 - - - - - -
+ ICE (ours) 75.9 - 93.0 92.6 78.4 87.2 42.2 74.4 67.4 - 76.1 - - - - - -

Table 1. Comparison with zero-shot baselines on 15 test datasets. We always observe that stacking our ICE method on top of baseline
methods provides consistent improvements. All methods are zero-shot and use CoCa ViT-L/14. The caption zero-shot accuracy is reported
using one caption embedding prompted by “a photo of”. ImageNet is abbreviated INet.

Figure 5. Left: Ablation results on varying ⇠. Comparison between fixed caption weight � and adaptive � using Eq. 3. Middle: Ablation
results on varying caption prompting and number of captions in ensemble (�). � = 3 captions is optimal. Right: Ablation results on
varying K. K = 4 is optimal and clearly superior than bypassing Top-K selection step (denoted as max K in bar plot).

diction. Here, the correct class is a magnetic compass, as
evident by the blue text written on the instrument. While
the caption “a photo of the instrument’s dial” technically
describes the image, without additional visual context, it is
easy to believe that the caption is describing a clock rather
than a magnetic compass since dials tend to be associated
with clocks. Due to this ambiguity, ICE was able to con-
vince the initial predicted class to reclassify to the runner-up
class of analog clock. This example highlights the impor-
tance of why we need to consider both the image and cap-
tion information for making the most informed decisions.
5. Ablation Studies

A comprehensive ablation study on the parameters of
ICE is presented in Figure 5. First, we evaluate the con-
tribution of the adaptive � mechanism proposed in Eq. 3 on
the left of the figure. On ImageNet and cars, the zero-shot
accuracy of the adaptive � is clearly superior to the fixed �
for varying values of ⇠ (in the adaptive case) and � (in the
fixed case). In the middle bar plot, we examine the contri-
bution of the Top-K selection procedure outlined in Eq. 2.
We compare multiple values of K (where K = 1 is equiva-

lent to ignoring caption embeddings, and “max K” denotes
score averaging over all classes without Top-K selection).
Values of K around K = 4 are clearly superior to both
ignoring caption embeddings and score averaging without
Top-K selection. Finally, in the bar plot on the right, we
examine the contribution of ensembling multiple captions.
Using � = 3 captions is approximately optimal. Note that
the 7 individual captions exhibit high variance in zero-shot
accuracy (under the ICE framework); this variance in per-
formance is greatly reduced by ensembling a small number
of captions.

6. Limitations

While our results show consistent improvements when
evaluating on several different baseline methods across a
diverse collection of datasets, we note several limitations
of our method. First, as elaborated in Section 3.4, ICE
heavily relies on the assumption that the captions can pro-
vide useful information about the image that is not fully en-
coded by the image embeddings. As seen in Section 4.3,
when the captions provide unhelpful or adversarial infor-
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Source Cross-dataset Evaluation Targets Domain Generalization Targets
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CLIPood 76.6 97.2 94.3 92.7 77.5 87.3 37.4 74.3 60.3 59.5 75.2 75.6 69.5 64.9 56.6 88.7 69.9

+ ICE 76.7 97.2 93.9 93.1 77.8 87.4 39.6 74.3 60.8 61.8 75.7 76.2 69.2 64.9 56.7 88.8 69.9

CoOp 76.4 97.4 93.9 93.2 77.0 87.6 39.0 73.4 59.2 61.2 74.7 75.7 69.0 63.3 55.2 87.7 68.8
+ ICE 76.7 97.2 93.8 93.5 77.7 87.6 40.7 73.6 60.6 62.0 75.1 76.2 69.0 63.4 55.9 88.1 69.1

MaPLe 77.3 96.7 94.2 92.8 76.9 87.2 39.5 73.9 61.1 58.7 76.0 75.7 70.2 64.7 54.8 88.2 69.5
+ ICE 77.5 96.6 94.1 93.0 77.1 87.2 41.4 74.3 61.3 59.6 76.8 76.1 70.1 64.6 55.1 88.6 69.6

Table 2. Comparison with few-shot baselines in the cross-dataset evaluation setting and the domain generalization setting. The model is
fine-tuned on ImageNet with three different methods and tested on 15 total target datasets. The average accuracies are calculated separately
for the two settings following prior work. In all cases, we observe that evaluating with our ICE method provides consistent improvements.

Cross-dataset Evaluation Targets Domain Generalization Targets
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CoCa Zero-shot (Image) 75.1 97.6 93.8 92.7 77.3 87.5 36.8 73.6 57.2 58.5 73.4 74.8 67.5 63.5 53.8 87.0 68.0
CoCa Zero-shot (Caption) 58.8 85.6 76.3 83.1 63.6 72.7 40.7 54.8 44.0 34.9 60.3 61.6 50.2 50.7 38.7 73.8 53.3
+ ICE 75.6 97.1 93.8 93.0 78.0 87.7 38.3 74.0 59.3 61.3 74.3 75.7 67.8 64.0 54.4 87.5 68.4

BLIP-2 Zero-shot (Image) 73.8 94.6 93.6 76.9 79.4 90.9 32.8 68.0 52.7 56.2 74.7 72.0 68.0 57.9 68.3 85.5 69.9
BLIP-2 Zero-shot (Caption) 44.8 87.3 29.8 51.3 49.9 56.2 7.5 50.0 46.3 39.4 61.9 48.0 42.2 47.0 42.5 75.6 51.8
+ ICE 74.8 95.5 93.1 78.6 79.4 90.4 32.6 70.3 54.7 56.3 75.4 72.6 68.8 60.0 69.6 88.0 71.6

LLaVA Zero-shot (Image) 73.8 94.6 93.6 76.9 79.4 90.9 32.8 68.0 52.7 56.2 74.7 72.0 68.0 57.9 68.3 85.5 69.9
LLaVA Zero-shot (Caption) 42.4 85.4 19.8 17.8 16.8 43.8 4.9 49.0 41.5 52.7 56.8 38.8 37.5 38.2 38.7 66.8 45.3
+ ICE 74.1 95.1 93.0 76.0 78.2 90.6 32.3 69.0 53.1 57.4 74.6 71.9 68.3 58.4 69.0 86.5 70.5

Table 3. Experiments using a variety of multimodal captioners, showing that using ICE to combine the image and caption embeddings
improves the overall zero-shot accuracy. CoCa ViT-L/14 uses its own pretrained image encoder, while BLIP-2 and LLaVA use the frozen
CLIP ViT-L/14 model from [20].

mation and there lacks a good selection of caption scores
weight �, ICE could decrease the base classification perfor-
mance. Second, determining a good choice for � is non-
trivial, as it requires the selector to have an understanding
for when to trust the caption or image scores more on a per-
datapoint basis. This task is comparable with relevant lit-
erature on failure mode prediction using confidence estima-
tion [7, 26, 35], which is known to be challenging. Finally,
generating captions can be expensive, since each addition-
ally generated caption requires an additional forward pass
on the base model. For image-text foundation models like
CoCa [31], which typically contain hundreds of millions of
parameters, this strategy can quickly become a time bottle-
neck for ICE. Thus, it is important to find a balance between
the robustness benefits reaped from the number of captions
used, and the linearly-increasing time costs for each addi-
tional caption generated.

7. Conclusion

We explored the use of captioners which is understudied
in the vision-language literature for classification. We pro-
posed a novel method for improved zero-shot classification
performance based on combining image and caption em-

beddings. We showed that our method can be easily paired
with existing SOTA methods, and provide improvements of
0.5% on average and up to 3% across a diverse array of
datasets in cross-dataset generalization and domain general-
ization. Several ablation studies are presented to study sen-
sitivity of parameters on performance. We performed an in-
depth analysis on why our method can help reclassify pre-
viously misclassified points, and also cover cases where it
might fail. Future work includes extending this work to bet-
ter balance the weights between image and caption scores,
and considering ways to generate more informative captions
for improved downstream classification.
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