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Abstract

This paper presents Planar Gaussian Splatting (PGS), a

novel neural rendering approach to learn the 3D geometry

and parse the 3D planes of a scene, directly from multi-

ple RGB images. The PGS leverages Gaussian primitives

to model the scene and employ a hierarchical Gaussian

mixture approach to group them. Similar Gaussians are

progressively merged probabilistically in the tree-structured

Gaussian mixtures to identify distinct 3D plane instances

and form the overall 3D scene geometry. In order to en-

able the grouping, the Gaussian primitives contain addi-

tional parameters, such as plane descriptors derived by lift-

ing 2D masks from a general 2D segmentation model and

surface normals. Experiments show that the proposed PGS

achieves state-of-the-art performance in 3D planar recon-

struction without requiring either 3D plane labels or depth

supervision. In contrast to existing supervised methods

that have limited generalizability and struggle under do-

main shift, PGS maintains its performance across datasets

thanks to its neural rendering and scene-specific optimiza-

tion mechanism, while also being significantly faster than

existing optimization-based approaches.

1. Introduction

Identifying 3D planar surfaces in indoor settings using

multi-view posed monocular video is a pre-requisite for

many applications, including augmented reality, virtual re-

ality, robot navigation, and 3D interior modeling. Since

man-made environments feature many diverse planar sur-

faces whose appearances can be ambiguous, this is a chal-

lenging task. By approximating scene geometry with a col-

lection of basic planar shapes, we achieve a compact and

efficient representation that facilitates interaction with the

physical space.

Recent deep learning methods treat 3D planar surface

understanding as supervised learning tasks, relying on an-

*Qualcomm AI Research is an initiative of Qualcomm Technologies,

Inc.

notations of either 2D planes [1, 19, 20, 34, 45] or 3D struc-

tures [40]. However, acquiring plane annotations in both

high-quality and large-scale is an expensive endeavor. Fur-

thermore, these models struggle to generalize to unseen

scenes or those captured with different imaging sensors.

Recent advancements in differentiable rendering enable

3D geometry reconstruction solely from multi-view 2D im-

ages, eliminating the need for 3D ground truth. While

methods like Neural Radiance Fields (NeRF) and their suc-

cessors [7, 24, 36] achieve impressive novel view synthesis

(NVS) quality, it remains a challenge to extract explicit pla-

nar surfaces from their implicit representations [2]. Specif-

ically, volume-based approaches [38, 42, 44] rely on com-

putationally expensive steps like ray marching and density

field prediction for implicit surface modeling, followed by

Marching Cubes [23] for surface extraction and Sequen-

tial RANSAC [10] for plane detection. These steps re-

quire careful tuning of numerous hyperparameters (e.g., in

RANSAC), adding complexity and hindering broader appli-

cation.

Comparing to implicit methods, explicit neural repre-

sentations offer several advantages. They allow direct op-

timization of the geometry through volumetric tetrahedral

mesh [5, 12, 26, 30], triangle surface mesh [46], or point

cloud [16] on the geometric primitives themselves. This

makes it easier to constrain the reconstructed surfaces, for

example, to be locally planar. However, most of existing

explicit methods are primarily developed for novel view

synthesis and require additional steps for planar reconstruc-

tion. Among existing explicit neural approaches, recently

NMF [46] has proposed direct optimization on the 3D ver-

tex positions of a triangle mesh to jointly reconstruct the

geometry and perform contrastive learning for 3D planar

parsing.

In this paper, we propose, Planar Gaussian Splatting

(PGS), to represent planar surfaces with a set of Gaussian

primitives, equipped with learned plane descriptors, which

are jointly optimized with other Gaussian parameters, i.e.,

without requiring complex and error-prone post-hoc heuris-

tics. More specifically, we propose a hierarchical, tree-

This WACV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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structured Gaussian Mixture Model (GMM) to model the

scene. This probabilistic approach permits grouping the

Gaussian geometric primitives trained by Gaussian Splat-

ting while providing an interpretable interface for parsing

and optimizing for planes. In order to facilitate the group-

ing, we leverage 2D segmentation from foundation models

like SAM [17]. This allows our algorithm to optimize multi-

view partial consistency between 2D segmentation pseudo

labels to identify 3D planes while optimizing for the 3D ge-

ometry concurrently.

Our main contributions are summarized as follows:

• We propose Planar Gaussian Splatting (PGS), a novel

unsupervised, neural-rendering-based framework for

3D planar reconstruction of a scene from RGB images.

PGS does not require any 3D labels or depth supervi-

sion (either ground-truth or predicted).

• We leverage 3D Gaussian primitives to model the

scene, which are probabilistically grouped via hier-

archical, tree-structured Gaussian mixtures to identify

3D planar instances.

• In order to enable the grouping, we propose discrim-

inative 3D descriptors, learned from Segment Any-

thing [17] proposal masks. We resolve challenges such

as the lack of multi-view proposal association and vari-

able numbers of masks, by formulating and solving

a linear regression problem followed by merging seg-

ments using a Region Adjacency Graph (RAG).

• PGS achieves state-of-the-art performance in 3D pla-

nar reconstruction, as compared to existing supervised

and optimization-based methods. In particular, it can

readily reconstruct 3D planes on any new test scenes,

which cannot be done well by supervised learning

models.

2. Related work

2.1. Planar Reconstruction

Planar reconstruction from a single RGB image have

been investigated in several works, for instance using Con-

vNets [20, 41]. Those works predict both segmentation

and 3D plane parameters and furthermore require a pre-

scribed maximum number of planes in an image, which

limits model applicability. Other works address this limi-

tation on single image planar reconstruction [19,28,45] and

can handle any number of planes. PlaneTR [34] leverages

transformers to consider context information and geomet-

ric cues like line segmentation and ground-truth depth in a

sequence-to-sequence way. Dependencies on ground-truth

depth or plane annotation and single image reconstruction

limit the applications of these approaches.

Alternatively, multi-view reconstruction utilizes multiple

images, which contain richer geometric information. Sev-

eral works share a common two-stage approach: local plane

detection and plane parameter estimation [15, 21]. More

recently, PlanarRecon [40] proposes to detect planes from

video fragments and combine them to create a comprehen-

sive global planar reconstruction, which is supervised by

3D ground-truth planes in training. In contrast, this pa-

per presents a multi-view 3D planar surface reconstruction

method without requiring 2D or 3D plane annotations.

2.2. Objects & Semantics in Volumetric Rendering

In recent years, there has been significant progress in ra-

diance field rendering, particularly in the context of seman-

tic 3D modeling and scene decomposition.

Neural scene representations for scene decomposi-

tion: Some works [9,25,29,35,39,43] employ neural scene

representations to decompose scenes into foreground and

background components, remarkably without explicit su-

pervision or only relying on weak signals such as text or ob-

ject motion. Semantic NeRF [47], for instance, introduces

a separate branch that predicts semantic labels. NeSF [37]

predicts a semantic field by utilizing a density field as input

to a 3D semantic segmentation model.

Supplementing NeRFs with 2D annotations: Some

works have explored ways to enhance NeRF models using

readily available 2D annotations from datasets. Panoptic

NeRF [11] and Instance-NeRF [22] incorporate 3D instance

supervision, allowing for more accurate scene representa-

tion. Contrastive Lift [3] takes a novel approach by lift-

ing 2D instance segmentation to 3D without relying on ex-

plicit 3D masks. It achieves this through contrastive learn-

ing. Similarly, NMF [46] introduces a contrastive learning

scheme for lifting 2D pixel clusters into a 3D mesh. Panop-

tic Lifting [31] addresses the challenge of lifting 2D in-

stance segmentation by employing linear assignment tech-

niques to ensure consistency across multi-view annotations.

Fusing 2D analysis output into 3D space: The afore-

mentioned works — Semantic NeRF [47], Panoptic Lift-

ing [31] and Constrastive Lift [3] — represent a recent

research direction. They aim to seamlessly integrate the

insights gained from 2D analysis into the 3D domain.

SA3D [4], leverages the powerful vision foundation model

SAM [17]. SAM excels at segmenting objects in 2D im-

ages, and SA3D utilizes this capability for interactive 3D

segmentation using NeRF.

Our work shares similar concept with the above men-

tioned method since the proposed method lifts the 2D anal-

ysis into the 3D domain but has a different objective which

is 3D planar reconstruction of the scene. A more recent and

most similar work, NMF [46] introduces an explicit ren-

dering approach for 3D planar reconstruction by optimiz-

ing the vertices of triangle mesh and incorporating a con-

trastive learning for jointly learning the scene geometry and

decomposition the mesh into planar surfaces. NMF lever-

ages a depth prediction network for lifting the 2D analy-

sis into 3D. Our approach doesn’t require the ground truth
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Figure 1. The proposed PGS method constructs the entire scene using a tree-structured arrangement of Gaussian nodes. At the leaf

nodes, Gaussian primitives are optimized through Gaussian splatting rendering. Meanwhile, parent nodes are recursively formed by

merging Gaussian nodes probabilistically. The child nodes of the root correspond to distinct 3D planes within the scene, as depicted in the

accompanying figure.

or predicted depth network. Furthermore, similar to Con-

strastive Lift [3], the NMF utilizes a clustering method as

post-processing for grouping the features of the plane or

object instances. The constant hyper-parameters of clus-

tering introduces a sub-optimal solution across different

scene, while our approach utilizes a probabilistic method

for grouping the features.

These advancements bridge the gap between 2D and 3D

representations, opening up exciting possibilities for richer

scene understanding and modeling.

3. Planar Gaussian Splatting

In this section, we present the proposed Planar Gaussian

Splatting (PGS) method. Section 3.1 starts with a primer on

Gaussian Splatting and the standard parameterization of the

Gaussian primitives. Section 3.2 introduces the Gaussian

Mixture Tree, a probabilistic approach for planar construc-

tion of the scene geometry in a bottom-up modeling. Sec-

tion 3.3 introduces a learning procedure for optimizing a la-

tent vector per Gaussian primitives, called plane descriptor

which represents 3D plane instances. Afterwards, local pla-

nar alignment as a geometric constraint applies on Gaussian

positions close to surfaces is explained in Section 3.4. In

Section 3.5, we discussed how a holistic separability across

descriptors is maintained using recurrent mean-shift layer.

3.1. Primer on 3D Gaussian Splatting (3DGS)

3DGS [16] models the scene as a set of multivariate

Gaussians in 3D space, which is an explicit form of rep-

resentation, in contrast to the implicit representation used

in NeRF. Each Gaussian is characterized by a covariance

matrix Σ and a center (mean) point µ, i.e.,

G(x) = e−
1

2
(x−µ)TΣ

−1(x−µ). (1)

The centers of these 3D Gaussians are initialized from

a set of sparse points (e.g., randomly initialized or ob-

tained from SfM). More specifically, each Gaussian is pa-

rameterized by the following parameters: (a) a center posi-

tion µ ∈ R
3, (b) a covariance matrix which has the form

Σ = RSSTRT computed from scaling s ∈ R
3 and rotation

factors r ∈ R
4 (in quaternion), (c) opacity α ∈ R, and (d)

spherical harmonics (SH) coefficient c ∈ R
k that represents

the color, where k is the degree of the SH. Given a view

transform W , the 2D covariance matrix in camera coordi-

nates can be expressed by Σ
2D = JWΣWTJT , where J

is the Jacobian of the affine approximation of the projection

transformation. For each pixel in the image, rendering the

color is performed as in [16] by blending the color vectors

of N ordered Gaussians, which overlap at the pixel position

(u, v), by

ĉuv =

N
X

i

ciαi

i−1
Y

j

(1− αj),

Lrgb =
X

(u,v)

∥ĉuv − cuv∥1 + λ · SSIM(ĉuv, cuv),

(2)

where αi and ci are learnable opacity and RGB color of ith

Gaussian, obtained by SH coefficients. The weighting coef-

ficient λ is set the same as in [16]. By minimizing the loss in

Eq. 2, the model learns the 3D scene geometry through the

sparse unstructured Gaussian primitives by optimizing their

opacity parameters. In addition to optimizing the Gaussian

parameters, the training process involves splitting, cloning,

and culling of Gaussian primitives to express the scene ge-

ometry by maximizing the photometric likelihood between

the rendered and the actual images, as proposed in [16].

3.2. Gaussian Mixture Tree

Optimizing the parameters of 3D Gaussians leads to spa-

tially moving the center points close to the object surfaces in
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the scene. In order to identify distinct 3D plane instances, a

novel probabilistic approach is proposed that involves com-

positional modeling of the 3D scene using a Gaussian Mix-

ture Tree (GMT).

The whole scene is modeled in a tree structure, which is

constructed recursively from the leaf nodes to the root node.

The Gaussian Mixture Model (GMM) is involved to join

nodes and derive intermediate parent nodes. In this way,

the GMT represents the entire scene in a hierarchical way.

In the GMT, the child nodes of the root represent individual

3D plane instances; see Figure 1.

Each parent in the tree (except the root) specify a Gaus-

sian distribution, Gp(µp,Σp), in 3D space, which encom-

passes all the center points (µ) of its child Gaussian nodes.

Since each node specifies a Gaussian distribution, merging

two nodes is equivalent to merging their distributions. More

specifically, for two Gaussian nodes, the merging is per-

formed as follows.

Σp =Σj · (Σi +Σj)
−1 ·Σi,

µp =Σj · (Σi +Σj)
−1 · µi +Σi · (Σi +Σj)

−1 · µj ,
(3)

where (µp,Σp) specifies the Gaussian parameters of the

parent node.

The merging criteria are based on both the Bhattacharya

distance [14] between the two respective Gaussian distribu-

tions, and the cosine similarity between the descriptors of

the nodes ⟨zi ·zj⟩ (which will be explained in the following

part). For two multivariate Gaussian distributions (Gi, Gj),

the Bhattacharya distance DB(Gi, Gj) is given by:

DB(Gi, Gj) =
1

8
(µi − µj)

T
Σ

−1(µi − µj)

+
1

2
ln(

detΣ
p

detΣi detΣj

),

(4)

where Σ =
Σi+Σj

2 . The tree structure simply is formed

by merging every two nodes whose descriptors are similar

and whose Bhattacharya distance is lower than a predefined

threshold. Algorithm 1 shows pseudocode of the proposed

GMT.

When constructing the GMT, we do not directly use

the Gaussian primitives (i.e., parameters obtained through

Gaussian splatting optimization) at the leaf nodes, which

would be computationally expensive given as there can be

a huge number of them in the 3D scene. Instead, we

first group the Gaussian primitives into local clusters and

use each cluster as the leaf node of the GMT. For locally

grouping the Gaussian primitives, two additional parame-

ters are introduced for each Gaussian during the optimiza-

tion, which are the surface normal vector at the center lo-

cation of the Gaussian and a learnable vector called plane

descriptor which can be used to identify distinct 3D planes.

Algorithm 1 Hierarchically Merging Gaussians

Input : {Gi(µi,Σi,ni, zi)}
Ns

i=1
, and Ns leaf nodes

Output: p(x|Gs) =
PL

k=1
πk ·p(x|G

s
k), where x ∈ R

3

Initialize: L = 0, Gs = ∅
for i=1:Ns do

if i is NOT descendant of {Gs
k}

L
k=1 then

for j=i+1:Ns do

if j is NOT descendant of {Gs
k}

L
k=1 then

if DB(Gi, Gj) ≤ ϵB and 1−⟨zi ·zj⟩ ≤ ϵz

then

Gij
p (µp,Σp) ← Gi +Gj // (3)

Gi ← Gij
p

end

end

end

Gs.insert(Gi) // Add to plane nodes

L ← L+ 1
end

end

3.3. Learning Plane Descriptors

To organize Gaussian primitives within the GMT hierar-

chy, two additional parameters for each Gaussian primitive

are introduced: a normal vector n ∈ R
3 and a plane de-

scriptor z ∈ R
k (e.g., k = 3).

Lifting 2D normal maps to 3D: To learn the normal

vectors in 3D field, we employ an off-the-shelf network that

predicts the normal map for the 2D training images; specif-

ically, we use the Omnidata model [8]. To lift the normal

vectors from 2D to 3D, similar to Eq. 2, the normal vectors

are rendered for the camera view and compared with the off-

the-shelf network’s prediction (nuv) at pixel position (u, v),
using the cosine distance. The normal loss is defined as:

Ln =
X

(u,v)

�

1−



n̂uv ·nuv

�

�

, n̂uv =

N
X

i

niαi

i−1
Y

j

(1−αj).

(5)
Lifting 2D SAM masks to 3D: To learn the plane de-

scriptors, we leverage the 2D masks generated by the Seg-

ment Anything Model (SAM) [17]. SAM segments the in-

put 2D images into object parts. We prompt SAM with

32×32 regular grid points. For each point, SAM predicts

a set of masks that may correspond to different parts of ob-

jects. SAM incorporates ambiguity-aware modeling: if a

point lies on a part or subpart, SAM may return the subpart,

the part, or the entire object. The image segments with high

variance in their normal vectors are ignored and are consid-

ered as invalid regions for the current camera frame.

In order to learn the plane descriptors in the 3D Gaus-

sian field, the valid 2D image segments need to be lifted to

3D. However, the masks from SAM have no semantic infor-

mation and 2D-3D lifting is not straightforward due to two

challenges: (1) the mask associations across different views

are unknown, and (2) the number of segments is variable in
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each image and the maximum number of segments is un-

known. In the following, we discuss how we handle these

issues and utilize the 2D segments to learn the 3D plane

descriptors.

We restrict the descriptor z to have a vector norm equal

to one (∥z∥2 = 1). To address the aforementioned chal-

lenge of lifting the 2D segments to create 3D descriptors, we

propose a linear regression approach (with closed-form so-

lution) to predict the indices of 2D segments based on z, for

each individual training image. More specifically, given the

camera pose, we first render a 2D descriptor image where

each pixel is computed by blending the 3D descriptors of

Gaussian field for given camera view. Next, we use a linear

layer (W) to map each pixel in this descriptor image to a

one-hot vector y that encodes a segment. W can be solved

analytically. In matrix form, this is specified as follows.

Y = [Z|1]·W → Ŵ = (ZT ·Z)−1 ·ZT ·Y,

Lseg =
X

i

∥yi − ŷi∥1,
(6)

where yi ∈ {0, 1}m and
Pm

j=1 yij = 1. The Y and Z

denote the matrix form of the labels and descriptors, the

loss is computed by comparing the prediction ŷ = [z|1] · ŵ
with the labels y.

Eq. 6 optimizes the descriptors z for the Gaussians, tak-

ing advantage of the fast rendering of 3DGS. Note that the

linear regression of Eq. 6 is recomputed for each given cam-

era view and the length m of the target vector yi can be vari-

able in each image, depending on the number of segments

in Y. Figure 2 provides visual examples of the learned de-

scriptors and SAM segmentation masks.

Since the descriptors need to represent distinct 3D planes

of the scene, we cannot directly use the SAM segments as

the label Y as there can be multiple segments on the same

plane. 2D segments belonging to the same planar surface

should be merged. Since we do not have access to 3D or 2D

plane annotations, we perform this merging using a Region

Adjacency Graph (RAG). The nodes of RAG represent the

segments given by SAM and the edges connect nodes whose

corresponding regions are adjacent in the image. We parti-

tion the RAG by cutting the edges that connect nodes from

two different planes and keep the ones from the same plane

connected. In order to do that, we use the normal vector of

each node as well as a planar distance.

The normals can be obtained by rendering as specified in

Eq. 5. However, partitioning the RAG solely based on the

dissimilarity of normal vectors between neighboring nodes

is insufficient; two nodes with similar normals may actu-

ally belong to two different planes, e.g., two planes at dif-

ferent heights in the scene. To resolve this ambiguity, we

additionally assign a planar distance, dp, to each node of

the RAG. To compute the planar distance for each segment,

we assume every pixel belongs to one planar surface in the

(a) (b) (c) (d)

Figure 2. Visualizing the steps of generating plane descriptors:

(a) rendered color image, (b) rendered plane descriptors from 3D

Gaussian field in camera view, (c) merged SAM masks by parti-

tioning the Region Adjacency Graph, (d) masks by SAM.

scene. The corresponding 3D point p ∈ R
3 and the plane

satisfy the point-normal equation: n · p + dp = 0, where

n = (n1, n2, n3)
⊤ is the normal vector. As such, planar

distance dp at pixel position (u, v) in the image is obtained

as follows:

dp = d(u,v) ·
�n1

fx
(u0 − u) +

n2

fy
(v0 − v)− n3

�

, (7)

where (fx, fy) are the x and y focal lengths of the pinhole

camera, and (u0, v0) is the principal point, and the depth

d(u,v) is computed by rendering the 3D Gaussian field.

The average normal and planar distance values within

each SAM segment is assigned to the corresponding node

in the RAG. Finally, by thresholding these values, we can

cut the edges accordingly in the RAG. Figure 2 (c) shows

visual examples of merging SAM segments by partitioning

the RAG.

3.4. Local Planar Alignment of 3DGS

The original 3DGS method [16] excels in photo-realistic

novel view synthesis through volume rendering and alpha-

blending technique. However, it operates without any ex-

plicit constraints on the spatial arrangement of the Gaus-

sian primitives, which makes it not directly applicable for

learning geometric features. More specifically, the alpha-

blending integration of Gaussians (as described in Eq. 2),

which are depth-sorted relative to the camera, results in ap-

plying the 2D supervision to the overall integration of Gaus-
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sians, rather than to each instance individually. For exam-

ple, occluded Gaussians receive weak supervision, leading

to suboptimal parameter optimization. Although this is not

critical for rendering RGB images, it poses challenges to

learning 3D normal vectors and surface descriptors, which

are additional parameters in our proposed PGS. To address

this, we enforce the centers of Gaussians to lie exactly on

the surfaces of objects. This can be achieved through the

alignment process which involves projecting the centers of

Gaussian on their local tangent planes. This requires first

computing the K Nearest Neighbors (KNN) of Gaussians

and then computing the covariance matrices of KNN Gaus-

sian centers in the scene. Given the local covariance 3 × 3
matrices, the local tangent planes are specified by the two

eigenvectors, corresponding to the two largest eigenvalues,

of covariance matrices, using singular value decomposition.

Estimating the KNN indices also allows us to apply a Lapla-

cian smoothing on the learnt normal and descriptor features

by averaging over the features of neighbouring Gaussian

primitives.

3.5. Holistic Separability of Gaussian Descriptors

The minimization of the segmentation loss term in Eq. 6

results in a discriminative representation of descriptors de-

noted as z in the current image. This representation helps

identify Gaussians that belong to distinct 3D plane in-

stances. In order to maintain a holistic separability of de-

scriptors across all planar surfaces in the scene (including

surfaces that have never been seen jointly in any camera

view), a recurrent mean-shift update [18] is applied to the

entire Gaussian field, the matrix form of which is given as

follows.

Z ← Z · (η ·K ·D−1 + (1− η) · I), (8)

where K = e(γ·Z
T
·Z) is von Mises-Fisher (vMF) distribu-

tion of z on sphere and D = diag(KT · I) is the diagonal

matrix. η is the rate of update and γ is the kernel bandwidth

which determines the smoothness of the kernel density es-

timation.

By applying such updates, we improve separability of

the descriptors of all the 3D plane instances. Figure 3 vi-

sualize the impact of applying Eq. 8 in the training of PGS.

In practice we run updates on z as specified in Eq. 8 for

a few steps at every N iterations in the optimization pro-

cess. Since the number of Gaussians in the scene can be

very large, we use an efficient way to compute Eq. 8; more

details on this are provided in the Appendix.

4. Experiments

We conduct experiments to evaluate the 3D plane in-

stance segmentation of PGS, as well as compare with ex-

isting competitive approaches. We further perform ablation

study to analyze various design choices in the proposed ap-

proach.

(a) (b) (c)

Figure 3. Effect of holistic separation. (a) Ground-truth plane

labels of an example scene from ScanNet dataset, (b) learned de-

scriptors with applying the holistic separability which results in a

more compact and separable representation, (c) learned descrip-

tors without the holistic constraint.

Table 1. 3D plane instance segmentation results on ScanNet. The

symbol ++ indicates that the method only produces a 3D mesh

reconstruction and a post-processing by Sequential RANSAC is

performed to extract the 3D planes.

Method VOI ↓ RI ↑ SC↑
Supervision Inference

RGB Geo. Planes time

NeuralRecon++ [33] 5.540 0.696 0.139 ✓ ✓ - 2 min

PlanarRecon [40] 3.458 0.861 0.359 ✓ ✓ ✓ realtime

3DGS++ [16] 5.056 0.850 0.306 ✓ - - 16 min.

NMF [46] 3.253 0.880 0.381 ✓ - - 40 min.

Planar GS (ours) 3.045 0.901 0.430 ✓ - - 16 min.

Datasets. We perform evaluation on 3D planar recon-

struction benchmarks commonly used by prior works [40,

46], including ScanNetv2 [6] and Replica [32]. ScanNetv2

contains RGB videos taken by a mobile device from in-

door scenes with the camera pose information associated

with each frame. We run our experiments on 10 scenes;

4 of them are the same as in [13]. Replica is a synthetic

dataset featuring a diverse set of indoor scenes. Each scene

is equipped with high-quality geometry and photo-realistic

textures, allowing one to render high-fidelity images from

arbitrary camera poses.

Baselines. There are only a few existing works that

focus on learning-based multi-view 3D planar reconstruc-

tion. We compare PGS with two types of approaches: (1)

specialized 3D planar reconstruction methods, e.g., Planar-

Recon [40], which is trained with 3D geometry and 3D

plane supervisions, and NMF [46] which is an optimization-

based approach using depth and normal supervision, (2)

dense 3D reconstruction methods like NeuralRecon [33]

with 3D geometry supervision and 3DGS [16] with 2D

RGB supervision, followed by Sequential RANSAC to ex-

tract planes [10]. We denote them as NeuralRecon++ and

3DGS++.

Metrics. Similar to prior works [19,34,40,46], we eval-

uate the performance of 3D plane instance segmentation by

measuring the Rand Index (RI), Variation of Information

(VOI), and Segmentation Covering (SC).

4.1. Main Results

On ScanNet: Table 1 shows 3D planar segmentation

results on ScanNet data. We see that our proposed PGS

achieves significantly better performance across all the eval-
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(a) (b) (c) (d)

Figure 4. Examples of 3D planar reconstruction on ScanNet. (a) Ground-truth textured meshes (with holes on floor due to unseen regions

in the videos), (b) our proposed Planar Gaussian Splatting (PGS), (c) PlanarRecon [40], and (d) 3DGS++. We see that our proposed PGS

produces more accurate 3D planes, in terms of precise shapes and recall. PlanarRecon misses many planes and produces incorrect shapes,

and 3DGS++ results are noisy and inaccurate.

uation metrics. For instance, it has significant higher seg-

mentation covering score as compared to existing methods

(more than 11% improvement). Although both NeuralRe-

con and PlanarRecon are trained on ScanNet, their 3D plane

instance segmentation scores are considerably worse. We

also see that naively using Sequential RANSAC to extract

3D planes from 3DGS reconstruction does not yield good

accuracy. In terms of runtime, our proposed PGS is sig-

nificantly faster as compared to the latest state-of-the-art

optimization-based 3D plane segmentation method of NMF,

with more than 60% less runtime.

Figure 4 shows sample 3D planar reconstruction results

on ScanNet. It can be seen that our proposed PGS gener-

ates more accurate planes. For instance, in the 2nd row,

our PGS captures the shape of the round table top (b)

while PlanarRecon fails to recover the shape (c). In ad-

dition, PGS has higher recalls. We see that PlanarRecon

misses a lot of planes in the scene, especially for smaller

objects like chairs, while PGS better identifies planes on

those objects. However, the PGS also makes mistake on

small subset of the estimated 3D planes by duplicating plane

instances, which can be observed at the intersections of

planes in our visualizations. The results by 3DGS++ are

very noisy, showing that it is suboptimal to simply add a

post-processing step like Sequential RANSAC to extract 3D

planes from a reconstruction, as compared to an end-to-end,

holistically designed pipeline.

On Replica: Table 2 shows the evaluation results on
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Table 2. 3D plane instance segmentation results on Replica. The

symbol ++ indicates that the method only produces a 3D mesh

reconstruction and a post-processing by Sequential RANSAC is

performed to extract the 3D planes. Note that ScanNet-trained

NeuralRecon fails to produce valid meshes on Replica

Method VOI ↓ RI ↑ SC↑
Supervision

RGB Geo. Planes

NeuralRecon++ [33] - - - ✓ ✓ -

PlanarRecon [40] 4.676 0.829 0.148 ✓ ✓ ✓

3DGS++ [16] 4.401 0.904 0.179 ✓ - -

NMF [46] 4.311 0.891 0.188 ✓ - -

Planar GS (ours) 4.168 0.943 0.209 ✓ - -

Replica. Both supervised methods of NeuralRecon and Pla-

narRecon trained on ScanNet cannot generalize to the new

dataset, with NeuralRecon failing to produce valid meshes

and PlanarRecon generating poor planar reconstruction re-

sults. On the other hand, our proposed PGS works well on

Replica, with higher 3D plane segmentation scores and a

lower inference time when comparing to the existing SOTA

optimization-based method of NMF.

4.2. Ablation Study

We analyze different aspects of our proposed design.

The ablation experiments are performed on two ScanNet

scenes. More specifically, we study the effectiveness of

(1) utilizing SAM masks for learning plane descriptors,

(2) 2D normal maps supervision, (3) local planar alignment

(Section 3.4), (4) applying holistic separability by using

the recurrent mean-shift layer (Section 3.5), and (5) Lapla-

cian smoothing of geometric features including normal and

plane descriptor smoothing (Section 3.4). Table 3 shows

the 3D plane segmentation performance on different vari-

ants of the proposed PGS, where we deactivate one compo-

nent at each time. We observe a significant drop in perfor-

mance when SAM masks are not used. This is expected,

as the PGS learns plane descriptors using SAM, which are

later used for grouping Gaussian nodes in tree and parsing

plane instances. The absence of plane descriptors leads to

high ambiguity in parsing individual small surfaces close

to larger planar regions. Moreover, dropping normal vec-

tors results in less degradation, as the plane descriptors us-

ing SAM masks can mainly resolve grouping ambiguity be-

tween Gaussian nodes in the tree structure. Furthermore,

we see that the local planar alignment shows a high im-

pact on the performance. This is because by enforcing the

Gaussians to locate on local tangent planes of surfaces, it

improves the learning of correct geometric features, such

as normal vectors and plane descriptors, through rendering.

While dropping such alignment results in a 3D reconstruc-

tion which point cloud is scattered around the surfaces. The

Laplacian smoothing includes local averaging over both the

normal and descriptor features of Gaussian primitives in

training time, which further improves the performance. It

Table 3. Ablation Study on two ScanNet scenes.

Experiment VOI↓ RI ↑ SC↑

W/o SAM masks 3.914 0.873 0.349

W/o local planar alignment 3.655 0.901 0.374

W/o normal vectors 3.326 0.904 0.390

W/o holistic separability 3.240 0.905 0.401

W/o Laplacian smoothing 3.151 0.908 0.393

Full Planar GS 3.024 0.919 0.415

can be seen that encouraging holistic separability also helps,

providing effective performance improvement on plane seg-

mentation.

5. Conclusions

In this paper, we proposed Planar Gaussian Splatting

(PGS), which leverages two fundamental concepts: a proba-

bilistic, hierarchical Gaussian mixture approach and a foun-

dational vision model. Our approach represents the scene

using a set of 3D planes, each defined by merging lo-

cal geometries represented through 3D Gaussian distribu-

tions. To address ambiguity during the merging process,

we introduce additional parameters to the Gaussians, in-

cluding the normal vector and a plane descriptor. Learn-

ing plane descriptors without access to 2D/3D plane anno-

tations involves utilizing a vision foundation model, specif-

ically SAM. We learn 3D plane descriptors by constructing

and partitioning a region adjacency graph based on SAM

segments. Additionally, we address the challenges posed

by variable-length and non-corresponding mask proposals

across images via a linear regression approach. Experi-

ments demonstrate that the proposed PGS outperforms ex-

isting competitive approaches in 3D planar reconstruction.

Limitations: The proposed method has some limita-

tions. Dark regions in the image usually suffers under-

reconstruction due to sparse assignment of Gaussian points.

This can affect computing both KNN and the statistics such

as mean and covariance of the point distributions on the

plane. Additionally, very large planes in the scene might

be split into two or several pieces as the likelihood of learn-

ing a compact descriptor for a large area containing a huge

number of Gaussians primitives decreases. The proposed

recurrent mean-shift updates mitigate this issue to some ex-

tent but does not resolve it completely.
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