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Abstract

Visual images corrupted by various types and levels of
degradations are commonly encountered in practical im-
age compression. However, most existing image compres-
sion methods are tailored for clean images, therefore strug-
gling to achieve satisfying results on these images. Joint
compression and restoration methods typically focus on a
single type of degradation and fail to address a variety
of degradations in practice. To this end, we propose a
unified framework for all-in-one image compression and
restoration, which incorporates the image restoration capa-
bility against various degradations into the process of im-
age compression. The key challenges involve distinguish-
ing authentic image content from degradations, and flexi-
bly eliminating various degradations without prior knowl-
edge. Specifically, the proposed framework approaches
these challenges from two perspectives: i.e., content infor-
mation aggregation, and degradation representation aggre-
gation. Extensive experiments demonstrate the following
merits of our model: 1) superior rate-distortion (RD) per-
formance on various degraded inputs while preserving the
performance on clean data; 2) strong generalization ability
to real-world and unseen scenarios; 3) higher computing
efficiency over compared methods. Our code is available at
https://github.com/ZeldaMl/All—-in-one.

1. Introduction

Image compression, which facilitates the efficient trans-
mission and storage of image data, has served as a fun-
damental part of modern image data processing pipelines.
Recently, deep learning-based image compression meth-
ods [23, 24,28, 36, 42] have shown remarkable compres-
sion ratio improvement, demonstrating the superiority and
flexibility over traditional standards [5, 6, 53, 56]. In the
practical scenarios (e.g., object detection [10, 17,57] and
autonomous driving [52, 58]) where image compression is
employed, the captured images are likely to be plagued
by various degradations (e.g., weather-related degradations,
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Ground Truth
BPP/PSNR / MS-SSIM

Codec Only: EVC
0.5147/12.05/0.7014

All—in—oneBLTrsi
0.4854/34.02/0.9853

Cascaded: Restormer + EVC Cascaded: AirNet + EVC
0.4951/30.39/0.9709  0.5445/28.01/0.9690

Figure 1. Results of typical solutions for degraded image compres-
sion, where BPP/PSNR/MS-SSIM are reported for each method.
The image codec EVC (designed for clean images) allocates extra
bits to preserve degradations. Cascaded solutions (e.g., Restormer
+ EVC) amplify artifacts introduced in the restoration stage.

blur, and noise) due to the complex environmental condi-
tions. However, most existing image compression meth-
ods [23,24,28,36,42] are tailored for “clean” images. For
degraded images, codecs tend to spend extra bits to faith-
fully preserve the degradations (e.g., the results of the image
codec EVC [23] in Fig. 1), leading to the sub-optimal com-
pression performance and the potential disruption for down-
stream tasks [62]. Given the fundamental role of image
compression in the image processing pipeline, we recognize
the critical need to equip the image compression model with
the capability of eliminating various degradations.

Cascading independent image restoration (IR) models
with compression models provides a straightforward so-
lution for existing image compression methods to handle
the degraded input images (e.g., cascaded Restormer+EVC
shown in Fig. 1). However, such kind of solution in-
evitably increases the overall complexity, resulting in in-
efficiency and higher requirements for the computational
resources. Moreover, errors caused by the IR stage may
be propagated and amplified in the subsequent compres-
sion stage, leading to error accumulation and visually un-
satisfying results [15]. Therefore, there is a growing pref-
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erence for joint image restoration and compression solu-
tions. Prior works typically address degradations in terms
of noise [7, 15,21,41, 50], blur [64], and low-light condi-
tions [9]. A notable limitation of these specialist works is
that they are designed for specific types/levels of degrada-
tions, overlooking the fact that the captured images may suf-
fer from various degradations in practical scenarios. Conse-
quently, they need to train separate models for each specific
degradation, which limits the practicality of these methods.
This limitation underlines the need for a more comprehen-
sive solution, which is capable of addressing various de-
graded images encountered in practical image compression.

In this work, we aim to address the above dilemma
from a novel perspective, all-in-one image compression and
restoration, which requires the compression model to simul-
taneously recover degraded images and compress them to
reduce file sizes. Additionally, it should be able to han-
dle images corrupted by various types and levels, while
maintaining the performance on clean images. The above
requirements are supposed to be integrated into a unified
network, using the same set of trained weights. Fulfilling
these requirements presents two significant challenges for
the compression model: 1) to distinguish genuine image
content from degradations, ensuring the algorithm priori-
tizes and preserves the important image content (e.g., edges
and textures); and 2) to distinguish and flexibly eliminate
these degradations without any degradation priors. Over-
coming these challenges is essential for optimizing com-
pression performance, as it ensures the bits are spent on gen-
uine image content instead of encoding the degradations.

To address these challenges, we introduce a unified all-
in-one image compression and restoration framework. Cor-
responding to the challenges above, our method performs
two types of information aggregation: 1) content informa-
tion aggregation, which leverages contextual information
to enhance the model’s understanding of the image, there-
fore distinguishing image content from degradations; and
2) degradation representation aggregation, which extracts
the discriminative representations of degradations, enabling
the model to flexibly eliminate different types of degrada-
tions and reconstruct image details. Specifically, the pro-
posed framework consists of an encoder, a decoder, and a
spatial entropy model. Both the encoder and decoder em-
ploy a hybrid-attention mechanism: the channel-wise group
attention (C-GA) and the spatially decoupled attention (S-
DA). The C-GA performs group-wise self-attention along
the channel dimension, implicitly modeling long-range de-
pendencies and enhancing the ability to differentiate be-
tween image content and degradations. Observing that
different degradations spatially show distinctive patterns,
the S-DA sequentially aggregates discriminative represen-
tations from vertical and horizontal directions, thereby dis-
tinguishing different degradations and flexibly eliminating

them. The C-GA and S-DA are integrated into the hybrid-
attention transformer block (HATB), which is then incorpo-
rated into both the encoder and decoder to learn at different
scales. Our contributions are summarized as follows:

* We make the first attempt to equip neural image codec
with the restoration capability against various degrada-
tions, thus achieving visually satisfying results and avoid-
ing the waste of bits on the degradations.

* We propose a unified framework for all-in-one image
compression and restoration, which performs two types
of information aggregation, effectively distinguishing im-
age content from degradations and discriminating differ-
ent degradations.

* Experimental results show that our method effectively ad-
dresses a wide range of degraded images without sacrific-
ing the rate-distortion (RD) performance on clean data.
It also shows strong generalization ability in real-world
and unseen scenarios, while exhibiting higher computing
efficiency over cascaded solutions.

2. Related Work
2.1. Neural Image Compression

Recent image compression methods [3, 4, 22, 45] have
achieved tremendous improvement with auto-regressive
models.  To address the serial processing problem,
He et al. [25] introduce a parallelized checkerboard con-
text model, while David et al. [46] conduct channel-
conditioning and latent residual prediction to reduce serial
operations. EVC [23] leverages mask decay and sparsity
regularization for efficiency and further improves the RD
performance of the scalable encoder. DCVC-FM [36] mod-
ulates features with a learnable quantization scaler and pe-
riodically refreshing mechanism to support a wide qual-
ity range and long prediction chain. Self-attention-based
methods [16,30,51,68] develop various self-attention vari-
ants to capture non-local information and achieve better
RD performance. Mixed architectures of transformer and
CNN [42, 69] are further proposed to exploit both global
and local information. Given the strong ability of genera-
tion, generative methods [1, 2] achieve visually satisfying
results with extremely low bitrates. However, these meth-
ods are designed for clean data and rarely consider the prac-
tical scenario of degraded inputs, inevitably leading to the
waste of bits for preserving unnecessary degradations.

2.2. All-in-one Image Restoration

Most image restoration methods [13,34,38-40,59,61,65]
are designed to handle a specific type of degradation, while
all-in-one image restoration methods aim to manage mul-
tiple degradations with a unified network. A majority of
them [32,37,48,55,63] rely on degradation priors to guide
the subsequent restoration. Li et al. [37] employ multi-head
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(b) Hybrid-Attention Transformer Block (HATB)
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(c) Channel-wise Group Attention (C-GA)
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Figure 2. The proposed all-in-one framework, which consists of a feature encoder G¢,, a feature decoder G, and a spatial entropy model.
The HATB effectively models long-range dependencies with the C-GA, and captures discriminative representations with the S-DA.

encoders to separately embed degraded inputs. NDR [63]
develops a degradation query-injection mechanism to ef-
fectively approximate and utilize the degradation represen-
tations. PromptIR [49] guides the restoration process by
providing degradation-related prompts. Chen et al. [12] uti-
lize independent teacher networks for different inputs, and
perform knowledge distillation for a lightweight unified net-
work. WGWSNet [67] first learns degradation-general rep-
resentations and expands the parameters for specific degra-
dations. Recent methods [32,48] adopt contrastive encoders
to extract more representative degradation priors. However,
extracting degradation priors involves complex encoders,
posing challenges to efficiency in practical applications.

2.3. Joint Image Compression and Restoration

Nowadays, image compression methods increasingly
recognize the need to incorporate the ability of restoration
into the compression process. Cheng et al. [ 14] incorporate
two add-on modules to equip a pre-trained image decoder
with the ability of joint decoding and denoising. Cai et
al. [8] focus on the low-light scenario and propose a signal-
to-noise ratio aware branch to guide joint compression and
enhancement. NARV [27] presents an end-to-end noise-
adaptive ResNet VAE to handle clean and noisy input im-
ages. Nevertheless, these works consider limited degrada-
tions (e.g., noise and low-light), neglecting the fact that im-
ages can be affected by a wide variety of degradations.

3. Method
3.1. Problem Formulation

The proposed unified framework is fundamentally devel-
oped for image compression, however, it goes beyond pre-

vious methods [30,42,51,68,69] that are designed for high-
quality clean images. Given the constraints of storage and
bandwidth, our goal is to remove degradations while pre-
serving essential image information, thereby avoiding the
waste of bits on degradations and achieving visually satis-
fying results. Therefore, our pipeline takes the degraded,
large-size image x as input and outputs the clean, compact
image 2. This process is achieved through a unified frame-
work (as shown in Fig. 2(a)) and the same set of trained
weights. Notably, the network is trained with both degraded
images and clean images as inputs, so that it still maintains
the ability to compress clean input images.

3.2. Overview

As shown in Fig. 2(a), our framework consists of a fea-
ture encoder Go,, a feature decoder G¢, and a spatial en-
tropy model. Given a degraded input image x, the encoder
Go¢, progressively downsamples the extracted features and
obtains the latent representation y, which is then quantized
to a discrete representation § and encoded into the bit-
stream. During decoding, the discrete representation ¢ is
retrieved from the bit-stream and sent to the decoder Go,,
which progressively upsamples the features, reconstructing
the decompressed and clean output z. The overall process
is formulated as follows,

Y= g¢a (l‘), Q = Q(y)a T= ggbs (g)a (D
where G4, and G, denote the feature encoder and decoder.
Q indicates the operation that quantizes y using learnable
quantization steps to achieve variable bit-rates with a sin-
gle model. The discrete Z is obtained by rounding the la-
tent representation z. To model spatial dependencies of dis-
crete representation ¢ and accurately estimate the distribu-
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and out-  Figure 4. Visual comparisons of output feature X °”* in S-DA and t-SNE

put feature X“““ in C-GA. Although degradations and im-  results, where SD indicates spatial decoupling. As can be seen, the design
age signals are closely intertwined in the input features, the of spatial decoupling helps to effectively extract discriminative degrada-
C-GA effectively separates degradations from the image con-  tion representations (e.g., the snow spots in the yellow box and distinct
tent (e.g., the elephant is distinguished from the rain streaks in  clusters in the t-SNE map).

the yellow box), thereby preserving image signals.

tion py|z ~ N (1, 02), we adopt the hybrid spatial entropy
model [35] to generate parameters p and o of the Gaus-
sian model, and estimate the spatial prior for . The down-
sampling and upsampling layers are implemented with a
3 x 3 convolution layer followed by a pixel-shuffle layer.
We elaborate on the hybrid-attention transformer block in
Sec. 3.3, and describe the training scheme in Sec. 3.4.

3.3. Hybrid-Attention Transformer Block

As shown in Fig. 2(b), the hybrid attention block inte-
grates transformer-style C-GA for contextual information
with controllable complexity, and CNN-style S-DA for dis-
criminative degradation representations with limited recep-
tive fields. The gated-based feed-forward network [65] is
adopted to transform extracted features.

Channel-wise group attention. To prioritize and preserve
the image content, the unified framework needs to thor-
oughly understand the input images, identifying valid im-
age signals and discardable content (e.g., degradations and
smooth regions). We propose employing the transformer
to accomplish these objectives due to its strong ability to
capture non-local information. However, a significant chal-
lenge raised by the core self-attention mechanism is that
the computational complexity increases quadratically with
the number of tokens (O(N?) for N tokens), resulting in
a computing bottleneck. Given that the channel dimen-
sion typically contains fewer tokens than the spatial di-
mension, we implement self-attention along the channel di-
mension. Such a modification implicitly provides global
information for the spatial dimension with reduced com-
plexity, thereby supporting the above image understanding
process. As illustrated in Fig. 2(c), given an input feature
XCGA ¢ REXWXC 'where H, W and C denote the height,
width and number of channels, respectively, it is initially
processed by a separate 1 x 1 convolutional layer followed

by a 3 x 3 convolutional layer (denoted as K Proj, @ Proj
and V' Proj in Fig. 2(c)) to obtain multi-group query Q, key
K and value V. € RNo*HWXCq where N, denotes the
number of groups and Cj, represents the channels per group.
For each group, channel-wise self-attention is computed us-
ing the following expression,

Q."K;
VCs
where ¢ denotes the group index, Q;, K; and V; indicate the
query, key and value tokens of each group. By specifying
N, and Cy, the computational complexity can be adjusted
and controlled. By performing group-wise self-attention,
the quadratic complexity associated with N is further re-
duced. We visualize the input and output feature maps of
C-GA in Fig. 3. As can be seen, despite the input image be-
ing significantly degraded, where image features and degra-
dations are too closely intertwined, the C-GA still demon-
strates effectiveness in discerning the genuine image con-
tent (as shown in the yellow boxes of X““4 and XCGA),

therefore preserving essential image information.

Spatially decoupled attention. Despite the effectiveness
of C-GA in capturing global information, dealing with finer
details requires local spatial interactions. Most importantly,
such spatial interactions should contribute to distinguish-
ing various degradations without any degradations priors.
We note that different types of degradations exhibit unique
spatial patterns, and their differences are accentuated when
observed from different directions. For instance, the snow
in Fig. 4 appears as spots, whereas rain appears as streaks,
which are more anisotropic and demonstrate more shape
changes in different directions. This observation motivates
us to develop the S-DA, which extracts features from both
horizontal and vertical directions to aggregate more distinc-
tive degradation representations. As shown in Fig. 2(d), the

XG4 = 0GAH(Q4, Ki, Vi) = Softmaz( Wil @)
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S-DA is a convolutional attention equipped with the local
modeling ability to handle finer details. Furthermore, the
computational complexity of S-DA grows linearly, mak-
ing it more resolution-friendly than spatial self-attention
mechanisms [18, 26, 44]. For an input feature XsSbA ¢
RHEXWXC " the value V € RIXWXC ig obtained by pro-
jecting X P4 with a linear layer. Meanwhile, a linear layer
followed by a vertical and horizontal depth-wise convolu-
tion layer is applied on X4 to obtain the spatial attention
map A € REXWXC which evaluates the importance of
each pixel. Then the S-DA is performed as follows,

XSDA

SDAtt(V,A)) = Linear(A® V), ()

where X5P4 denotes the output feature. Linear and ® de-
note the linear layer and Hadamard product, respectively.
Note that we do not apply Sigmoid activation to the at-
tention map A, as we find out it declines the performance
(see Sec. 4.5). The features extracted in S-DA and their
t-SNE visualization are included in Fig. 4 (denoted as w/
SD). As shown in Fig. 4(a), the S-DA successfully captures
degradations-related representations (e.g., rain streaks and
snow spots). Additionally, as illustrated by Fig. 4(b), the ex-
tracted representations are notably discriminative, leading
to the distinct clusters in the t-SNE map. This characteris-
tic significantly benefits the network to identify and flexibly
remove the degradations even under the condition of with-
out degradation priors. We include more analysis regarding
the spatial decoupling design in Sec. 4.5. Depth-wise con-
volution is utilized to implement the vertical and horizontal
layers, with kernel sizes of 1 x K, and K} x 1.

3.4. Training

Progressive training strategy. Compared with the CNN-
based architecture, the attention mechanism benefits from
large training patch sizes [19, 54]. To balance the perfor-
mance and training time, we adopt the progressive training
strategy, which involves training the network with small im-
age patches in the earlier stage, and progressively enlarging
the patch size in the later stage. Such a strategy allows the
network to gradually address inputs of finer details. Further-
more, introducing varying patch sizes throughout the train-
ing process also enables the network to adaptively handle
images of different sizes.

Loss function. We adopt the following rate-distortion loss
as the loss function,

L=\ D(&,2%) + R(F) + R(2)
=Xa - E[|[z?" — &||}] )
—E [logp(9 | 2)] — E [logp=(2)],
where 29! denotes the ground truth image, and )\, is the
hyperparameter that controls the trade-off between distor-

tion and rate terms. R(y) and R(Z) represent the bit rates
of latent discrete representation § and 2, respectively. In

Setting ‘ Degradation ‘ Dataset
‘ ‘ Train ‘ Test
Haze RESIDE [33] RESIDE [33]
Weather Snow CSD[11] CSD[11]
Rain Rain1400 [20] Rain1400 [20]
oc=15
Gaussian Noise o=25 Open Images [31] | Kodak [29]
o =50

Table 1. Details of dataset settings, where the specific types of
degradations and adopted datasets are reported.

FLOPs/G Speed/ms
Method
Sum ‘ Restor. ‘ Compres. | Sum ‘ Restor. ‘ Compres.
Restormer + EVC | 178 ‘ 141 ‘ 804 ‘ 724 ‘
Cascaded SwinlR + EVC | 785 | 748 3508 | 3428 %0

WGWSNet + EVC | 265 | 228 426 | 346

AirNet + EVC ‘339‘ 302 ‘ ‘1209‘ 1129 ‘

Joint EVC* 37 80
Al-in-one Ours-S 37 169
- Ours-L 67 281

Table 2. Computational complexity and inference speed of the
compared methods and our models, where Restor. and Compres.
denote restoration and compression, respectively. Cascaded solu-
tions are denoted as restoration+compression. EVC* denotes con-
verting EVC into a joint solution by training with mixed datasets.

practice, we adopt mean squared error (MSE) loss as the
distortion term (i.e., p = 2).

4. Experiments
4.1. Experimental Settings

As shown in Tab. 1, we consider two types of dataset
settings (i.e., the weather degradation setting and the Gaus-
sian noise degradation setting) to evaluate the performance
of the proposed method.

Weather degradation setting. This setting mainly includes
weather-related degradations, i.e., haze, snow and rain.
We also make qualitative comparisons on REVIDE [66],
Snow100K [43] and SPA+ [67], which contain realistic
hazy, snowy and rainy images.

Gaussian noise degradation setting. This setting contains
corruption of multiple levels of Gaussian noise. For evalu-
ation, we compare the proposed method and cascaded so-
lutions on the Kodak dataset [29], using the noise level in-
cluded for training (i.e., o = 15,25, 50) and unseen noise
levels (i.e., 0 = 35,45, 55). Since the proposed pipeline is
inherently an image compression method, during training,
we randomly select clean images as input with the proba-
bility of 0.2 for two settings.

Compared methods. As shown in Tab. 2, we compare
our approach with both cascaded and joint solutions. The
cascaded solutions are composed of independent image
restoration and compression models. For the weather degra-
dation setting, we consider two types of IR models for a
comprehensive comparison: 1) AirNet [32] and WGWS-
Net [67], which are developed for all-in-one image restora-
tion, and 2) Restormer [65] and SwinIR [40], which are de-
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Figure 5. RD performance evaluation on the RESIDE [33], CSD [

PSNR and MS-SSIM.

signed for specific restoration tasks but serve as strong base-
lines for image restoration. For the Gaussian noise degra-
dation setting, we select Restormer [65] and AirNet [32]
as representative IR methods. We convert these IR models
into all-in-one restoration methods by training with mixed
datasets. For the compression model, we retrain the Large
variant of EVC [23] on the clean datasets of each setting.
During evaluation, the degraded inputs are first restored by
IR models, and then devoted to EVC [23] for image com-
pression. Since there are rare joint solutions for this all-in-
one task, we provide a joint solution (denoted as EVC*) by
training EVC [23] with mixed datasets. Notably, directly
training EVC with mixed datasets leads to instability and
frequent collapse, we therefore reduce the learning rate and
train multiple times to obtain the reported results.

Model series. We propose two variants of different com-
plexity, namely Ours-S (C; = 32) and Ours-L (C, = 48).
Comparisons of computational complexity and inference
speed between the compared methods and our models are
provided in Tab. 2, and elaborated in Sec. 4.3.

Evaluation. To quantitatively evaluate the RD perfor-
mance, we adopt PSNR and MS-SSIM to measure the dis-
tortion, and adopt BPP to assess the bitrates.

4.2. Rate-Distortion Performance

Weather degradation setting. RD performance on de-
graded images is shown in Fig. 5, where the cascaded
solutions are referred to as restoration+compression (as
outlined in Sec. 4.1). As shown by the red curves in
Fig. 5, the proposed Ours-L shows superior performance
across three benchmarks in comparison with other meth-
ods. Compared with the well-performing Restormer+EVC
(the blue curves), Ours-L achieves a BD-PSNR for 0.85
dB, 2.49 dB and 0.11 dB on the RESIDE [33], CSD [11]
and Rain1400 [20] datasets, respectively. Ours-S (the green

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Bits Per Pixel (BPP)

] and Rain1400 [20] dataset, where we evaluate the results with both

0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25
Bits Per Pixel (BPP)

curves) surpasses EVC* by a large margin and outperforms
almost all cascaded methods with much fewer FLOPs and
higher speed, which is further elaborated in Sec. 4.3.

Gaussian noise degradation setting. We report the RD
performance evaluated with PSNR versus BPP in Fig. 6, and
include the results evaluated with MS-SSIM in the supple-
mentary materials. As can be seen, Ours-L (the red curves)
shows superior performance over compared methods across
all noise levels. At the noise level o = 35, Ours-L achieves
a BD-PSNR of 0.13 dB and 0.51 dB over cascaded Air-
Net+EVC (the purple curve) and joint EVC* (the pink
curve), respectively. The efficient Ours-S (the green curves)
demonstrates competitive performance at lower noise levels
(i.e., 15,25 and 35), and much better performance over Air-
Net+EVC at higher noise levels (i.e., 45, 50 and 55).

Since the proposed framework is intrinsically an image
codec, we include the RD performance evaluated on clean
Kodak dataset [29] in Fig. 7. As can be seen, Ours-L
(the red curves) demonstrates comparable performance with
the clean-specific image codec EVC [23] (the blue curves).
When evaluated with PSNR, Ours-L exceeds EVC [23] at
lower bitrates, and shows only a slight performance drop at
higher bitrates, achieving an overall BD-rate improvement
of -0.15%. Similarly, Ours-S (the green curves) also shows
competitive performance in comparison to EVC [23]. It is
worth noting that both degraded and clean images are pro-
cessed with a single model and the same trained weights.
This underlines the superiority of our method to not only ef-
fectively address various degraded images, but also to main-
tain robust RD performance on clean images.

4.3. Efficiency Analysis

To analyze the computing efficiency of the compared
methods and our models, we report the FLOPs and in-
ference speed in Tab. 2, which are evaluated with an in-
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Figure 6. RD performance evaluation on the Kodak dataset [29], where inputs are corrupted by known levels (i.e., 15, 25 and 50) and
unknown levels (i.e., 35, 45 and 55) of Gaussian noise. We evaluate the results with PSNR.
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Figure 7. RD performance evaluation on clean Kodak dataset [29],
where the results are summarized with both PSNR and MS-SSIM.

put size of 256x 256 and 768x 512, respectively. Given
significantly better performance than the cascaded meth-
ods, our models yield much fewer FLOPs and show higher
speed. For instance, compared with the strong baseline
Restormer+EVC, Ours-L takes up 37.64% of the FLOPs
and achieves a 2.86x speedup. Ours-S delivers compara-
ble performance with only 20.79% of FLOPs and achieves
a 4.76x speedup. In comparison with AirNet+EVC, Ours-
S takes up only 10.91% of FLOPs and achieves a 7.15x
speedup, while providing superior RD performance. De-
spite equipping the same FLOPs with the joint EVC*, Ours-
S provides much better RD performance (as shown in Fig. 5
and Fig. 6) and stability during training.

4.4. Qualitative Results

For the weather degradation setting, we provide quali-
tative comparisons on realistic degraded images in Fig. 8.
Qualitative results of synthetic degraded images and Gaus-
sian noise setting are included in the supplementary materi-
als. As shown in Fig. 8, cascaded and joint methods are not
effective in removing the degradations in realistic scenarios,
and even introduce additional distortion. For instance, the
rainy images of the cascaded methods contain unremoved
rain streaks. The cascaded SwinIR+EVC introduces arti-

facts for the hazy image. The joint EVC* additionally intro-
duces visually unpleasant noise, which may result from the
inherent conflict between compression (preserving image
content) and restoration (eliminating degradations). Due
to the lack of degradation-specific designs, EVC* struggles
to distinguish degradations from valid content, leading to
retained degradations and artificial textures/noise in an at-
tempt to enhance “details”. In contrast, our method demon-
strates superior generalization ability for realistic scenarios.

4.5. Ablation Studies

We start with a baseline model constructed by C-GA,
with the configuration of IV, = 4 (see supplementary mate-
rials). Then, we integrate S-DA into the baseline model to
assess the effectiveness of S-DA and spatial decoupling de-
sign. We further compare our HATB with two existing pop-
ular attention variants to explore its potential. All ablation
studies are conducted with Ours-S on the weather degrada-
tion setting, and evaluated on the RESIDE dataset [33].
Effectiveness of S-DA. Based on the baseline model with
C-GA, we integrate S-DA into the transformer blocks to
construct a complete network (denoted as Baseline + S-
DA). As depicted by the green curve in Fig. 9, the inte-
gration of S-DA leads to a significant improvement of RD
performance for the baseline (blue curve), demonstrating
the effectiveness of S-DA.

Effectiveness of spatial decoupling design. To demon-
strate the benefits of the spatial decoupling design in S-DA,
we replace the vertical and horizontal layers with simple
depth-wise convolution layers (marked as w/o SD). As de-
picted in Fig. 9, compared to the complete structure (green
curve), discarding the spatial decoupling (orange curve) re-
sults in a significant drop in performance. We further pro-
vide the visualizations of the features extracted under the
condition of with and without spatial decoupling, and their
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t-SNE results in Fig. 4. As shown in Fig. 4(a), disposing
of spatial decoupling hinders the extraction of degradation-
related features (e.g., rain streaks and snow), resulting in the
indistinguishable t-SNE clusters in Fig. 4(b).

Effectiveness of Sigmoid activation. Considering that ap-
plying Sigmoid activation for attention maps is a standard
design in spatial attention [47, 60], we additionally apply
Sigmoid activation on the spatial attention map (denoted as
w/ Sigmoid) to assess its effectiveness. As illustrated by
the purple curve in Fig. 9, applying the Sigmoid activation
damages the performance compared with the original im-
plementation (depicted by the green curve).

Discussions of attention variants. We attribute the su-
perior RD performance to the hybrid attention mechanism,
which integrates C-GA and S-DA to effectively model
global dependencies and capture discriminative degrada-
tion representations. We further compare it with two pop-
ular attention mechanisms: 1) multi-head depth-wise trans-
form attention (MDTA) [65], and 2) swin-transformer at-
tention (SWTA) [44]. We conduct comparisons by replac-
ing the HATB with the aforementioned attention blocks.
The comparisons of RD performance and model com-
plexity are provided in Fig. 10 and Tab. 3, respectively.

Method | Parameters/M | FLOPs/G | Speed/ms

MDTA | 3639 | 32 | 164

SWTA | 5628 | 48 | 239
HATB (Ours) | 3839 | 37 | 169

Table 3. Complexity of models constructed by different attention
variants, where the computational complexity is evaluated with an
input size of 256 x 256. The inference speed is measured on the
NVIDIA V100 Tensor Core GPU with an input size of 768 x 512.

As illustrated in Fig. 10, with similar model complexity,
our HATB-based model (green curve) demonstrates supe-
rior RD performance than the MDTA-based model (orange
curve). Compared to the SWTA-based model (blue curve),
our HATB-based model provides significantly better perfor-
mance with only 68.21% of the parameters and 77.08% of
the FLOPs, achieving a speedup of 1.41x. This underlines
the potential of our HATB to serve as a versatile block to
boost existing frameworks.

5. Conclusion

We propose a unified framework for all-in-one image
compression and restoration, which equips neural image
codec with the restoration ability against various degrada-
tions with the same set of trained weights. We leverage a
hybrid attention mechanism to effectively distinguish gen-
uine image information from degradations, and differentiate
different types of degradations. Extensive experiments are
conducted to demonstrate the superior RD performance of
our method in handling degraded inputs without sacrificing
the performance on clean data. The ablation studies further
verify the rationality and effectiveness of our design.
Acknowledgments. We acknowledge funding from the Na-
tional Natural Science Foundation of China under Grants
62131003 and 62021001.

616



References

(1]

(2]

(3]

[4]

(3]

(6]

(7]

(8]

(9]

[10]

(11]

[12]

[13]

[14]

Eirikur Agustsson, David Minnen, George Toderici, and
Fabian Mentzer. Multi-realism image compression with a
conditional generator. In CVPR, pages 22324-22333, 2023.
2

Eirikur Agustsson, Michael Tschannen, Fabian Mentzer,
Radu Timofte, and Luc Van Gool. Generative adversarial
networks for extreme learned image compression. In ICCV,
pages 221-231, 2019. 2

Johannes Ballé, Valero Laparra, and Eero P. Simoncelli.
End-to-end optimized image compression. In /CLR, 2017.
2

Johannes Ballé, David Minnen, Saurabh Singh, Sung Jin
Hwang, and Nick Johnston. Variational image compression
with a scale hyperprior. In ICLR, 2018. 2

Fabrice Bellard. Bpg image format. URL https://bellard.
org/bpg, 1(2):1, 2015. 1

Benjamin Bross, Ye-Kui Wang, Yan Ye, Shan Liu, Jianle
Chen, Gary J Sullivan, and Jens-Rainer Ohm. Overview of
the versatile video coding (vvc) standard and its applications.

TCSVT, 31(10):3736-3764, 2021. 1

Benoit Brummer and Christophe De Vleeschouwer. On the
importance of denoising when learning to compress images.
In WACYV, pages 2440-2448, 2023. 2

Shilv Cai, Liqun Chen, Sheng Zhong, Luxin Yan, Jiahuan
Zhou, and Xu Zou. Make lossy compression meaningful for
low-light images. In AAAI volume 38, pages 8§236-8245,
2024. 3

Shilv Cai, Xu Zou, Liqun Chen, Luxin Yan, and Sheng
Zhong. Jointly optimizing image compression with low-
light image enhancement. arXiv preprint arXiv:2305.15030,
2023. 2

Yuxuan Cai, Hongjia Li, Geng Yuan, Wei Niu, Yanyu Li,
Xulong Tang, Bin Ren, and Yanzhi Wang. Yolobile: Real-
time object detection on mobile devices via compression-
compilation co-design. In AAAZ, volume 35, pages 955-963,
2021. 1

Wei-Ting Chen, Hao-Yu Fang, Cheng-Lin Hsieh, Cheng-Che
Tsai, I Chen, Jian-Jiun Ding, Sy-Yen Kuo, et al. All snow re-
moved: Single image desnowing algorithm using hierarchi-
cal dual-tree complex wavelet representation and contradict
channel loss. In ICCV, pages 4196-4205, 2021. 5, 6

Wei-Ting Chen, Zhi-Kai Huang, Cheng-Che Tsai, Hao-
Hsiang Yang, Jian-Jiun Ding, and Sy-Yen Kuo. Learning
multiple adverse weather removal via two-stage knowledge
learning and multi-contrastive regularization: Toward a uni-
fied model. In CVPR, pages 17653-17662, 2022. 3

Xiang Chen, Hao Li, Mingqiang Li, and Jinshan Pan. Learn-
ing a sparse transformer network for effective image derain-
ing. In CVPR, pages 5896-5905, 2023. 2

Yi-Hsin Chen, Kuan-Wei Ho, Shiau-Rung Tsai, Guan-
Hsun Lin, Alessandro Gnutti, Wen-Hsiao Peng, and Ric-
cardo Leonardi. Transformer-based learned image com-
pression for joint decoding and denoising. arXiv preprint
arXiv:2402.12888, 2024. 3

[15]

(16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

(24]

(25]

(26]

(27]

(28]

(29]

617

Ka Leong Cheng, Yueqi Xie, and Qifeng Chen. Optimiz-
ing image compression via joint learning with denoising. In
ECCV, pages 56-73,2022. 1,2

Zhengxue Cheng, Heming Sun, Masaru Takeuchi, and Jiro
Katto. Learned image compression with discretized gaussian
mixture likelihoods and attention modules. In CVPR, pages
7939-7948, 2020. 2

Benjamin Deguerre, Clément Chatelain, and Gilles Gasso.
Fast object detection in compressed jpeg images. In 2079
IEEE Intelligent Transportation Systems Conference (ITSC),
pages 333-338, 2019. 1

Xiaoyi Dong, Jianmin Bao, Dongdong Chen, Weiming
Zhang, Nenghai Yu, Lu Yuan, Dong Chen, and Baining Guo.
Cswin transformer: A general vision transformer backbone
with cross-shaped windows. In CVPR, pages 12124-12134,
June 2022. 5

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, et al. An image is worth 16x16 words: Trans-
formers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020. 5

Xueyang Fu, Jiabin Huang, Delu Zeng, Yue Huang, Xinghao
Ding, and John Paisley. Removing rain from single images
via a deep detail network. In CVPR, pages 3855-3863, 2017.
5,6

Mario Gonzalez, Javier Preciozzi, Pablo Muse, and Andres
Almansa. Joint denoising and decompression using cnn reg-
ularization. In CVPRW, pages 2598-2601, 2018. 2

Zongyu Guo, Zhizheng Zhang, Runsen Feng, and Zhibo
Chen. Causal contextual prediction for learned image com-
pression. TCSVT, 32(4):2329-2341, 2021. 2

Wang Guo-Hua, Jiahao Li, Bin Li, and Yan Lu. Evc: To-
wards real-time neural image compression with mask decay.
InICLR, 2023. 1,2, 6

Dailan He, Ziming Yang, Weikun Peng, Rui Ma, Hongwei
Qin, and Yan Wang. Elic: Efficient learned image compres-
sion with unevenly grouped space-channel contextual adap-
tive coding. In CVPR, pages 5718-5727,2022. 1

Dailan He, Yaoyan Zheng, Baocheng Sun, Yan Wang, and
Hongwei Qin. Checkerboard context model for efficient
learned image compression. In CVPR, pages 14771-14780,
2021. 2

Qibin Hou, Cheng-Ze Lu, Ming-Ming Cheng, and Jiashi
Feng. Conv2former: A simple transformer-style convnet for
visual recognition. arXiv preprint arXiv:2211.11943, 2022.
5

Yuning Huang, Zhihao Duan, and Fengqing Zhu. Narv: An
efficient noise-adaptive resnet vae for joint image compres-
sion and denoising. In ICMEW, pages 188-193. IEEE, 2023.
3

Seungmin Jeon, Kwang Pyo Choi, Youngo Park, and Chang-
Su Kim. Context-based trit-plane coding for progressive im-
age compression. In CVPR, pages 14348-14357, 2023. 1
Eastman Kodak. Kodak lossless true color image suite (pho-
tocd pcd0992). URL http://rOk. us/graphics/kodak, 6, 1993.
5,6,7



(30]

(31]

(32]

(33]

[34]

(35]

[36]

(37]

(38]

(39]

[40]

[41]

[42]

[43]

(44]

[45]

A Burakhan Koyuncu, Han Gao, Atanas Boev, Georgii
Gaikov, Elena Alshina, and Eckehard Steinbach. Con-
textformer: A transformer with spatio-channel attention for
context modeling in learned image compression. In ECCV,
pages 447-463, 2022. 2, 3

Ivan Krasin, Tom Duerig, Neil Alldrin, Vittorio Ferrari, Sami
Abu-El-Haija, Alina Kuznetsova, Hassan Rom, Jasper Ui-
jlings, Stefan Popov, Andreas Veit, et al. Openimages: A
public dataset for large-scale multi-label and multi-class im-
age classification. Dataset available from https://github.
com/openimages, 2(3):18,2017. 5

Boyun Li, Xiao Liu, Peng Hu, Zhongqin Wu, Jiancheng Lv,
and Xi Peng. All-in-one image restoration for unknown cor-
ruption. In CVPR, pages 17452-17462, 2022. 2,3, 5, 6
Boyi Li, Wenqi Ren, Dengpan Fu, Dacheng Tao, Dan Feng,
Wenjun Zeng, and Zhangyang Wang. Benchmarking single-
image dehazing and beyond. TIP, 28(1):492-505, 2018. 5,
6,7

Jiacheng Li, Chang Chen, Zhen Cheng, and Zhiwei Xiong.
Toward dnn of luts: Learning efficient image restoration with
multiple look-up tables. TPAMI, 2024. 2

Jiahao Li, Bin Li, and Yan Lu. Hybrid spatial-temporal en-
tropy modelling for neural video compression. In MM, pages
1503-1511, 2022. 4

Jiahao Li, Bin Li, and Yan Lu. Neural video compression
with feature modulation. In CVPR, pages 26099-26108,
2024. 1,2

Ruoteng Li, Robby T Tan, and Loong-Fah Cheong. All
in one bad weather removal using architectural search. In
CVPR, pages 3175-3185, 2020. 2

Yawei Li, Yuchen Fan, Xiaoyu Xiang, Denis Demandolx,
Rakesh Ranjan, Radu Timofte, and Luc Van Gool. Effi-
cient and explicit modelling of image hierarchies for image
restoration. In CVPR, pages 18278-18289, 2023. 2
Yinglong Li, Jiacheng Li, and Zhiwei Xiong. Look-up table
compression for efficient image restoration. In CVPR, pages
26016-26025, June 2024. 2

Jingyun Liang, Jiezhang Cao, Guolei Sun, Kai Zhang, Luc
Van Gool, and Radu Timofte. Swinir: Image restoration us-
ing swin transformer. In /CCV, pages 1833-1844, 2021. 2,
5

Huan Liu, George Zhang, Jun Chen, and Ashish J Khisti.
Lossy compression with distribution shift as entropy con-
strained optimal transport. In /CLR, 2021. 2

Jinming Liu, Heming Sun, and Jiro Katto. Learned image
compression with mixed transformer-cnn architectures. In
CVPR, pages 14388-14397,2023. 1,2, 3

Yun-Fu Liu, Da-Wei Jaw, Shih-Chia Huang, and Jeng-Neng
Hwang. Desnownet: Context-aware deep network for snow
removal. TIP, 27(6):3064-3073, 2018. 5

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng
Zhang, Stephen Lin, and Baining Guo. Swin transformer:
Hierarchical vision transformer using shifted windows. In
ICCV, pages 10012-10022, 2021. 5, 8

David Minnen, Johannes Ballé, and George D Toderici.
Joint autoregressive and hierarchical priors for learned im-
age compression. NeurlPS, 31, 2018. 2

[46]

[47]

(48]

[49]

[50]

(51]

(52]

(53]

[54]

[55]

[56]

(571

(58]

[59]

[60]

[61]

618

David Minnen and Saurabh Singh. Channel-wise autoregres-
sive entropy models for learned image compression. In /CIP,
pages 3339-3343. IEEE, 2020. 2

Diganta Misra, Trikay Nalamada, Ajay Uppili Arasanipalai,
and Qibin Hou. Rotate to attend: Convolutional triplet at-
tention module. In WACYV, pages 3139-3148, January 2021.
8

Dongwon Park, Byung Hyun Lee, and Se Young Chun. All-
in-one image restoration for unknown degradations using
adaptive discriminative filters for specific degradations. In
CVPR, pages 5815-5824. IEEE, 2023. 2, 3

Vaishnav Potlapalli, Syed Waqas Zamir, Salman Khan, and
Fahad Shahbaz Khan. Promptir: Prompting for all-in-one
blind image restoration. arXiv preprint arXiv:2306.13090,
2023. 3

Javier Preciozzi, Mario Gonzédlez, Andrés Almansa, and
Pablo Musé. Joint denoising and decompression: A patch-
based bayesian approach. In ICIP, pages 1252-1256, 2017.
2

Yichen Qian, Xiuyu Sun, Ming Lin, Zhiyu Tan, and Rong
Jin. Entroformer: A transformer-based entropy model for
learned image compression. In ICLR, 2022. 2, 3

Xuebin Sun, Sukai Wang, Miaohui Wang, Shing Shin Cheng,
and Ming Liu. An advanced lidar point cloud sequence cod-
ing scheme for autonomous driving. In MM, pages 2793—
2801, 2020. 1

David S Taubman, Michael W Marcellin, and Majid
Rabbani.  Jpeg2000: Image compression fundamentals,
standards and practice. Journal of Electronic Imaging,
11(2):286-287, 2002. 1

Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco
Massa, Alexandre Sablayrolles, and Hervé Jégou. Training
data-efficient image transformers & distillation through at-
tention. In ICML, pages 10347-10357, 2021. 5

Jeya Maria Jose Valanarasu, Rajeev Yasarla, and Vishal M
Patel. Transweather: Transformer-based restoration of im-
ages degraded by adverse weather conditions. In CVPR,
pages 2353-2363, 2022. 2

Gregory K Wallace. The jpeg still picture compression stan-
dard. Communications of the ACM, 34(4):30-44, 1991. 1
Shiyao Wang, Hongchao Lu, and Zhidong Deng. Fast object
detection in compressed video. In ICCV, pages 71047113,
2019. 1

Yiting Wang, Pak Hung Chan, and Valentina Donzella.
Semantic-aware video compression for automotive cameras.
IEEE Transactions on Intelligent Vehicles, 8(6):3712-3722,
2023. 1

Zhendong Wang, Xiaodong Cun, Jianmin Bao, Wengang
Zhou, Jianzhuang Liu, and Houqiang Li. Uformer: A gen-
eral u-shaped transformer for image restoration. In CVPR,
pages 17683-17693, 2022. 2

Sanghyun Woo, Jongchan Park, Joon-Young Lee, and In So
Kweon. Cbam: Convolutional block attention module. In
ECCV, pages 3-19, 2018. 8

Zhiwei Xiong, Xiaoyan Sun, and Feng Wu. Robust web im-
age/video super-resolution. 77P, 19(8):2017-2028, 2010. 2



[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

Zizheng Yang, Jie Huang, Jiahao Chang, Man Zhou, Hu Yu,
Jinghao Zhang, and Feng Zhao. Visual recognition-driven
image restoration for multiple degradation with intrinsic se-
mantics recovery. In CVPR, pages 14059-14070, 2023. 1
Mingde Yao, Ruikang Xu, Yuanshen Guan, Jie Huang, and
Zhiwei Xiong. Neural degradation representation learning
for all-in-one image restoration. TIP, 2024. 2, 3

Juncheol Ye, Hyunho Yeo, Jinwoo Park, and Dongsu Han.
Accelir: Task-aware image compression for accelerating
neural restoration. In CVPR, pages 18216-18226, 2023. 2
Syed Waqas Zamir, Aditya Arora, Salman Khan, Mu-
nawar Hayat, Fahad Shahbaz Khan, and Ming-Hsuan Yang.
Restormer: Efficient transformer for high-resolution image
restoration. In CVPR, pages 5728-5739, 2022. 2,4, 5,6, 8
Xinyi Zhang, Hang Dong, Jinshan Pan, Chao Zhu, Ying
Tai, Chengjie Wang, Jilin Li, Feiyue Huang, and Fei Wang.
Learning to restore hazy video: A new real-world dataset and
anew method. In CVPR, pages 9239-9248, 2021. 5

Yurui Zhu, Tianyu Wang, Xueyang Fu, Xuanyu Yang, Xin
Guo, Jifeng Dai, Yu Qiao, and Xiaowei Hu. Learn-
ing weather-general and weather-specific features for image
restoration under multiple adverse weather conditions. In
CVPR, pages 21747-21758, 2023. 3, 5

Yinhao Zhu, Yang Yang, and Taco Cohen. Transformer-
based transform coding. In /CLR, 2021. 2, 3

Renjie Zou, Chunfeng Song, and Zhaoxiang Zhang. The
devil is in the details: Window-based attention for image
compression. In CVPR, pages 17492-17501, 2022. 2, 3

619



	. Introduction
	. Related Work
	. Neural Image Compression
	. All-in-one Image Restoration
	. Joint Image Compression and Restoration

	. Method
	. Problem Formulation
	. Overview
	. Hybrid-Attention Transformer Block
	. Training

	. Experiments
	. Experimental Settings
	. Rate-Distortion Performance
	. Efficiency Analysis
	. Qualitative Results
	. Ablation Studies

	. Conclusion

