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Abstract

Interest point detection and description play an impor-
tant role in many visual tasks, including image registra-
tion, pose estimation, 3D reconstruction, and more. State-
of-the-art interest point detection techniques are based on
deep neural networks (NNs), which are prone to produce
overconfident predictions. However, calibrated and ro-
bust uncertainty measurement is crucial when deploying
deep NN models in safety critical applications. In this
work, we propose a novel Uncertainty-Aware interest Point
(UAPoint) detection method to address this problem. Our
method leverages evidential learning to learn both aleatoric
and epistemic uncertainty. We further propose a con-
strained sampling scheme to construct more efficient train-
ing pairs for the descriptor decoder. We evaluate our
method on a wide range of benchmarks and show that our
method achieves state-of-the-art performance. Code will
be released in https://github.com/JingboZeng/
UAPoint.

1. Introduction
Interest point detection aims to identify and locate dis-

tinctive points in images. These interest points, a.k.a key-
points, should be invariant to noise, geometric transforma-
tion, and viewpoint and illumination changes. They serve
as the foundation for various tasks such as image registra-
tion [32,49], 3D reconstruction [23], structure-from-motion
[51], and simultaneous localization and mapping [10, 42].

Classical methods for interest point detection perform
keypoint localization and descriptor extraction in a stage-
wise manner [1,5,9,20,24,29,38,47]. State-of-the-art meth-
ods are based on deep neural networks (NNs) [4, 11, 14, 18,
25,28,33–36,45,46,57,58,60,61,63,64]. These NN models
have separate branches for keypoint detection and descrip-
tor prediction, and perform both tasks simultaneously. The
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(a) UAPoint (b) SuperPoint

(c) Aleatoric Uncertainty (d) Epistemic Uncertainty

Figure 1. Comparison between the proposed UAPoint and Su-
perPoint [11]. UAPoint computes the uncertainty of each interest
point detected. (a) interest point by UAPoint. (b) interest point
by SuperPoint. (c) aleatoric uncertainty of UAPoint (d) epistemic
uncertainty of UAPoint. Higher intensity in (c) and (d) indicates
interest points with less uncertainties.

output of the keypoint detection branch is a heatmap that
predicts the probability of each location being a keypoint,
while the descriptor branch outputs dense local descriptors
(one for each pixel).

Deep learning-based keypoint detection methods suf-
fer from a common limitation of deterministic neural nets:
the trained model remains ignorant to its prediction confi-
dence. As revealed in [19], modern neural networks tend
to produce overconfident results. This can pose problems
when being deployed in safety critical domains, where the
model may predict confident keypoints at unreliable loca-
tions, making accurate matching difficult.

Motivated by the need for calibrated and robust uncer-
tainty measurement, we propose a novel Uncertainty-Aware
interest Point (UAPoint) detection method which computes
uncertainties for each interest point detected as shown in
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Fig. 1. Our method leverages evidential learning [2] to
learn both aleatoric and epistemic uncertainty. In particular,
the former measures the uncertainty caused by the inherent
noise in the data, while the latter measures the uncertainty
caused by the lack of knowledge of the model. We demon-
strate on a wide range of benchmarks that the incorporation
of evidential learning into keypoint detection leads to im-
proved model performance.

Our main contributions can be summarized as follows:

1. We introduce an uncertainty aware keypoint detection
and description method, which incorporates deep evi-
dential learning into keypoint detection.

2. We propose a constrained sampling scheme to improve
the self-supervised descriptor training. By selecting
hard negative samples, the model learns better descrip-
tors to distinguish detected keypoints.

3. We evaluate our method extensively and demonstrate
that it outperforms state-of-the-art methods in various
tasks, including homography estimation, outdoor lo-
calization, and relative pose estimation.

2. Related Works

2.1. Interest point detection and description

Early works such as SIFT [38], SURF [5], and others
[9, 20, 24, 47, 48] have demonstrated their effectiveness in
practical applications. These techniques use prior knowl-
edge from designers to explicit geometric concept like cor-
ners and gradients. Some of them are robust to deal with
viewpoint change and illumination variance. Handcrafted
detectors have laid the groundwork for subsequent research.
With the advent of learning-based algorithms, these meth-
ods are less popular, but still exhibit comparable advantages
in certain scenarios [16, 42].

Recent work like SuperPoint [11] adopts self-supervised
learning to detect points with obvious geometrical features
as keypoints from synthetic dataset with adaptation on real-
world images. GLAMpoint [56] exploits reinforcement
learning methods to find correctly matched keypoints for
homography estimation between image pairs. Some other
methods [6, 12, 43, 46, 57, 62, 63] also provide end-to-end
pipelines. NeSS-ST [44] combines the classical handcrafted
Shi-Tomasi detector [24] with a neural network to select
stable keypoints. SuperGlue [49] and LightGlue [32] fo-
cus on introducing improved and more productive meth-
ods for feature matching. SiLK [18] aims at simplicity on
structure and training. Recently, some researchers work on
dense matching without keypoints [13, 15]. Although our
approach can be applied to these methods, this paper fo-
cuses on keypoint based methods.

2.2. Uncertainty Estimation

With the increasing application of deep learning tech-
niques, prediction differentiation has become a growing de-
mand. One possible solution is to measure uncertainty of
each forecast. Bayesian neural network [26] provides a cre-
ative inspiration, which introduces uncertainty by substitut-
ing the deterministic weight parameters with distributions.
However, the expensive computational cost to optimize a
large number of parameters is unaffordable. Monte Carlo
dropout [17] is widely used to reduce this negative influ-
ence. It formulates the dropout process as Bernoulli dis-
tributed random variables to view the training process as
variational inference. Deep evidential regression [2] extend
uncertainty estimation to regression tasks, assuming all pre-
dictions are normally distributed. It is followed by normal
inverse gamma distribution estimation to ensure an explicit
representation of the aleatoric and epistemic uncertainties.

Previously, uncertainty estimation has been explored for
many regression tasks such as classification, object detec-
tion [22, 59], stereo matching [7, 37, 53], model generaliza-
tion [39]. [41, 55] provide plug-and-play use spatial covari-
ance to model uncertainty. They focus on selecting avail-
able detections with less spatial covariance in existing re-
sults. In this work, we introduce evidential learning into
keypoint detection by computing uncertainties on keypoint
heatmap as an alternative target, which means uncertainty
is an extra criterion to excavate potential relationship.

3. Methodology
The system diagram of our method is presented in Fig. 2.

The proposed UAPoint framework consists of three com-
ponents: feature encoder, uncertainty aware interest point
decoder, and constrained descriptor decoder. The feature
encoder adopts the pretrained ResNet-34 [21] as back-
bone. The uncertainty aware interest point decoder com-
putes interest point heatmap and predicts both aleatoric un-
certainty and epistemic uncertainty (Sec. 3.1). The con-
strained descriptor decoder computes descriptor for each in-
terest point. We use the same structure as that used in Su-
perPoint [11], but compute a different loss via constrained
sampling (Sec. 3.2). The loss of each module are detailed
in Sec. 3.3.

3.1. Uncertainty Aware Interest Point Decoder

As depicted in Fig. 3, the uncertainty aware keypoint de-
coder computes over feature map with size H/8 ×W/8 ×
256 from feature encoder and outputs a tensor sized H/8×
W/8× 65. The tensor is further transformed through Soft-
max and Reshape to obtain a H × W heatmap D. D rep-
resents the probability of each pixel in the original input
being an interest point. At the same time, D is also used
by the uncertainty estimation head to compute the aleatoric
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Figure 2. System diagram of the proposed UAPoint framework. It comprises three major components: feature encoder, uncertainty aware
interest point decoder, and constrained descriptor decoder. We adopt a multi-task learning approach to train the network.

Figure 3. The structure of uncertainty aware interest point decoder. It transforms the tensor sized H/8×W/8× 65 to H ×W . It predicts
key point heatmap D and three distribution parameters τ, ϕ, ω to measure aleatoric and epistemic uncertainties.

and epistemic uncertainties.
To achieve uncertainty aware keypoint detection, we in-

corporate evidential learning into the network. Following
deep evidential learning [2], the heatmap D for keypoint de-
tection should follow a normal distribution with unknown
parameter (µ, σ2), where µ is the mean and σ is the vari-
ance. Assuming µ and σ can be drawn through normal dis-
tribution and inverse-gamma distribution respectively, these
two can be represented by:

D ∼ N (µ, σ2), µ ∼ N (D, σ2τ−1), σ2 ∼ Γ−1(ϕ, ω), (1)

where N (·) represents normal distribution, Γ−1(·) repre-
sents inverse-gamma distribution, D ∈ R, ϕ > 1, ω > 0,
and τ > 0.

To estimate the three parameters τ, ϕ, ω, we employ
three branches. As shown in Fig. 3, the uncertainty es-
timation head employs a 2D convolution layer with soft-
plus activation in each branch, and outputs three tensors
Vτ , Vϕ, Vω ∈ RH×W . The distribution parameters can be
obtained as follows:

o = Softplus
(∑

Vo · D
)
, (2)

where o ∈ {τ, ϕ, ω} and Softplus(·) denotes the softplus
activation function.

The aleatoric uncertainty Ua and epistemic uncertainty
Ue can be computed as:

Ua = E(σ2) =
ω

ϕ− 1
,

Ue = V ar(µ) =
ω

τ(ϕ− 1)
.

(3)

3.2. Constrained Sampling

The descriptor decoder has the same structure as that in
SuperPoint [11]. It is trained in a self-supervised manner
under the assumption that each interest point shall be in-
variant to homography transform. Previously Schroff et al.
[52] proposed to compute a triplet loss by comparing each
point with its paired positive point and one randomly se-
lected negative point. SuperPoint [11] follows this scheme
to compute descriptor loss. However, as most detected in-
terest points come from distinctive locations like edges, cor-
ners, and junctions, they are often easily differentiable from
points that are randomly sampled from other parts of the im-
age, making model training inefficient. Intuitively, selecting
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hard negative points, i.e., keypoints that are most similar to
the anchor, would help the network learn more distinctive
descriptors.

We propose a constrained sampling approach. In addi-
tion to one randomly selected negative point Nr, we fur-
ther include a second point as constrained negative point
via constrained sampling, where we choose another point
Nc from other keypoints that are most similar to the an-
chor (see Fig. 2 for illustration). We rank keypoints by their
Euclidean distance to the anchor keypoint and choose one
randomly from the top k most similar ones. We use k = 5
in our paper based on the ablation study in Fig. 5d

3.3. Loss Functions

3.3.1 Detector Loss

The detector loss of an image is computed as the mean
cross-entropy loss between the predicted heatmap and the
ground truth:

Lp(D) =
1

HW

H,W∑
i=1,j=1

CE(D(i, j),Dgt(i, j)), (4)

where CE(·) denotes cross entropy loss, the subscripts
(i, j) denote pixel coordinates.

The detector loss Ldet is computed from pairs of syn-
thetically warped images:

Ldet = Lp(DX) + Lp(DH(X)), (5)

where DX denotes the heatmap for input image X and H(·)
denotes the homography warping.

3.3.2 Uncertainty Loss

With the definition of different distribution parameters, we
define uncertainty loss Lun inspired by [2, 37], which is a
combination of two terms Lneg and Lreg . Lneg is computed
during training process, represented by:

Lneg = (ϕ+
1

2
) log(Dgt −D)τ − ϕ log(Ψ)

+ log(
Γ(ϕ)

Γ(ϕ+ 1
2 )

) +
1

2
log(

π

τ
),

(6)

where Ψ = 2ω(τ + 1).
To reduce the evidence of incorrect detection, a regular-

ization loss Lreg is introduced:

Lreg =
∣∣Dgt −D

∣∣ · (2τ + ϕ). (7)

The overall uncertainty loss Lun is computed as:

Lun = Lneg + αLreg, (8)

where α > 0 controls the weight of the regularization loss.
We use α = 0.5 based on the ablation study in Fig. 5a.

3.3.3 Descriptor Loss

The descriptor loss Ldes is computed as:

Ldes =
1

M

M∑
i=1

[
d(vi, pi)−

1

2
d(vi, nr,i)−

1

2
d(vi, nc,i)

]
, (9)

where M denotes the number of keypoints, d(·) denotes
Euclidean distance function, vi denotes the descriptor of
ith selected interest point Pi, pi denotes the descriptor of
its corresponding positive point in the warped image, and
nr,i and nc,i denote the descriptors for the selected negative
points Nr,i and Nc,i for the ith keypoint respectively.

3.3.4 Overall Loss

The overall loss is a combination of the above three losses:

L = Ldet + λ1Lun + λ2Ldes, (10)

where λ1 and λ2 are parameters to control the balance of
the three items. We use λ1 = 1 and λ2 = 0.1 based on
ablation studies in Fig. 5b and Fig. 5c, respectively.

4. Experiments
Implementation Details We follow the original pipeline
in [11] to train UAPoint model. We use pretrained ResNet-
34 to initialize the backbone in UAPoint. Similarly to that
in SuperPoint, we retrain MagicPoint in synthetic data and
then adapt it to MS-COCO [31] through homography adap-
tation. MS-COCO is a large-scale object detection dataset
with more than 330K images, providing annotations for dif-
ferent applications such as object detection, interest point
detection, and image segmentation. We use COCO2014
to train our model. The generated pseudo-ground truth is
used to train UAPoint in a self-supervised manner. We set
the training batch size as 64, initial learning rate as 0.0001,
each training process needs 200,000 iterations. The learn-
ing rate is decayed by a factor of 2 after 50, 000, 100, 000,
and 150, 000. Regarding ablation studies, all experiments
are in variants of UAPoint. We maintain all other settings
consistent with the original work for each model.

Evaluation of interest point detectors and descriptors has
been well studied and we follow the protocol proposed by
Mikołajczyk et al. [40] to evaluate UAPoint. We compute
two detector metrics, mean localization error (MLE) and re-
peatability (Rep.), two descriptor metrics mean average pre-
cision (mAP) and matching score (MS) to measure the per-
formance of interest point detector and descriptor, similar
to that in [11, 18]. Our model is trained on MS-COCO [31]
images and evaluated on HPatches dataset.

4.1. Homography Estimation and Repeatability

We first evaluate the homography estimation of UAPoint
on HPatches [3] dataset. HPatches dataset is a public set for
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Table 1. HPatches Detector and Descriptor Evaluation. UAPoint achieves competitive performance to other methods. Bold represents the
best result and Underline shows the second best.

Method MLE↓ Rep.↑ mAP↑ MS↑ Homo. Esti.↑
ϵ = 1 ϵ = 3 ϵ = 1 ϵ = 3 ϵ = 1 ϵ = 3 ϵ = 1 ϵ = 3 ϵ = 1 ϵ = 3

SIFT [38] 0.751 0.833 0.323 0.495 0.372 0.694 0.269 0.313 0.424 0.676
ORB [48] 1.016 1.157 0.482 0.641 0.515 0.735 0.197 0.266 0.150 0.395
LIFT [62] 0.928 1.102 0.241 0.449 0.416 0.664 0.275 0.315 0.284 0.598
SuperPoint [11] 0.974 1.158 0.352 0.581 0.537 0.821 0.331 0.470 0.310 0.684
R2D2 [46] 0.915 1.043 0.363 0.718 0.342 0.754 0.375 0.488 0.204 0.497
DISK [57] 0.897 0.961 0.384 0.686 0.223 0.519 0.380 0.474 0.221 0.520
SiLK [18] 0.891 0.879 0.622 0.807 0.615 0.873 0.404 0.513 0.398 0.664
Ness-ST 0.887 0.845 0.628 0.784 0.608 0.842 0.411 0.509 0.385 0.718
UAPoint 0.885 0.925 0.636 0.796 0.630 0.861 0.423 0.527 0.407 0.706

Table 2. Comparison with LoFTR [54]. LoFTR is trained on
MegaDepth and ScanNet, respectively.

Method mAP↑ Homo. Esti↑
ϵ = 1 ϵ = 3 ϵ = 1 ϵ = 3

LoFTR (MegaDepth) 0.645 0.871 0.373 0.648
LoFTR (ScanNet) 0.236 0.568 0.066 0.331
UAPoint 0.630 0.861 0.407 0.706

evaluating the local descriptor, which contains 116 scenes
and 696 different images. These 116 scenes are divided
into two parts; the first 57 scenes perform large illumination
changes, and the other 59 record large viewpoint changes.

We compare UAPoint with seven different methods:
SIFT [38], ORB [48], LIFT [62], SuperPoint [11], R2D2
[46], DISK [57], and SiLK [18]. All pairs of original inputs
are resized to 1080× 1080, with 3000 interest points. NMS
is still implemented to ensure an even distribution. We use
different thresholds ϵ = 1, 3 respectively, to introduce dif-
ferent homographies.

Quantitative homography estimation results are given in
Tab. 1. UAPoint outperforms the existing detector-based
methods on repeatability and mean average precision when
ϵ = 1, while comparable for ϵ = 3. In particular, our
approach has a strong margin when the error threshold is
small. These prove UAPoint has a great accuracy when
facing pixel-level localization. SIFT provides great per-
formance on MLE and homography estimation (ϵ = 1),
because it utilizes additional sub-pixel localization, while
other methods do not perform this step. Fig. 4 shows a visu-
alized comparison. Although each method has similar per-
formance facing pixels with distinct geometric features, our
proposed UAPoint provide more precise detection and less
error when tackling repeatable or low-texture region. Even
compared to the detector-free method [54], as the results
shown in Tab. 2, our method still has competitive perfor-
mance.

Table 3. Evaluation of repeatability on HPatches dataset.

Methods Illumination Viewpoint
mAA↑(ϵ = 5) mAA↑(ϵ = 5)

SuperPoint [11] 0.883 0.541
R2D2 [46] 0.888 0.506
Ness-ST [44] 0.883 0.556
UAPoint 0.881 0.564

The repeatability is computed as the percentage of key-
points that are both detected in image pairs. We evaluate the
repeatability of our model on HPatches compared to NeSS-
ST [44], R2D2 [46], SuperPoint [11]. We use mean Aver-
age Accuracy for both illumination and viewpoint change.
The original inputs are resized to 1024 × 1024, and each
image has no more than 1000 points. The results are shown
in Tab. 3. Our method has an improvement when facing
viewpoint changes and shows similar performance under il-
lumination changes compared with other methods.

4.2. Ablation Studies

4.2.1 Effectiveness of Components in UAPoint

To evaluate the effectiveness of different modules in our
framework, we train different variants using MS-COCO
[31], each training requires 200,000 iterations and 10 GPU
days. Our baseline is a retrained SuperPoint [11], but we
utilizes ResNet-34 [21] as the backbone. Quantitative re-
sults are given in Tab. 4. We validate these variants with the
same metrics. Ablation studies show that these two modules
are effective and indispensable. The overall framework has
excellent performance on all metrics. The constrained sam-
pling provides better improvement on matching score and
homography estimation with ϵ = 1 and ϵ = 3, while un-
certainty estimation contributes more on repeatability, mean
average precision, and homography estimation when ϵ = 5.
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(a) UAPoint (b) SuperPoint (c) LIFT (d) SIFT

Figure 4. Visualization of keypoints detected by LIFT [62], SIFT [38], SuperPoint [11], and UAPoint. UAPoint is able to suppress keypoint
detected from region with low textures or high repeatable patterns (highlighted by red boxes).

Table 4. Ablation study on the proposed components. UN repre-
sents the uncertainty loss and CS represents the constrained sam-
pling scheme.

Method Detector&Descriptor Homo. Estimation
UN CS Rep.↑ mAP↑ MS↑ ϵ = 1 ↑ ϵ = 3 ↑ ϵ = 5 ↑

0.654 0.806 0.502 0.337 0.686 0.749
✓ 0.717 0.822 0.515 0.364 0.695 0.763

✓ 0.732 0.825 0.513 0.382 0.697 0.785
✓ ✓ 0.796 0.861 0.527 0.407 0.706 0.851

Table 5. Comparison of models sizes and running-time.

UAPoint SuperPoint NeSS-ST R2D2
Size (MB) 7.52 4.96 3.54 1.85
Inference time (ms) 5.1 4.0 8.2 24.4

4.2.2 Ablation studies for different parameters

We also evaluate the performance using different parame-
ters α in Eq. (8), λ1 and λ2 in Eq. (10), and top-k selection
in Sec. 3.2. The results are provided in Fig. 5. Our frame-
work provides the best performance when α = 0.5, λ1 = 1,
λ2 = 0.1, and k = 5. We follow these results to compare
the performance in downstream tasks.

We also provide comparison on computational cost and
inference time between UAPoint and recent learning-based
competitors like SuperPoint, R2D2, and NeSS-ST in Tab. 5.

4.3. Performance in Other Tasks

We validate our UAPoint by combining it with dense
matchers for downstream tasks, including outdoor localiza-

tion, outdoor pose estimation, and indoor pose estimation.
Some competitive matching algorithms and detector-free
methods are used. We follow the setup in LightGlue [32]
to design this comparison.

4.3.1 Outdoor Localization

We evaluate visual localization using Aachen Day-Night
benchmark [50], which is a dataset designed for bench-
marking outdoor visual localization in changing conditions.
It has 4328 database images and 922 query images with
changing conditions of weather, season, and day-night cy-
cles. It focuses on localizing high-quality night-time im-
ages. We measure the percentage of query images localized
in three accuracy intervals: (0.25m, 2◦), (0.5m, 5◦), and
(5m, 10◦). The second column in Tab. 6 shows in day-time
scenarios, UAPoint performs better on (0.25m, 2◦) but on
par with SuperPoint on (0.5m, 5◦). In night-time images,
UAPoint performs better on both intervals. For the loose
criteria (5m, 10◦), the accuracy is saturated.

4.3.2 Outdoor Pose Estimation

We use image pairs from MegaDepth [30] for outdoor pose
estimation. MegaDepth serves as a comprehensive resource
created to tackle the difficulties of perceiving depth in im-
ages for depth estimation. We select RANSAC [27] as the
pose estimator. To measure the performance, we predict
pose accuracy and record AUC at 5◦, 10◦, and 20◦ in rota-
tions and translations to compare the angular error between
different feature extractors and matchers. The forth column
in Tab. 6 provides the results.

2149



(a) various α in Eq. (8)

(b) various λ1 in Eq. (10)

(c) various λ2 in Eq. (10)

(d) various k in top-k selection in Sec. 3.2

Figure 5. Sensitivity of model performance for various parameters.

Table 6. Comparison for downstream tasks: outdoor localization performance on Aachen Day-Night dataset, outdoor pose estimation
performance on MegaDepth1500 dataset, and indoor pose estimation on ScanNet dataset. The advantage of UAPoint is most significant
for smaller error tolerance.

Methods
Aachen Day-Night MegaDepth ScanNet

Day↑ Night↑ Pairs per RANSAC AUC↑ Pose Esti. AUC↑
(0.25m, 2◦) / (0.5m, 5◦) / (5m, 10◦) Second 5◦ / 10◦ / 20◦ 5◦ / 10◦ / 20◦

LoFTR 0.887 / 0.956 / 0.990 0.785 / 0.906 / 0.990 - 0.503 / 0.671 / 0.799 0.221 / 0.408 / 0.576
Alike [64] 0.857 / 0.924 / 0.967 0.816 / 0.888 / 0.990 - 0.494 / 0.618 / 0.714 0.08 / 0.164 / 0.259
XFeat [45] 0.847 / 0.915 / 0.965 0.776 / 0.989 / 0.980 - 0.416 / 0.564 / 0.677 0.167 / 0.326 / 0.478
ZippyPoint [25] 0.807 / 0.886 / 0.937 0.612 / 0.704 / 0.796 - 0.236 / 0.349 0.463 0.165 / 0.331 / 0.488
SuperPoint+SGMNet 0.868 / 0.942 / 0.977 0.837 / 0.918 / 0.990 10.2 0.432 / 0.616 / 0.756 0.154 / 0.321 / 0.483
SuperPoint+SuperGlue 0.882 / 0.955 / 1.000 0.867 / 0.929 / 1.000 6.5 0.497 / 0.671 / 0.787 0.162 / 0.338 / 0.518
SuperPoint+LightGlue 0.892 / 0.954 / 1.000 0.877 / 0.939 / 1.000 17.2 0.499 / 0.670 / 0.805 0.164 / 0.336 / 0.502
UAPoint+SGMNet - - - - -
UAPoint+SuperGlue 0.887 / 0.954 / 1.000 0.871 / 0.931 / 1.000 5.3 0.509 / 0.673 / 0.804 0.165 / 0.327 / 0.524
UAPoint+LightGlue 0.894 / 0.954 / 1.000 0.881 / 0.940 / 1.000 15.8 0.514 / 0.675 / 0.811 0.178 / 0.351 / 0.536

4.3.3 Indoor Pose Estimation

As indoor images are lacking of texture, indoor pose estima-
tion is a challenging issue. We use ScanNet [8] as the test
set, and report AUC at 5◦, 10◦, and 20◦. The last colunm in
Tab. 6 presents the results.

4.4. Uncertainty Analysis

Aleatoric uncertainty refers to the inherent randomness
of the data, while epistemic uncertainty represents a lack
of information during training. The former is introduced
by the inevitable noise when collecting data, and it cannot
be reduced by optimization. The latter relates to model ca-
pacity, measuring the uncertainty of model parameters esti-
mated by the training process. We conduct Pearson corre-
lation analysis between MLE and two uncertainties on MS-
COCO [31] training set and HPatches [3].

For both Fig. 6a and Fig. 6b, the heatmap show that MLE
and its uncertainties have a positive correlation, which pro-
vides a correctness of our motivation to introduce uncer-

(a) MLE on MS-COCO (b) MLE on HPatches

Figure 6. Uncertainty analysis. (a) The Pearson correlation coef-
ficient between MLE and the learned uncertainties on MS-COCO;
(b) The Pearson correlation coefficient between MLE on HPatches
and the learned uncertainties.

tainty to rule interest point detection. The value between
MLE and epistemic uncertainty is higher than the value be-
tween MLE and aleatoric uncertainty. On the MS-COCO
training set, the former is 0.83 and the latter is 0.42. On
HPatches, these values are 0.79 and 0.33. It is worth not-
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(a) Keypoint detection (b) Aleatoric uncertainty (c) Epistemic uncertainty

Figure 7. Visualization of keypoints detected by UAPoint and the learned uncertainties. Higher intensity indicates higher confidence (less
uncertainty). UAPoint detects the most confident keypoints at regions with distinctive patterns (indicated by red circles).

Table 7. Effect of discarding uncertain keypoints.

Points Det. & Des. Homo. Esti.
Rep.↑ mAP↑ MS↑ ϵ = 1↑ ϵ = 3↑

0% 0.796 0.861 0.527 0.407 0.706
5% 0.803 0.868 0.534 0.415 0.707
10% 0.805 0.872 0.536 0.418 0.713
15% 0.794 0.863 0.522 0.411 0.708

ing that the performance of our framework is more related
to epistemic uncertainty. The results also show that lower
uncertainty will lead to lower MLE and more accurate de-
tection, and vice versa. Some qualitative results are given
in Fig. 7. We observe that pixels such as vertices and cor-
ners have lower uncertainties, while high uncertainties are
assigned to pixels with less significant geometrical features.

We also evaluate the homography estimation perfor-
mance when keypoints of top 5%, 10%, and 15% high un-
certainties are discarded. The results are given in Tab. 7.
The performance improves when 5% and 10% points with
high uncertainty are excluded. However, it starts to drop
when more points are excluded.

5. Conclusion
In this work, we propose UAPoint for uncertainty aware

interest point detection and description. We leverage deep
evidential learning to estimate aleatoric and epistemic un-
certainties in keypoint detection. We also propose a con-
strained sampling scheme to construct more efficient train-
ing pairs for the descriptor decoder. Experimental results
demonstrate that the proposed method leads to improved
performance in keypoint localization and descriptor match-
ing. When combined with pretrained feature matchers, our
method obtained competitive results compared with state-
of-the-art methods. We also show that the learned uncer-
tainty can be utilized to filter uncertain keypoints, which
further improves the results for homography estimation.
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